Calculus

Problem 15001

Find the rate of change of yy where y=log(2x+1)y=\log(2x+1) with respect to xx.

See Solution

Problem 15002

Evaluate the integral from 4 to 5 of (2+2y)2dy(2+2y)^{2} dy. Enter a fraction, integer, or exact decimal.

See Solution

Problem 15003

Find the average rate of change in value per year of the vehicle from years 5 to 10 for f(x)=4500(0.98)xf(x)=4500(0.98)^{x}.

See Solution

Problem 15004

Evaluate 02g(t)dt\int_{0}^{2} g(t) dt and 15g(t)dt\int_{1}^{5} g(t) dt for the function g(t)g(t) with given intercepts.

See Solution

Problem 15005

Analyze the function f(x)=sin(x)13sin(3x)+15sin(5x)f(x)=\sin (x)-\frac{1}{3} \sin (3 x)+\frac{1}{5} \sin (5 x) over [0,π][0, \pi].
(a) Find f(x)f'(x) and f(x)f''(x).
(b) Determine relative extrema and points of inflection (round to four decimal places).

See Solution

Problem 15006

Determine the positivity/negativity of f(x)=182x2f(x)=18-2 x^{2} on [0,4][0,4]; sketch it and find the Riemann sums with n=4n=4.

See Solution

Problem 15007

Find the length xx and width yy of a rectangle with area maximum, bounded by y=6x2y=\frac{6-x}{2}.

See Solution

Problem 15008

Evaluate the integral 06(0.6x23)dx\int_{0}^{6}(0.6 x^{2}-3) dx for n=4n=4; find Δx\Delta x and grid points.

See Solution

Problem 15009

Evaluate the integral 06(0.6x23)dx\int_{0}^{6}(0.6 x^{2}-3) d x for n=4n=4: graph, find Δx\Delta x, grid points, and Riemann sums.

See Solution

Problem 15010

Given the function f(x)=182x2f(x)=18-2 x^{2} on [0,4][0,4], do the following:
a. Sketch f(x)f(x). b. Find net area using left, right, and midpoint Riemann sums with n=4n=4. c. Identify intervals contributing positively/negatively to net area.
Approximate values: Left Riemann sum = 44, Right = 12, Midpoint = \square.

See Solution

Problem 15011

Find dydx\frac{d y}{d x} if y=ln(2x23y2)y=\ln(2 x^{2}-3 y^{2}). Choose from the options given.

See Solution

Problem 15012

Evaluate the integral 06(0.6x23)dx\int_{0}^{6}(0.6 x^{2}-3)dx with n=4n=4. Find Δx\Delta x, grid points, and Riemann sums.

See Solution

Problem 15013

Find the local min and max of f(x)=2x324x2+72x+6f(x)=2x^{3}-24x^{2}+72x+6 by finding its derivative, setting it to zero, and solving for xx. Then, substitute xx back into f(x)f(x) for the values.

See Solution

Problem 15014

Bestimme die Häufungspunkte der Folge an=(1)nn2(3n+3)2a_{n}=\frac{(-1)^{n} \cdot n^{2}}{(3 \cdot n+3)^{2}}. Anzahl und größter Punkt?

See Solution

Problem 15015

Bestimmen Sie die ersten beiden Ableitungen von 9xex9 x \cdot e^{-x}.

See Solution

Problem 15016

Find the absolute max and min of f(x)=46x2f(x)=4-6 x^{2} for 5x1-5 \leq x \leq 1. Max is 4 at x=x=, min is at x=x=.

See Solution

Problem 15017

Find the max and min of f(x)=2x3+12x272x+1f(x)=2x^3+12x^2-72x+1 on [6,3][-6, 3]. Use calculus for derivatives.

See Solution

Problem 15018

Bestimmen Sie die Stammfunktionen für die folgenden Funktionen: a) f(x)=x4f(x)=x^{4}, b) f(x)=x2f(x)=x^{-2}, c) f(x)=3x42x2f(x)=3 x^{4}-2 x-2, d) f(x)=25x2+1,21x2f(x)=\frac{2}{5} x^{2}+1,2 \frac{1}{x^{2}}, e) f(x)=12x4f(x)=12 x^{4}, f) f(x)=23x5f(x)=\frac{2}{3} x^{-5}, g) f(x)=14x2f(x)=\frac{1}{4} x^{2}, h) f(x)=3sin(x)f(x)=3 \sin (x).

See Solution

Problem 15019

Evaluate the integral 06(0.6x23)dx\int_{0}^{6}(0.6 x^{2}-3) dx with n=4n=4:
a. Sketch the graph.
b. Find Δx\Delta x and grid points x0,x1,,xnx_{0}, x_{1}, \ldots, x_{n}.
c. Calculate left and right Riemann sums.

See Solution

Problem 15020

Evaluate the integral 06(0.6x23)dx\int_{0}^{6}(0.6 x^{2}-3) d x for n=4n=4. Find Δx\Delta x, grid points, and Riemann sums.

See Solution

Problem 15021

Evaluate the integral 06(0.6x23)dx\int_{0}^{6}(0.6 x^{2}-3) dx with n=4n=4. Find Δx\Delta x, grid points, and Riemann sums.

See Solution

Problem 15022

Find the absolute extremum of the function f(x)=4x33f(x)=4 x^{3}-3.

See Solution

Problem 15023

Find the limit: limnn2+(1)nn(n+3)2\lim _{n \rightarrow \infty} \frac{n^{2}+(-1)^{n} \cdot n}{(n+\sqrt{3})^{2}}

See Solution

Problem 15024

Kent deposits \20,000atacontinuousinterestrateof20,000 at a continuous interest rate of 6.21\%$. Will he afford the car in 6 years?

See Solution

Problem 15025

A snowball's radius decreases at 0.3 cm/min0.3 \mathrm{~cm/min}. Find the volume decrease rate when the radius is 17 cm17 \mathrm{~cm}. cm3min\frac{\mathrm{cm}^{3}}{\min}

See Solution

Problem 15026

Given xy=3x y=3 and dydt=2\frac{d y}{d t}=2, find dxdt\frac{d x}{d t} when x=3x=3.

See Solution

Problem 15027

A snowball's radius decreases at 0.4 cm/min0.4 \mathrm{~cm} / \mathrm{min}. Find the volume decrease rate when the radius is 14 cm14 \mathrm{~cm}. Answer in cm3min\frac{\mathrm{cm}^{3}}{\min}.

See Solution

Problem 15028

Calculate the average value of the function f(x)=cosxf(x)=-\cos x from x=π2x=-\frac{\pi}{2} to x=π2x=\frac{\pi}{2}.

See Solution

Problem 15029

Find the average value of f(x)=x(x1)f(x)=x(x-1) over the interval [5,8][5,8].

See Solution

Problem 15030

Graph the integrand for 19(3x+1)dx\int_{1}^{9}\left(\frac{3}{x}+1\right) d x with n=4n=4. Find Δx\Delta x, xix_i, and Riemann sums.

See Solution

Problem 15031

Find the correct expression for dVdt\frac{d V}{d t} and calculate the volume change rate when r=2.9r=2.9 inches and drdt=0.4\frac{d r}{d t}=0.4 in/s.

See Solution

Problem 15032

A snowball's radius decreases at 0.1 cm/min0.1 \mathrm{~cm} / \mathrm{min}. Find the volume's decrease rate when the radius is 13 cm13 \mathrm{~cm}. Answer in cm3min\frac{\mathrm{cm}^{3}}{\min }.

See Solution

Problem 15033

Find dxdt\frac{d x}{d t} given the equation xy+y3+x4=4x y + y^{3} + x^{4} = 4, with y=2y=-2, dydt=5\frac{d y}{d t}=5, and x=2x=2.

See Solution

Problem 15034

Gegeben ist fa(x)=ax3+4axf_{a}(x)=-a x^{3}+4 a x. a) Zeigen Sie Punktsymmetrie. b) Bestimmen Sie Punkte P(2,0)P(-2,0) und Q(2,0)Q(2,0). c) Nachweis von Hoch- und Tiefpunkt. d) Finden Sie die Wendetangente mit Steigung m=8m=8.

See Solution

Problem 15035

Find the rate of volume decrease of a snowball when its radius is 18 cm, given the radius decreases at 0.3 cm/min0.3 \mathrm{~cm/min}. cm3min\frac{\mathrm{cm}^{3}}{\min}

See Solution

Problem 15036

Untersuchen Sie das Steigen und Fallen der Funktionen: a) f(x)=x5f(x)=x^{5}, b) f(x)=x24xf(x)=x^{2}-4 x, c) f(x)=1x3f(x)=1-x^{3}, d) f(x)=x34xf(x)=x^{3}-4 x, e) f(x)=1f(x)=1, f) f(x)=1xf(x)=\frac{1}{x}.

See Solution

Problem 15037

Find dxdt\frac{d x}{d t} given the equation xy+y2+x4=99-x y+y^{2}+x^{4}=99 with dydt=4\frac{d y}{d t}=4, y=3y=-3, and x=3x=3.

See Solution

Problem 15038

An oil spill is a cylinder with height 4 in and radius r(t)r(t). Find dVdt\frac{d V}{d t} and volume change at r=2.4r=2.4 in, rate 0.20.2 in/s.

See Solution

Problem 15039

Evaluate ddxaxf(t)dt\frac{d}{d x} \int_{a}^{x} f(t) d t and ddxabf(t)dt\frac{d}{d x} \int_{a}^{b} f(t) d t. Simplify your answer.

See Solution

Problem 15040

Find the antiderivative F(x)F(x) for: (a) f(x)=xx4f(x)=\sqrt{x}-x^{4}, (b) f(x)=1x1x2f(x)=\frac{1}{x}-\frac{1}{x^{2}} with F(e)=1F(-e)=1, (c) f(x)=4e3x+1+2f(x)=4 e^{3 x+1}+2. Simplify F(x)F(x).

See Solution

Problem 15041

Evaluate the area functions:
a. A(2)A(-2), b. F(8)F(8), c. A(4)A(4), d. F(4)F(4), e. A(8)A(8) for the function ff.

See Solution

Problem 15042

Analyze the function f(x)=2xexf(x)=2 x-e^{x}: (a) Determine where ff is increasing or decreasing. (b) Find concavity. (c) Sketch ff with local extrema. (d) Count xx-intercepts and explain.

See Solution

Problem 15043

Find the horizontal asymptote of the function f(x)=2x1+3f(x)=2^{x-1}+3.

See Solution

Problem 15044

Tomatenpflanze: Gegeben ist v(t)=0,1t3+t2v(t)=-0,1 t^{3}+t^{2}. Bestimme h(t)h(t) und beantworte: a) Wachstumsdauer? b) Maximalhöhe? c) Höhe bei maximalem Wachstum?

See Solution

Problem 15045

Find the second derivative of f(x)=xex4f(x) = -x e^{\frac{x}{4}}.

See Solution

Problem 15046

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=4x2f(x)=\frac{4}{x^{2}}, where h0h \neq 0.

See Solution

Problem 15047

Determine where the function f(x)=x472x2f(x) = x^{4} - 72x^{2} is increasing and decreasing. Sketch the graph with horizontal tangents.

See Solution

Problem 15048

Find the second derivative of f(x)=xex410f(x)=-x e^{\frac{x}{4}-10}.

See Solution

Problem 15049

Determine if the function m(x)=3x3m(x)=3 x^{3} is concave up, down, or neither on the interval (,0)(-\infty, 0).

See Solution

Problem 15050

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=3xx+2f(x)=\frac{3x}{x+2}, where h0h \neq 0.

See Solution

Problem 15051

e) Betrachte die Schuldenfunktion S(t)=0,08t3+3,5t2+10,6t+237S(t)=-0,08 t^{3}+3,5 t^{2}+10,6 t+237.
a) Was beschreibt die Ableitung SS'? b) In welchem Jahr war die Neuverschuldung am höchsten? c) Wann wird Nullverschuldung erreicht? d) Welcher Fehler wurde 2005 in der Meldung über sinkende Staatsschulden gemacht?

See Solution

Problem 15052

Find the second derivative, f(x)f^{\prime \prime}(x), for the function f(x)=4x62x2+6x9f(x)=4 x^{6}-2 x^{2}+6 x-9.

See Solution

Problem 15053

Find the linearization L(x)L(x) of the function f(x)=ln(x2)f(x)=\ln \left(x^{2}\right) at x=ex=e.

See Solution

Problem 15054

Find the second derivative h(x)h^{\prime \prime}(x) for h(x)=9x58x7h(x)=9 x^{-5}-8 x^{-7}.

See Solution

Problem 15055

Find the second derivative f(x)f^{\prime \prime}(x) for the function f(x)=(x2+1)7f(x)=(x^{2}+1)^{7}.

See Solution

Problem 15056

Zeige, dass die Funktion f(x)=(xa)3f(x)=(x-a)^{3} bei x=ax=a eine Wendestelle hat. (3Pkt)

See Solution

Problem 15057

Find the inflection points for the function f(x)=x3+33x2f(x)=x^{3}+33 x^{2}. What are the coordinates? A. \square B. No inflection points.

See Solution

Problem 15058

Find the drug concentration C(20)C(20) after 20 minutes using C(t)=0.08(1e0.2t)C(t)=0.08(1-e^{-0.2 t}). Round to three decimal places.

See Solution

Problem 15059

Determine where the graph of f(x)=x20+8x2f(x)=x^{20}+8x^{2} is concave up, concave down, and find the inflection points.

See Solution

Problem 15060

Find the marginal daily production of labor given by q(n)=12(0.3n+0.02n2)1.6q(n)=12(0.3 n+0.02 n^{2})^{1.6}. Calculate dqdn\frac{d q}{d n}.

See Solution

Problem 15061

A car wash's daily production is q(n)=12(0.3n+0.02n2)1/2q(n)=12\left(0.3 n+0.02 n^{2}\right)^{1 / 2}. Find dqdn\frac{d q}{d n} and estimate it for n=5n=5.

See Solution

Problem 15062

A computer company found the price-demand relationship p=15120.14x2p=1512-0.14 x^{2} and revenue R(x)=1512x0.14x3R(x)=1512 x-0.14 x^{3}. Find local maxima for R(x)R(x).

See Solution

Problem 15063

A computer company found the price-demand relationship as p=15120.14x2p=1512-0.14 x^{2} for 0<x<900<x<90. What are the concavity intervals for R(x)=1512x0.14x3R(x)=1512x-0.14x^{3}?

See Solution

Problem 15064

A car wash's daily production is q(n)=12(0.3n+0.02n2)1.6q(n)=12(0.3 n+0.02 n^{2})^{1.6}. Find dqdn\frac{d q}{d n} and estimate it for n=5n=5.

See Solution

Problem 15065

Differentiate the function 3x212x+x3\frac{3 x^{2}-1}{2 x+x^{3}} with respect to xx.

See Solution

Problem 15066

Find the derivative of (3x3+2)5(3 x^{3}+2)^{5} with respect to xx.

See Solution

Problem 15067

Calculate the derivative dydxx=π2\left.\frac{d y}{d x}\right|_{x=\frac{\pi}{2}} for y=xcotxy=\frac{x}{\cot x}.

See Solution

Problem 15068

Find the second derivative of f(x)=(x2+2)9f(x)=(x^{2}+2)^{9}. What is f(x)f^{\prime \prime}(x)?

See Solution

Problem 15069

Find the derivative dydx\frac{d y}{d x} at x=π4x=\frac{\pi}{4} for y=3sinxcosx+2tanxy=3 \sin x \cos x + 2 \tan x.

See Solution

Problem 15070

Find the consumers' surplus when the demand function is p(x)=(1400)x+12p(x)=\left(-\frac{1}{400}\right) x+12 and price is 8.

See Solution

Problem 15071

Calculate the half-life of I-10 with a decay rate of 8.912%8.912\% per day.

See Solution

Problem 15072

Find the derivative dydx\frac{dy}{dx} using implicit differentiation for 8xyy8=7x8xy - \frac{y}{8} = \frac{7}{x}.

See Solution

Problem 15073

Calculate the doubling time for a city with an annual growth rate of 7.5%7.5\%.

See Solution

Problem 15074

Find the derivative using implicit differentiation for (xy)2+y2=9(x y)^{2}+y^{2}=9; compute dxdy\frac{d x}{d y}.

See Solution

Problem 15075

Find the derivative dydx\frac{d y}{d x} using implicit differentiation for ln(xy)xln(y)=6y\ln (x y)-x \ln (y)=6 y.

See Solution

Problem 15076

Find the limit as nn approaches infinity: Limn(11n2)n+1\operatorname{Lim}_{n \rightarrow \infty}\left(1-\frac{1}{n^{2}}\right)^{n+1}.

See Solution

Problem 15077

Find the slope of the tangent line using implicit differentiation for 4x2+2y2=124 x^{2}+2 y^{2}=12 at the point (1,-2). dydx=\frac{d y}{d x} =

See Solution

Problem 15078

Find the consumers' surplus when the price is set at 7000 for the demand function p(x)=100000.048x2p(x)=10000-0.048 x^{2}.

See Solution

Problem 15079

Find the linear approximation L(s)L(s) for f=p(1+s)1+spf=\frac{p(1+s)}{1+s p}, where pp is constant and ss is small.

See Solution

Problem 15080

Approximate the gene frequency ff in the next generation using a linear approximation L(s)L(s) for small ss:
L(s)= L(s)=

See Solution

Problem 15081

Find the limit of an=(n1n+3)2n+1a_{n}=\left(\frac{n-1}{n+3}\right)^{2 n+1} as nn approaches infinity.

See Solution

Problem 15082

Find dydx\frac{d y}{d x} for P=x0.6y0.4P=x^{0.6} y^{0.4} at x=100x=100, y=500,000y=500,000. Result: $\$ \square per worker.

See Solution

Problem 15083

What is the temperature of a drink after 50 minutes if it starts at 5C5^{\circ} \mathrm{C} and reaches 10C10^{\circ} \mathrm{C} in 25 minutes?

See Solution

Problem 15084

Find the limit: limxx+2x2+x+1\lim _{x \rightarrow-\infty} \frac{x+2}{x^{2}+x+1}.

See Solution

Problem 15085

Find the limit: limx3x24x+4\lim _{x \rightarrow \infty}-\frac{3 x^{2}}{4 x+4}.

See Solution

Problem 15086

Find the limit: limx3x33x22\lim _{x \rightarrow-\infty} \frac{3 x^{3}}{3 x^{2}-2}.

See Solution

Problem 15087

Show that for any real numbers aa and bb, sinbsinaba|\sin b - \sin a| \leq |b - a| using the Mean Value theorem.

See Solution

Problem 15088

Find the limit: limx2x2x24\lim _{x \rightarrow-\infty} \frac{2 x^{2}}{x^{2}-4}.

See Solution

Problem 15089

Find the slope of the tangent line for h(x)=(3x4)2xh(x)=\frac{(3x-4)^{2}}{x} at x=2x=-2.

See Solution

Problem 15090

Given z=xy2z=\frac{x y}{2}, with dzdt=12\frac{d z}{d t}=-12, dxdt=3\frac{d x}{d t}=3, z=4z=4, and y=6y=6, find dydt\frac{d y}{d t}.

See Solution

Problem 15091

Find the arc length differential for the curve CC given by r(t)=et2,ln(t+1),2t3\vec{r}(t)=\langle e^{t^{2}}, \ln(t+1), 2-t^{3}\rangle.

See Solution

Problem 15092

Find cc if the rate of change of f(x)=2xf(x)=\sqrt{2x} at x=cx=c is 4 times that at x=1x=1.

See Solution

Problem 15093

Find the positive value of aa where the slope of the tangent to f(x)=5e3x3f(x)=5 e^{3 x^{3}} at (a,f(a))(a, f(a)) equals 6.

See Solution

Problem 15094

Find the xx where the tangent line to y=csc2(x2)3x+4y=\frac{\csc ^{2}\left(\frac{x}{2}\right)}{3 x+4} is horizontal for 0x2π0 \leq x \leq 2 \pi.

See Solution

Problem 15095

Find the value of xx where the tangents of f(x)=2e3xf(x)=2 e^{3 x} and g(x)=5x3g(x)=5 x^{3} are parallel.

See Solution

Problem 15096

Calculate the line integral of f(x,y,z)=xy2f(x, y, z) = xy^2 along the path from (1,1,1)(1, 1, 1) to (2,2,2)(2, 2, 2) to (9,6,4)(-9, 6, 4).

See Solution

Problem 15097

Differentiate the function y=11ln(x234x+5)y=11 \ln \left(x^{23} \sqrt{4 x+5}\right) after simplifying using logarithm properties.

See Solution

Problem 15098

Find f(3)f'(3) for f(x)=xg(h(x))f(x)=x \cdot g(h(x)) given g(4)=2g(4)=2, g(4)=3g'(4)=3, h(3)=4h(3)=4, and h(3)=2h'(3)=-2.

See Solution

Problem 15099

Find the critical numbers of f(x)=x+sin(2x)f(x)=x+\sin(2x) for 0xπ0 \leq x \leq \pi.

See Solution

Problem 15100

Find the positive value of aa where the slope of the tangent to f(x)=5e3x3f(x)=5 e^{3 x^{3}} at (a,f(a))(a, f(a)) equals 6.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord