Calculus

Problem 21701

Find the tangent line to f(t)=(et+t)2f(t)=(e^{-t}+\sqrt{t})^{2} at t=1t=1. Choose from options a) to d).

See Solution

Problem 21702

Find the tangent line equation for the function f(t)=(et+t)2f(t)=\left(e^{-t}+\sqrt{t}\right)^{2} at the point (4,f(4))(4, f(4)).

See Solution

Problem 21703

Approximate the change in drug concentration C(x)=10x9+x2C(x)=\frac{10 x}{9+x^{2}} from x=0.5x=0.5 to x=10x=10. Choices: a) 1.02 b) 5.4 c) 4.3 d) 8.5 e) 9.7

See Solution

Problem 21704

Bestimmen Sie die Intervalle für f(x)=23x3+x212x+1f(x)=\frac{2}{3} x^{3}+x^{2}-12 x+1, den Wendepunkt von f(x)=18x334x22,5f(x)=\frac{1}{8} x^{3}-\frac{3}{4} x^{2}-2,5 und Extrempunkte/Schnittpunkte von f(x)=16x3+2xf(x)=-\frac{1}{6} x^{3}+2 x.

See Solution

Problem 21705

Berechnen Sie den Flächeninhalt, den der Graph von f(x)=ex+1f(x)=e^{x}+1, seine Tangente an der yy-Achse, die xx-Achse und die Gerade x=4x=-4 begrenzen. Was ist die Tangentengleichung?

See Solution

Problem 21706

Find the monkey's acceleration at time t=3t=3 for the distance S(t)=tsin(2t)+t2S(t)=t \sin(2t) + t^2. Round up the result.

See Solution

Problem 21707

Find the average rate of change of f(x)=2log3x+1f(x) = 2 \log_{3} x + 1 on the interval [1,27][1, 27].

See Solution

Problem 21708

Which investment is better over 10 years: \11,000at11,000 at 6.25\%continuouslyor continuously or 6.3\%$ semiannually?

See Solution

Problem 21709

Approximate the integral 214(x2+4)dx\int_{2}^{14}(x^{2}+4)dx using a Riemann sum with 3 subintervals of length 4. Choose: a) 85916 b) 2758.5 c) 476 d) 608 e) None.

See Solution

Problem 21710

Approximate the change in drug concentration C(x)=10x9+x2C(x)=\frac{10 x}{9+x^{2}} for xx changing from 1 to 2.

See Solution

Problem 21711

Bestimmen Sie die Intervalle, in denen die Funktion f(x)=23x3+x212x+1f(x)=\frac{2}{3} x^{3}+x^{2}-12 x+1 streng monoton wächst.

See Solution

Problem 21712

Find limx0f(x)\lim _{x \rightarrow 0} f(x) for the piecewise function: f(x)={x+3x<04e2x0x<62ln(x2)x6 f(x)=\begin{cases} \lfloor x+3\rfloor & x<0 \\ 4 e^{-2 x} & 0 \leq x<6 \\ 2 \ln (x-2) & x \geq 6 \end{cases} Options: a) 2 b) 3 c) 4 d) 6 e) D.N.E

See Solution

Problem 21713

Calculate the value of a \$4,000 investment at 7% interest compounded continuously for 5 years. Options: a) \$5,400.00 b) \$5,776.27 c) \$5,610.21 d) \$5,676.27

See Solution

Problem 21714

Find the time when the drug concentration K(x)=2xx2+27K(x)=\frac{2 x}{x^{2}+27} is maximum. Options: a) 27\sqrt{27} b) 16\sqrt{16} c) 27\sqrt{27} and 27-\sqrt{27} d) 37\sqrt{37} e) None.

See Solution

Problem 21715

Approximate the integral 113(x4+4)dx\int_{1}^{13}(x^{4}+4)dx using 3 subintervals. Which partition is correct? a) [1,4],[4,8],[8,13][1,4],[4,8],[8,13] b) [1,5],[6,10],[10,14][1,5],[6,10],[10,14] c) [1,5],[6,10],[11,13][1,5],[6,10],[11,13] d) [1,5],[5,9],[9,13][1,5],[5,9],[9,13] e) None.

See Solution

Problem 21716

Approximate the integral 211(x3+4)dx\int_{2}^{11}(x^{3}+4) dx using a Riemann sum with 3 subintervals of length 3. Choices: a) 1260 b) 1971 c) 5940 d) 6566 e) None.

See Solution

Problem 21717

Find the time after drug administration when the concentration K(x)=6xx2+25K(x)=\frac{6 x}{x^{2}+25} is at its maximum.

See Solution

Problem 21718

Find the monkey's acceleration at time t=3t=3 for S(t)=tsin(2t)+t3S(t)=t \sin (2 t)+t^{3}. Round up your answer. Options: a) 15 b) 20 c) 26 d) 27

See Solution

Problem 21719

Find the biomass at t=10t=10 hours if the average rate of change from t=3t=3 to t=10t=10 is 17mg/\frac{1}{7} \mathrm{mg}/hour and at t=3t=3 it is 11.

See Solution

Problem 21720

Find the average rate of change of y=102x4y=10 \cdot 2^{\frac{x}{4}} from x=4x=4 to x=12x=12. Round to the nearest thousandth.

See Solution

Problem 21721

Find the limit limx0f(x)\lim _{x \rightarrow 0} f(x) for the piecewise function defined as: f(x)=x+15f(x)=\lfloor x+15\rfloor for x<0x<0, 14e2x14 e^{-2 x} for 0x<60 \leq x<6, 4ln(x3)4 \ln (x-3) for x6x \geq 6.

See Solution

Problem 21722

Find the average rate of change of y=102x4y=10 \cdot 2^{\frac{x}{4}} from x=4x=4 to x=12x=12. Round to the nearest thousandth.

See Solution

Problem 21723

Approximate the integral 113(x2+4)dx\int_{1}^{13}(x^{2}+4) dx using a Riemann sum with 3 subintervals of length 4.

See Solution

Problem 21724

Find the integral of 12sin(x)cos(x)dx12 \sin(x) \cos(x) \, dx. What is the result?

See Solution

Problem 21725

Approximate the integral 113(x2+4)dx\int_{1}^{13}(x^{2}+4) dx using a Riemann sum with 3 subintervals of length 4. What are the subintervals?

See Solution

Problem 21726

Approximate the integral 110(x3+4)dx\int_{1}^{10}(x^{3}+4) dx using a Riemann sum with 3 subintervals of length 3.

See Solution

Problem 21727

Find the critical points of y=f(x)=4x36x272x+3y=f(x)=4 x^{3}-6 x^{2}-72 x+3. Choose from the options provided.

See Solution

Problem 21728

Approximate the change in drug concentration C(x)=10x9+x2C(x)=\frac{10 x}{9+x^{2}} as xx changes from 0.5 to 10. Options: a) 1.02 b) 5.4 c) 4.3 d) 8.5 e) 9.7

See Solution

Problem 21729

Find the derivative of f(x)=(x8+6x)5f(x)=(x^{8}+6x)^{5}. Which option is correct? a) 5(x8+6x)4(x7+1)5(x^{8}+6x)^{4}(x^{7}+1) b) (x8+6x)4(8x7+6)(x^{8}+6x)^{4}(8x^{7}+6) c) 5(x8+6x)45(x^{8}+6x)^{4} d) 5(x8+6x)4(8x7+6)5(x^{8}+6x)^{4}(8x^{7}+6) e) None.

See Solution

Problem 21730

Find dydt\frac{d y}{d t} for y=(tan(x8)+6x)6y=\left(\tan \left(x^{8}\right)+6 x\right)^{6}. Choose the correct option.

See Solution

Problem 21731

Approximate the integral 113(x2+5)dx\int_{1}^{13}(x^{2}+5) dx using a Riemann sum with 3 subintervals of length 4.

See Solution

Problem 21732

Find the time after administration when the drug concentration K(x)=12xx2+25K(x)=\frac{12 x}{x^{2}+25} is maximum: a) 25 hrs b) 5 hrs c) 5 and -5 hrs d) 30 hrs e) None.

See Solution

Problem 21733

Evaluate the integral: (e4t+t3+8)dt\int\left(e^{4 t}+\frac{t}{3}+8\right) d t. Choose the correct answer from the options.

See Solution

Problem 21734

If ff is even and 01f(x)dx=2\int_{0}^{1} f(x) dx=2, 03f(x)dx=6\int_{0}^{3} f(x) dx=6, find 13f(x)dx\int_{-1}^{3} f(x) dx. a) 10 b) 12 c) 8 d) 14

See Solution

Problem 21735

Find the average rate of change of f(x)=2log3x+1f(x) = 2 \log_{3}{x} + 1 over the interval [1,27][1,27].

See Solution

Problem 21736

Approximate the integral 214(x2+5)dx\int_{2}^{14}(x^{2}+5) dx using a Riemann sum with 3 subintervals of length 4.

See Solution

Problem 21737

Find the tangent line to f(t)=(et+t)2f(t)=(e^{-t}+\sqrt{t})^{2} at (1/2,f(1/2))(1/2, f(1/2)). Choose from options a) to d).

See Solution

Problem 21738

If y=(cos(x7)+5x)15y=(\cos(x^{7})+5x)^{15}, find dydt\frac{dy}{dt}.

See Solution

Problem 21739

Find the total reaction to a drug from t=1t=1 to t=10t=10 for R(t)=6t+4t3+e2tR^{\prime}(t)=\frac{6}{t}+\frac{4}{t^{3}}+e^{-2 t}. Round up.

See Solution

Problem 21740

Calculate the volume of the solid formed by revolving the area bounded by x=y3/2x=y^{3/2}, x=0x=0, y=2y=2 around the y-axis.

See Solution

Problem 21741

Find the time xx when the drug concentration K(x)=4xx2+20K(x)=\frac{4 x}{x^{2}+20} is at its maximum.

See Solution

Problem 21742

Find the derivative of the function f(x)=(x3+6x)4f(x)=(x^{3}+6x)^{4}. What is df(x)dx\frac{d f(x)}{d x}?

See Solution

Problem 21743

Calculate the integral 110(x3+4)dx\int_{1}^{10}(x^{3}+4) dx using a Riemann sum with 3 subintervals and midpoints.

See Solution

Problem 21744

A bacteria culture grows proportionally. At 6:00 AM, there are 4,000 bacteria; at noon, there are 4,800. Find the count at midnight.
There will be about \square bacteria at midnight.

See Solution

Problem 21745

Find the integral of 4e4t+t3+44 e^{4 t}+\frac{t}{3}+4: a) e4t+t26+4t+Ce^{4 t}+\frac{t^{2}}{6}+4 t+C b) e4t4+t23+4t+C\frac{e^{4 t}}{4}+\frac{t^{2}}{3}+4 t+C c) e4t4+t22+t+C\frac{e^{4 t}}{4}+\frac{t^{2}}{2}+t+C d) e4t+t22+Ce^{4 t}+\frac{t^{2}}{2}+C e) None of the above

See Solution

Problem 21746

Find 25f(x)dx\int_{-2}^{5} f(x) d x given that ff is even and 02f(x)dx=1\int_{0}^{2} f(x) dx=1, 05f(x)dx=4\int_{0}^{5} f(x) dx=4.

See Solution

Problem 21747

Find df(x)dx\frac{d f(x)}{d x} for f(x)=(x3+6x2)4f(x)=(x^{3}+6x^{2})^{4}. Choose the correct option: a) b) c) d) e).

See Solution

Problem 21748

Calcule o valor de kk na equação T(t)=20+100ektT(t)=20+100 e^{-k t}, dado que T(t1)=30CT(t_1)=30^{\circ} \mathrm{C}. Opções: (A) ln10t1\ln \frac{10}{t_{1}}, (B) t1ln10t_{1}-\ln 10, (C) ln10t1\frac{\ln 10}{t_{1}}, (D) t1+ln10t_{1}+\ln 10.

See Solution

Problem 21749

Approximate the integral 113(x2+5)dx\int_{1}^{13}(x^{2}+5) dx using a Riemann sum with 3 subintervals of length 4.

See Solution

Problem 21750

Find the volume of the solid formed by rotating the area between y=xy = \sqrt{x} and y=x2y = x^{2} around the x-axis.

See Solution

Problem 21751

Find dydt\frac{d y}{d t} for y=(sin(x8)+6)6y=\left(\sin \left(x^{8}\right)+6\right)^{6}. Choices include derivatives involving xx.

See Solution

Problem 21752

Evaluate the integral of (sin(x))8cos(x)dx(\sin(x))^8 \cos(x) \, dx. What is the result? a) (cos(x))99+C\frac{(\cos(x))^9}{9}+C b) (sin(x))99+C\frac{(\sin(x))^9}{9}+C c) 8(sin(x))2+C8(\sin(x))^2+C d) 8(cos(x))2+C8(\cos(x))^2+C e) None of the above

See Solution

Problem 21753

Bestimme den Grenzwert limnan\varlimsup_{n \to \infty} a_{n} für die Folge an=5+4n(1n2+2)a_{n}=5+\frac{4}{n}-\left(\frac{1}{n^{2}}+2\right).

See Solution

Problem 21754

Find the total reaction from the 2nd2^{\text{nd}} to the 10th10^{\text{th}} hour given R(t)=6t+4t3+e2tR^{\prime}(t)=\frac{6}{t}+\frac{4}{t^{3}}+e^{-2t}. Round up to the nearest whole number. Options: a) 7 b) 9 c) 12 d) 11

See Solution

Problem 21755

What time after administration does the drug concentration K(x)=6xx2+25K(x)=\frac{6x}{x^{2}+25} peak?

See Solution

Problem 21756

Find the tangent line to the curve f(t)=(et+t)2f(t)=\left(e^{-t}+\sqrt{t}\right)^{2} at the point (2,f(2))(2, f(2)).

See Solution

Problem 21757

Find the tangent line equation for f(t)=(et+t)2f(t)=\left(e^{-t}+\sqrt{t}\right)^{2} at (3,f(3))(3, f(3)).

See Solution

Problem 21758

Find the total reaction to a drug from the 2nd to the 8th hour given the rate R(t)=4t+3t3+e2tR^{\prime}(t)=\frac{4}{t}+\frac{3}{t^{3}}+e^{-2 t}. Round up your answer.

See Solution

Problem 21759

Find the derivative of f(x)=(x3+6x)4f(x)=(x^{3}+6x)^{4}. Which option is correct? a) b) c) d) e)

See Solution

Problem 21760

Approximate the integral 214(x2+3)dx\int_{2}^{14}(x^{2}+3) dx using a Riemann sum with 3 subintervals of length 4.

See Solution

Problem 21761

Find the total reaction from hour 1 to hour 10 for R(t)=4t+3t3+e2tR^{\prime}(t)=\frac{4}{t}+\frac{3}{t^{3}}+e^{-2 t}. Round up.

See Solution

Problem 21762

Find dydt\frac{d y}{d t} for y=(tan(x5)+5)6y=\left(\tan \left(x^{5}\right)+5\right)^{6}. Choose the correct option.

See Solution

Problem 21763

Evaluate the integral (sin(x))12(cos(x))dx\int(\sin (x))^{12}(\cos (x)) d x and choose the correct answer from the options.

See Solution

Problem 21764

Approximate the integral 113(x2+5)dx\int_{1}^{13}(x^{2}+5) dx using a Riemann sum with 3 subintervals of length 4. Choices: a) 488 b) 1160 c) 2879 d) 8591 e) None.

See Solution

Problem 21765

Approximate the integral 110(x3+4)dx\int_{1}^{10}(x^{3}+4) dx using a Riemann sum with 3 subintervals of length 3. Choices: a) 1260 b) 1345 c) 2758.5 d) 4257 e) None.

See Solution

Problem 21766

Approximate the integral 214(x2+3)dx\int_{2}^{14}(x^{2}+3) dx using a Riemann sum with 3 subintervals of length 4.

See Solution

Problem 21767

If ff is even and 03f(x)dx=2\int_{0}^{3} f(x) dx=-2, 04f(x)dx=3\int_{0}^{4} f(x) dx=3, find 34f(x)dx\int_{-3}^{4} f(x) dx.

See Solution

Problem 21768

Find the derivative of the function f(x)=(x3+4x)3f(x)=(x^{3}+4x)^{3}. What is df(x)dx\frac{d f(x)}{d x}?

See Solution

Problem 21769

Find 34f(x)dx\int_{-3}^{4} f(x) d x if ff is even, 03f(x)dx=2\int_{0}^{3} f(x) d x=-2, and 04f(x)dx=3\int_{0}^{4} f(x) d x=3.

See Solution

Problem 21770

Approximate the integral 211(x3+4)dx\int_{2}^{11}(x^{3}+4)dx using 3 subintervals. Which partition is correct? a) b) c) d) e) None.

See Solution

Problem 21771

Find 26f(x)dx\int_{-2}^{6} f(x) d x given that ff is even, 02f(x)dx=1\int_{0}^{2} f(x) d x=1, and 06f(x)dx=3\int_{0}^{6} f(x) d x=3.

See Solution

Problem 21772

Find the monkey's acceleration at time t=3t=3 for the distance function S(t)=tsin(2t)+t2S(t)=t \sin (2 t)+t^{2}, rounding up results.

See Solution

Problem 21773

Approximate the change in drug concentration C(x)=10x9+x2C(x)=\frac{10 x}{9+x^{2}} from x=0.5x=0.5 to x=1.5x=1.5.

See Solution

Problem 21774

Bestimme die Normalengleichung für ff an den Punkten A: a) f(x)=x3+2627f(x)=x^{3}+\frac{26}{27}, b) f(x)=x2+5x+43f(x)=x^{2}+5x+\frac{4}{3}, c) f(x)=2x+14x+32f(x)=\frac{2}{x}+\frac{1}{4}x+\frac{3}{2}, d) f(x)=xx+2f(x)=\sqrt{x}-x+2.

See Solution

Problem 21775

Set up the integral for Cy3dx+(x3+8xy2)dy\int_{C} y^{3} dx + (x^{3} + 8xy^{2}) dy where C:r(t)=<2cos(t),2sin(t)>C: \vec{r}(t)=<2 \cos(t), 2 \sin(t)>, 0t2π0 \leq t \leq 2\pi.

See Solution

Problem 21776

Approximate the integral 110(x4+4)dx\int_{1}^{10}(x^{4}+4) dx using a Riemann sum with 3 subintervals of length 3.

See Solution

Problem 21777

Find the integral of e3t+t+5e^{3 t} + t + 5 with respect to tt. Choose the correct answer from the options.

See Solution

Problem 21778

Find the total reaction from t=1t=1 to t=10t=10 for R(t)=6t+4t3+e2tR^{\prime}(t)=\frac{6}{t}+\frac{4}{t^{3}}+e^{-2 t}. Round up. a) 16 b) 17 c) 14 d) 21

See Solution

Problem 21779

Logistic growth function f(t)=1601+9e0.165tf(t)=\frac{160}{1+9 e^{-0.165 t}} describes elk population. Find: A. Initial elk, B. Elk after 10 years, C. Limiting population.

See Solution

Problem 21780

Approximate the change in drug concentration C(x)=10x9+x2C(x)=\frac{10 x}{9+x^{2}} for xx changing from 1 to 1.5.

See Solution

Problem 21781

Zeigen Sie, dass F(x)=(x2)exF(x)=(x-2) \cdot e^{x} eine Stammfunktion von f(x)=(x1)exf(x)=(x-1) \cdot e^{x} ist und berechnen Sie a1f(x)dx\int_{a}^{1} f(x) d x.

See Solution

Problem 21782

Calculate the integral: 12sin(x)cos(x)dx\int 12 \sin (x) \cos (x) d x

See Solution

Problem 21783

Find the difference quotient for f(x)=3x+8f(x) = \sqrt{3x + 8} in simplest form.

See Solution

Problem 21784

If ff is even and 01f(x)dx=2\int_{0}^{1} f(x) dx=2, 06f(x)dx=7\int_{0}^{6} f(x) dx=7, find 16f(x)dx\int_{-1}^{6} f(x) dx.

See Solution

Problem 21785

Find the tangent line equation to f(t)=(e2t+t)2f(t)=(e^{-2 t}+\sqrt{t})^{2} at (3,f(3))(3, f(3)). Choose the correct option.

See Solution

Problem 21786

Finde die Normalen-Gleichung an den Graphen von f in den Punkten A für die Funktionen: a) f(x)=x3+2627f(x)=x^{3}+\frac{26}{27}, b) f(x)=x2+5x+43f(x)=x^{2}+5 x+\frac{4}{3}, c) f(x)=2x+14x+32f(x)=\frac{2}{x}+\frac{1}{4} x+\frac{3}{2}, d) f(x)=xx+2f(x)=\sqrt{x}-x+2.

See Solution

Problem 21787

If ff is even and 01f(x)dx=2\int_{0}^{1} f(x) dx=2, 06f(x)dx=7\int_{0}^{6} f(x) dx=7, find 16f(x)dx\int_{-1}^{6} f(x) dx.

See Solution

Problem 21788

Differentiate and optimize the equation 5x2+4x325 x^{2}+4 x-32. Find x=x= and state if it's a max or min value (1.d.p).

See Solution

Problem 21789

Berechnen Sie den Flächeninhalt AA unter der Funktion f(x)=(x1)exf(x) = (x - 1) \cdot e^x von -\infty bis 11.

See Solution

Problem 21790

Zeigen Sie, dass es genau ein k>1 k > 1 gibt, sodass 1k(x1)exdx=0 \int_{-1}^{k} (x - 1) \cdot e^x \, dx = 0 . Schätzen Sie k k ab.

See Solution

Problem 21791

Set up the integral S(x2+y2+z2)dS\int_{S} (x^{2}+y^{2}+z^{2}) dS for the surface z=x+yz=x+y within the cylinder x2+y2=4x^{2}+y^{2}=4.

See Solution

Problem 21792

Zeigen Sie, dass es genau ein k>1k>1 mit 1kf(x)dx=0\int_{-1}^{k} f(x) \, dx=0 gibt. Schätzen Sie kk und erklären Sie Ihre Schätzung. Berechnen Sie 12f(x)dx\int_{1}^{2} f(x) \, dx und klären Sie, ob k2k \geq 2 oder k<2k<2 gilt. Die Funktion ist f(x)=(x1)exf(x)= (x-1) \cdot e^x.

See Solution

Problem 21793

Evaluate the line integral Cxyds\int_{C} x y d s where CC is the line y=3xy=3 x from (0,0)(0,0) to (3,9)(3,9).

See Solution

Problem 21794

Calculate the integral: (x+1)2x5dx\int(x+1)^{2} x^{5} dx. Hint: Use algebraic manipulation.

See Solution

Problem 21795

Berechnen Sie den Wert von 12(x1)exdx\int_{1}^{2} (x-1) e^x \, dx und bestimmen Sie, ob k2k \geq 2 oder k<2k < 2 gilt.

See Solution

Problem 21796

Find the partial derivative of 4xy+6x32y124xy + 6x^{\frac{3}{2}}y^{-\frac{1}{2}} with respect to yy at the point (1,1)(1,1).

See Solution

Problem 21797

Find the derivative of 4xy+6x32y124xy + 6x^{\frac{3}{2}}y^{-\frac{1}{2}} with respect to yy and set it equal to 10.

See Solution

Problem 21798

Bestimme limnNbn=n1n+1\varlimsup_{n \in \mathbb{N}} b_{n} = \frac{n-1}{n+1} und analysiere die Monotonie.

See Solution

Problem 21799

Find limx0f(x)\lim _{x \rightarrow 0} f(x) for the piecewise function: f(x)=x+8f(x)=\lfloor x+8\rfloor if x<0x<0, 4e2x4 e^{-2 x} if 0x<60 \leq x<6, and 2ln(x2)2 \ln (x-2) if x6x \geq 6. Choices: a) 3 b) 2 c) 4 d) 6 e) D.N.E.

See Solution

Problem 21800

Differentiate implicitly to find dydx\frac{d y}{d x} and the slope at the point (4,1) for 3xy+6x3/2y1/2=603xy + 6x^{3/2}y^{-1/2} = 60.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord