Calculus

Problem 4201

Untersuchen Sie die Funktion f(x)=2xexf(x)=2 x \cdot e^{-x} auf Nullstellen, Extrema, Wendepunkte und ihr Verhalten für xx \rightarrow \infty und xx \rightarrow -\infty. Zeichnen Sie den Graphen für 0,5x3-0,5 \leq x \leq 3.

See Solution

Problem 4202

Hilf bei diesen Aufgaben:
1. Ableitungen: a) a(x)=e5xa(x)=e^{5x}, b) b(x)=2xb(x)=2^{x}, c) c(x)=4x+7xc(x)=4^{x}+7x, d) d(x)=2x3xd(x)=2x \cdot 3^{x}.
2. Lösungen: a) ex=5e^{x}=5, b) ex14=12e^{x} \cdot \frac{1}{4}=12, c) 30=(x+3)(e3x1)30=(x+3)(e^{3x}-1).
3. Skizziere f(x)=exf(x)=e^{x} und erkläre, warum ex=2e^{x}=-2 und x=ln(2)x=\ln(-2) keine Lösungen haben.
4. Ordne die Graphen: ff und ff', gg und gg'.

See Solution

Problem 4203

Calculate the integral of the function: 6x2dx\int 6 x^{2} dx.

See Solution

Problem 4204

Find the limit: limx2+10x28+7x\lim _{x \rightarrow \infty} \frac{\sqrt{2+10 x^{2}}}{8+7 x}.

See Solution

Problem 4205

Bestimme die Flächeninhalte unter den Graphen der Funktionen: a) f(x)=x22f(x)=x^{2}-2 für I=[2;1]I=[-2;-1] c) f(x)=2x22xf(x)=2x^{2}-2x für I=[1;3]I=[-1;3] ohne GTR.

See Solution

Problem 4206

Schüttkegel: Gegeben ist f(x)=10,6x2f(x)=10,6 x^{2}. a) Zeichne ff für [0;4][0;4]. b) Was bedeutet der Flächeninhalt? c) Berechne die Masse für x=4x=4.

See Solution

Problem 4207

Find the derivatives of these functions: a. f(x)=5x10+4x32x2+4x+5f(x)=5 x^{10}+4 x^{3}-2 x^{2}+4 x+5 b. f(x)=5x2+4x2x10f(x)=5 x^{2}+4 \sqrt{x}-\frac{2}{x}-10 c. f(x)=x+x3+1f(x)=\sqrt{x}+\sqrt[3]{x}+1 d. f(x)=4x3+x+1f(x)=\sqrt{4 x^{3}+x+1} e. f(x)=(x4+4x+2)3f(x)=\left(x^{4}+4 x+2\right)^{3} f. f(x)=(x5+2x)1/3f(x)=\left(x^{5}+2 x\right)^{1 / 3}

See Solution

Problem 4208

A diver on a 10 m10 \mathrm{~m} platform has height h(t)=10+2t4.9t2h(t)=10+2t-4.9t^{2}.
a) Find when the diver hits the water. b) Estimate the height change rate as the diver enters the water.

See Solution

Problem 4209

Find the derivatives of these functions: a. f(x)=5x10+4x32x2+4x+5f(x)=5 x^{10}+4 x^{3}-2 x^{2}+4 x+5 b. f(x)=5x2+4x2x10f(x)=5 x^{2}+4 \sqrt{x}-\frac{2}{x}-10 c. f(x)=x+x3+1f(x)=\sqrt{x}+\sqrt[3]{x}+1 d. f(x)=4x3+x+1f(x)=\sqrt{4 x^{3}+x+1} e. f(x)=(x4+4x+2)3f(x)=\left(x^{4}+4 x+2\right)^{3} f. f(x)=(x5+2x)1/3f(x)=\left(x^{5}+2 x\right)^{1 / 3} g. f(x)=sin5(4x)f(x)=\sin ^{5}(4 x)

See Solution

Problem 4210

Find the derivatives of these functions: a. f(x)=5x6+4x32x2+4x+5f(x)=5 x^{6}+4 x^{3}-2 x^{2}+4 x+5 b. f(x)=5x2+4x2x10f(x)=5 x^{2}+4 \sqrt{x}-\frac{2}{x}-10 c. f(x)=x+x+1f(x)=\sqrt{x}+\sqrt{x}+1 d. f(x)=4x3+x+1f(x)=\sqrt{4 x^{3}+x+1} e. f(x)=(x4+4x+2)3f(x)=\left(x^{4}+4 x+2\right)^{3} f. f(x)=(x3+2x)17f(x)=\left(x^{3}+2 x\right)^{17} g. f(x)=sin3(4x)f(x)=\sin ^{3}(4 x)

See Solution

Problem 4211

Untersuchen Sie die Funktion f(x)=2xexf(x)=2x \cdot e^{-x} auf Nullstellen, Extrema, Wendepunkte und Verhalten für x±x \to \pm\infty. Graph für 0,5x3-0,5 \leq x \leq 3 zeichnen.

See Solution

Problem 4212

Find the derivatives: f(x)f'(x) for f(x)=x8f(x)=x^{8}, g(x)g'(x) for g(x)=6x2g(x)=-6 x^{2}, and h(x)h'(x) for h(x)=1x3h(x)=\frac{1}{x^{3}}.

See Solution

Problem 4213

Find the derivative of the function f(x)=5x8+7x4f(x) = -5 x^{8} + 7 x^{4}.

See Solution

Problem 4214

Find the linearization of f(x)=exf(x)=-e^{x} at x=0x=0. Use it to approximate f(0.9)f(0.9) and state if it's an overestimate or underestimate.

See Solution

Problem 4215

Given the equation x5z3=125x^{-5} \cdot z^{3}=125, find:
(a) z(1)=z(1)= (b) z(1)=z'(1)= (c) z(1)=z''(1)= (d) x(5)=x'(5)=

See Solution

Problem 4216

Find the derivative of yy from 4x5+4xy8y2=1794 x^{5}+4 x y-8 y^{2}=179 and identify coefficients aa to mm. Round answers to two digits.

See Solution

Problem 4217

Find the linear approximation of f(3.5)f(3.5) using f(4)=8f(4)=8 and f(4)=0.7f^{\prime}(4)=0.7. Is it an overestimate or underestimate?

See Solution

Problem 4218

Find the linear approximation of f(x)=xf(x)=\sqrt{x} at x=9x=9 and use it to estimate 8\sqrt{8} and 11\sqrt{11}.

See Solution

Problem 4219

Ein Glas Tee kühlt ab. Gegeben sind die Funktionen f(t)=20+75e0.11tf(t)=20+75 \cdot e^{-0.11t} und g(t)=20+65e0.08tg(t)=20+65 \cdot e^{-0.08t}.
a) Skizzieren Sie f(t)f(t). b) Bestimmen Sie f(0)f(0) und f(5)f(5). c) Finde tt für f(t)=50f(t)=50 und die minimale Temperatur. d) Wann sind f(t)f(t) und g(t)g(t) gleich?

See Solution

Problem 4220

Find the tangent line y=mx+by=m x+b to f(x)=10x+113exf(x)=10 x+1-13 e^{x} at (0,12)(0,-12). Calculate mm and bb.

See Solution

Problem 4221

Find the derivative of yy from 3x5+6xy6y2=1853 x^{5}+6 x y-6 y^{2}=185 and identify coefficients in the expression for dydx\frac{dy}{dx}.

See Solution

Problem 4222

Find z(1)z(1), z(1)z'(1), z(1)z''(1), and x(8)x'(8) for the equation x8z3=512x^{-8} \cdot z^{3}=512. Round answers to two digits.

See Solution

Problem 4223

Find the tangent line equation for the function f(x)=7x2+8exf(x)=-7 x-2+8 e^{x} at the point (0,6)(0,6).

See Solution

Problem 4224

Given x8z2=81x^{-8} \cdot z^{2}=81, find z(1)z(1), z(1)z'(1), z(1)z''(1), and x(9)x'(9). Round answers to two digits.

See Solution

Problem 4225

Find the derivative of the function f(x)=8ex+xef(x)=8 e^{x}+x^{e}. What is f(x)f^{\prime}(x)?

See Solution

Problem 4226

Find the derivative of f(x)=7xf(x)=7^{x}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 4227

Find the derivative of yy from 2x4+6xy4y4=2602 x^{4}+6 x y-4 y^{4}=260 and identify coefficients aa to mm. Round answers to two digits.

See Solution

Problem 4228

Find the derivative of the function f(x)=7ex5x5+33f(x)=7 e^{x}-5 x^{5}+33. What is f(x)f^{\prime}(x)?

See Solution

Problem 4229

Find zz for x=1x=1 from x5z3=216x^{-5} \cdot z^{3}=216, then find zz', zz'', and xx' at z=6z=6. Round to two digits.

See Solution

Problem 4230

Find the derivative of yy from 3x4+8xy8y4=2713x^4 + 8xy - 8y^4 = 271 and identify coefficients a,b,c,d,e,f,g,h,j,k,l,ma, b, c, d, e, f, g, h, j, k, l, m.

See Solution

Problem 4231

Find the derivative of the function f(x)=5xf(x)=5^{x}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 4232

Find the derivative of yy from 4x2+7xy3y2=1634x^2 + 7xy - 3y^2 = 163 and identify coefficients aa to mm. Round answers to two digits.

See Solution

Problem 4233

Given the equation x4z3=27x^{-4} \cdot z^{3}=27, find:
(a) z(1)=z(1)= (b) z(1)=z'(1)= (c) z(1)=z''(1)= (d) x(3)=x'(3)=

See Solution

Problem 4234

Given f(x)=7x33exf(x)=7 x^{3}-3 e^{x}, find f(x)f^{\prime}(x), f(2)f^{\prime}(2), f(x)f^{\prime \prime}(x), and f(2)f^{\prime \prime}(2).

See Solution

Problem 4235

Find z(1)z(1), z(1)z'(1), z(1)z''(1), and x(4)x'(4) for the equation x8z3=64x^{-8} \cdot z^{3}=64. Round answers to two digits.

See Solution

Problem 4236

Find the derivative of f(x)=4x(x38x+7)f(x)=4 \sqrt{x}(x^{3}-8 \sqrt{x}+7) and calculate f(3)f^{\prime}(3) (rounded to the nearest tenth).

See Solution

Problem 4237

Find the slope of the tangent line to the parabola y=3x2+2x+3y=3 x^{2}+2 x+3 at (4,43)(-4,43) and write the line as y=mx+by=m x+b.

See Solution

Problem 4238

Find the derivative of yy from the equation 3x4+3xy7y3=2793 x^{4}+3 x y-7 y^{3}=279 and identify coefficients aa to mm.

See Solution

Problem 4239

Find the derivative of the function 7x1/3+5x107 x^{1/3} + 5 x^{-10}.

See Solution

Problem 4240

Find the derivative of f(x)=40x6+40x4+105x2f(x)=\frac{-40 x^{6}+40 x^{4}+10}{5 x^{2}} without negative exponents. Simplify. f(x)=f^{\prime}(x)=

See Solution

Problem 4241

Find the derivative of f(x)=90x663x9459x2f(x)=\frac{-90 x^{6}-63 x^{9}-45}{9 x^{2}} without negative exponents. Simplify. f(x)= f^{\prime}(x)=

See Solution

Problem 4242

Find the derivative of f(x)=3+8x+4x2f(x)=3+\frac{8}{x}+\frac{4}{x^{2}} and calculate f(4)f^{\prime}(4) rounded to the nearest hundredth.

See Solution

Problem 4243

Find z(1)z(1), z(1)z'(1), z(1)z''(1), and x(4)x'(4) for the equation x9z3=64x^{-9} \cdot z^{3}=64. Round answers to two digits.

See Solution

Problem 4244

Find the derivative of f(x)=1x249f(x)=\frac{1}{x^{2}-49} using the definition. Also, state the domains of ff and ff'.

See Solution

Problem 4245

Find the velocity and acceleration of the particle given by s(t)=2t3+6t+9s(t)=2 t^{3}+6 t+9 at t=3t=3 seconds.

See Solution

Problem 4246

Find the derivative of the function defined by 5x4+6xy7y4=1395 x^{4}+6 x y-7 y^{4}=139 and identify coefficients in the expression for ddxy\frac{d}{d x} y.

See Solution

Problem 4247

Find the first and second derivatives of f(x)=x75x5+3x34x2f(x)=x^{7}-5 x^{5}+3 x^{3}-4 x-2 and evaluate them at x=4x=4.

See Solution

Problem 4248

Die Funktion f(t)=0,32t3+4,8t2+18,4f(t)=-0,32 t^{3}+4,8 t^{2}+18,4 beschreibt die Temperatur eines Backofens.
a) Finde den Zeitpunkt der stärksten Temperaturänderung. b) Bestimme die Temperatur und Änderungsrate zu diesem Zeitpunkt.

See Solution

Problem 4249

What is the derivative of cosxsinx\cos x \sin x with respect to xx?

See Solution

Problem 4250

Find zz at x=1x=1, zz' at x=1x=1, zz'' at x=1x=1, and xx' at z=8z=8 from x4z2=64x^{-4} \cdot z^{2}=64.

See Solution

Problem 4251

Find the derivative of yy from 2x5+5xy8y2=1222 x^{5}+5 x y-8 y^{2}=122 and determine coefficients aa to mm. Round answers to two digits.

See Solution

Problem 4252

Find the derivative of F(v)=vv+6F(v)=\frac{v}{v+6} and state the domains of FF and F(v)F'(v) in interval notation.

See Solution

Problem 4253

Find first and second-order approximations of f(x)=5x4f(x)=5x^{4} around x0=2x_{0}=-2. Determine coefficients aa, bb, and cc.

See Solution

Problem 4254

Calculate the limit: limh0+h2+4h+1313h\lim _{h \rightarrow 0^{+}} \frac{\sqrt{h^{2}+4 h+13}-\sqrt{13}}{h}.

See Solution

Problem 4255

Find the limit of the function f(x)=(7xx+1)(3x+8x2+x)f(x)=\left(\frac{7 x}{x+1}\right)\left(\frac{3 x+8}{x^{2}+x}\right) as xx approaches 8.

See Solution

Problem 4256

Find the limit: limt0sinktt\lim _{t \rightarrow 0} \frac{\sin k t}{t} using limθ0sinθθ=1\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1.

See Solution

Problem 4257

Find linear and quadratic approximations of f(x)=5x4f(x)=5x^4 at x0=2x_{0}=-2, then estimate f(1.9)f(-1.9).

See Solution

Problem 4258

Find the limit: limθ09sin6θ6θ\lim _{\theta \rightarrow 0} \frac{9 \sin \sqrt{6} \theta}{\sqrt{6} \theta}. What is the answer?

See Solution

Problem 4259

Find the limit: limy0sin17y18y\lim _{y \rightarrow 0} \frac{\sin 17 y}{18 y}. Is it A. \square or B. Does not exist?

See Solution

Problem 4260

Find the derivative f(x)f'(x) of the function f(x)=6x4x2x3xf(x)=-6 x^{4} \sqrt{x}-\frac{2}{x^{3} \sqrt{x}}.

See Solution

Problem 4261

Find the limit: limθ0sinθsin(7θ)\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\sin (7 \theta)}. What is the answer? A. \square B. Limit does not exist.

See Solution

Problem 4262

Find the limit: limx0xcsc7xcos9x=\lim _{x \rightarrow 0} \frac{x \csc 7 x}{\cos 9 x}=\square or it doesn't exist.

See Solution

Problem 4263

Find the derivative of f(x)=3xf(x)=3^{x}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 4264

Find the linear approximation of f(x)=e3x+5xf(x)=e^{3x}+5x at x0=2x_0=2 and x0=2.3x_0=2.3. Then approximate f(2.3)f(2.3) and f(2)f(2).

See Solution

Problem 4265

Find the linear approximation of f(x)=e3x+5xf(x)=e^{3x}+5x at x0=2x_0=2 as L(x)=A+B(x2)L(x)=A+B(x-2). Calculate AA, BB, and f(2.3)L(2.3)f(2.3) \approx L(2.3).

See Solution

Problem 4266

Find the limit: limθ0tanθθ2cot10θ\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta^{2} \cot 10 \theta}. A. = \square (Type an integer or fraction.) B. Limit does not exist.

See Solution

Problem 4267

Given f(x)=3x(x37x+4)f(x)=3 \sqrt{x}(x^{3}-7 \sqrt{x}+4), find f(x)f^{\prime}(x) and then f(3)f^{\prime}(3) (round to the nearest tenth).

See Solution

Problem 4268

If limxcf(x)\lim _{x \rightarrow c} f(x) exists, can you find it using limxc+f(x)\lim _{x \rightarrow c^{+}} f(x)? Explain. Choose A, B, C, or D.

See Solution

Problem 4269

Find 1e1x(3+2lnx)3dx\int_{1}^{e} \frac{1}{x}(3+2 \ln x)^{3} d x using u=3+2lnxu=3+2 \ln x. Also, sketch y2=9(x+1)y^{2}=9(x+1) and y=x+9y=-x+9, then find the area between them.

See Solution

Problem 4270

Find the derivative f(x)f'(x) of f(x)=6x(x34x+4)f(x)=6\sqrt{x}(x^3-4\sqrt{x}+4) and calculate f(3)f'(3) (round to the nearest tenth).

See Solution

Problem 4271

Graph the function f(x)={1x2,x12,x=1f(x)=\left\{\begin{array}{ll}1-x^{2}, & x \neq 1 \\ 2, & x=1\end{array}\right. and find the limits as x1x \rightarrow 1^{-} and x1+x \rightarrow 1^{+}. Does limx1f(x)\lim _{x \rightarrow 1} f(x) exist?

See Solution

Problem 4272

Find the derivative of the function f(x)=2x2f(x)=\frac{2}{x^{2}} at the point x=5x=5. What is f(5)f^{\prime}(5)?

See Solution

Problem 4273

Find the derivative of the function f(x)=e4f(x)=e^{4}. What is f(x)f^{\prime}(x)?

See Solution

Problem 4274

Find the derivative f(7)f^{\prime}(7) given that f(x)=15f(x)=15.

See Solution

Problem 4275

Differentiate the equation 8x6+y7=3x8 x^{6}+y^{7}=3 x implicitly to find yy^{\prime}, then solve for yy and differentiate again. Check consistency.

See Solution

Problem 4276

Differentiate the equation 8x6+y7=3x8 x^{6}+y^{7}=3 x implicitly to find yy^{\prime}.

See Solution

Problem 4277

Find the derivative f(x)f'(x) of f(x)=5x(x34x+5)f(x)=5 \sqrt{x}(x^{3}-4 \sqrt{x}+5) and calculate f(2)f'(2) (round to the nearest tenth).

See Solution

Problem 4278

Find the linear approximation of f(x)=xmf(x)=x^{m} near x0=1x_{0}=1. Use it to estimate (a) 0.97230.97^{23} and (b) 1.088\sqrt[8]{1.08}.

See Solution

Problem 4279

Find first and second-order approximations of f(x)=6x6f(x) = 6x^6 at x0=2x_0 = 2. Round answers to two digits.

See Solution

Problem 4280

If a person spends 1.00 hours on a report and gets a 59, with a derivative of 36, what grade for 1.20 hours?

See Solution

Problem 4281

Find the first-order approximation of f(x)=6x6f(x)=6 x^{6} around x0=2x_{0}=2 and express it as f(x)a+b(x2)f(x) \approx a+b \cdot(x-2). What are aa and bb? Then rewrite it as f(x)a+bxf(x) \approx a+b x. What are the new aa and bb?

See Solution

Problem 4282

Find the second-order approximation of f(x)=6x6f(x)=6x^6 near x0=2x_0=2. Determine a,b,ca, b, c for both forms:
1. f(x)a+b(x2)+12c(x2)2f(x) \approx a + b \cdot (x-2) + \frac{1}{2} c \cdot (x-2)^2
2. f(x)a+bx+cx2f(x) \approx a + b x + c x^2

See Solution

Problem 4283

Find f(a)f(a), f(a+h)f(a+h), and the difference quotient f(a+h)f(a)h\frac{f(a+h)-f(a)}{h} for f(x)=2x2+7f(x)=2x^2+7.

See Solution

Problem 4284

Find first and second-order approximations of f(x)=6x6f(x)=6x^6 around x0=2x_0=2. Use x=2.1x=2.1 for evaluations.

See Solution

Problem 4285

Differentiate 8x6+y7=3x8 x^{6}+y^{7}=3 x to find yy^{\prime}; solve for yy and check consistency of derivatives.

See Solution

Problem 4286

Find the linear approximation of f(x)=x4+3xf(x)=x^{4}+3 \cdot x at x0=3x_{0}=3 and x0=3.3x_{0}=3.3, and approximate f(3.3)f(3.3) and f(3)f(3).

See Solution

Problem 4287

Given x+y=8\sqrt{x}+\sqrt{y}=8, find yy' using implicit differentiation and then solve for yy to find yy' in terms of xx.

See Solution

Problem 4288

Find the points x^0\hat{x}_{0} and x~0\tilde{x}_{0} for the linear functions L(x)=9x+14L(x)=9x+14 approximating f(x)f(x) and g(x)g(x). Round to two digits.

See Solution

Problem 4289

Find points x^0\hat{x}_{0} and x~0\tilde{x}_{0} where L(x)=9x+14L(x)=9x+14 approximates f(x)=9x4279x+446f(x)=9x^{4}-279x+446 and g(x)=8ln(2x)7x+22g(x)=8\ln(2x)-7x+22. Round to two digits.

See Solution

Problem 4290

Find the first and second-order approximations of f(x)=6x6f(x)=6 x^{6} around x0=2x_{0}=2 and evaluate at x=2.1x=2.1.

See Solution

Problem 4291

Find the linear approximation of f(x)=xmf(x)=x^{m} near x0=1x_{0}=1. Use it to estimate (a) 0.97250.97^{25} and (b) 1.156\sqrt[6]{1.15}.

See Solution

Problem 4292

Find yy^{\prime} using implicit differentiation for 5x1y=8\frac{5}{x}-\frac{1}{y}=8. Then solve for yy and differentiate.

See Solution

Problem 4293

Find the number of units xx (max 110) that minimizes the average cost per unit Cˉ(x)=C(x)x\bar{C}(x) = \frac{C(x)}{x} for C(x)=0.2x326x2+1516xC(x)=0.2 x^{3}-26 x^{2}+1516 x.

See Solution

Problem 4294

Differentiate implicitly the equation ex/y=8xye^{x / y} = 8x - y to find dydx\frac{dy}{dx}.

See Solution

Problem 4295

Find f(1)f^{\prime}(1) given f(x)+x2[f(x)]3=10f(x)+x^{2}[f(x)]^{3}=10 and f(1)=2f(1)=2. f(1)=f^{\prime}(1)=

See Solution

Problem 4296

Differentiate x2+4xy+8y2=20x^{2}+4xy+8y^{2}=20 to find yy' and the tangent line at (2,1)(2,1).

See Solution

Problem 4297

Find the slope mm of the tangent line to the curve y=3x211x+1y=3 x^{2}-11 x+1 at the point (4,5)(4,5) and its equation.

See Solution

Problem 4298

Bestimmen Sie die Extrempunkte von ff mit dem zweiten Extremstellenkriterium für die Funktionen a) bis d).

See Solution

Problem 4299

Find the difference quotient, f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}, for the function f(x)=7x26x7f(x)=-7 x^{2}-6 x-7.

See Solution

Problem 4300

Berechne die Steigung von g(x)=x3+xg(x)=x^{3}+x an Punkt P(Λ/2)P(\boldsymbol{\Lambda} / 2) mit der hh-Methode.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord