Calculus

Problem 23201

Find the derivative f(x)f^{\prime}(x) of the function f(x)=x26xf(x)=\sqrt{x^{2}-6x}.

See Solution

Problem 23202

A researcher models antibody production as N(t)=4,00020t+10N^{\prime}(t)=\frac{4,000}{20 t+10}. Find N(t)N(t) and N(8)N(8) in thousand antibodies.

See Solution

Problem 23203

Find the xx-coordinates where the tangent line to f(x)=2x3+4x28x+3f(x)=2 x^{3}+4 x^{2}-8 x+3 is horizontal.

See Solution

Problem 23204

Find the derivative of g(x) = 3x \cos(x) - 2.

See Solution

Problem 23205

A rock creates a ripple in a pond. If the radius grows at 5ft/sec5 \mathrm{ft} / \mathrm{sec}, find the area increase speed at 2 ft radius.

See Solution

Problem 23206

Calculate the indefinite integral: ex9x8dx\int e^{x^{9}} x^{8} d x using the substitution u=x9u=x^{9}.

See Solution

Problem 23207

Calculate the integral using substitution: u=x2+1u=x^{2}+1. Find (x2+1)6xdx\int\left(x^{2}+1\right)^{6} x d x.

See Solution

Problem 23208

Find the maximum value of y=23x312x23x+1y=\frac{2}{3} x^{3}-\frac{1}{2} x^{2}-3 x+1 on [0,2][0,2].

See Solution

Problem 23209

Find all functions gg where g(x)=4x2+x+3xg^{\prime}(x)=\frac{4 x^{2}+x+3}{\sqrt{x}}.

See Solution

Problem 23210

Find the consumers' surplus for the demand function d(x)=70012xd(x)=700-\frac{1}{2} x at demand level x=400x=400.

See Solution

Problem 23211

Calculate the integral I=0π/44+3cos2θcos2θdθI=\int_{0}^{\pi / 4} \frac{4+3 \cos ^{2} \theta}{\cos ^{2} \theta} d \theta.

See Solution

Problem 23212

Evaluate the integral I = ∫(4 + 2y - y²) dy from 0 to 2.

See Solution

Problem 23213

Find the consumers' surplus for the demand function d(x)=100e0.01xd(x) = 100 e^{-0.01 x} at x=300x = 300. Round to the nearest cent.

See Solution

Problem 23214

Calculate the integral I=0π/23sin(2t)dtI=\int_{0}^{\pi / 2} 3 \sin (2 t) d t.

See Solution

Problem 23215

Find the gradient of the curve y=x312xy=x^{3}-12 x at (1,11)(1,-11) and the coordinates of its turning points.

See Solution

Problem 23216

Approximate 64.13\sqrt[3]{64.1} using the tangent line of f(x)=x3f(x)=\sqrt[3]{x} at x=64x=64: find mm and bb for y=mx+by=m x+b.

See Solution

Problem 23217

Approximate 10.252\frac{1}{0.252} using the tangent line of f(x)=1xf(x)=\frac{1}{x} at a nearby point.

See Solution

Problem 23218

Approximate 16.1\sqrt{16.1} using the tangent line of f(x)=xf(x)=\sqrt{x} at x=16x=16. Find L(x)=L(x)=. Provide 9 significant figures.

See Solution

Problem 23219

Find the interval where the Intermediate Value Theorem ensures a root for f(x)=x3+x3f(x)=x^{3}+x-3. Options: (A) (1,0)(-1,0) (B) (0,1)(0,1) (C) (1,2)(1,2) (D) (2,3)(2,3).

See Solution

Problem 23220

Find the acceleration of a particle with velocity v(t)=(t+1)sin(t22)v(t)=-(t+1) \sin \left(\frac{t^{2}}{2}\right) at t=2t=2. Is its speed increasing?

See Solution

Problem 23221

Find the limit: limx29x2\lim _{x \rightarrow 2^{-}} \frac{9}{x-2}. Choose from (A) -\infty, (B) 0, (C) 9, (D) does not exist.

See Solution

Problem 23222

Find the interval where the Intermediate Value Theorem ensures a root for f(x)=x3+x3f(x)=x^{3}+x-3. Options: (A) (1,0)(-1,0), (B) (0,1)(0,1), (C) (1,2)(1,2), (D) (2,3)(2,3).

See Solution

Problem 23223

A particle's velocity is v(t)=10sin(0.4t2)t2t+3v(t)=\frac{10 \sin \left(0.4 t^{2}\right)}{t^{2}-t+3} for 0t3.50 \leq t \leq 3.5. Find acceleration at t=3t=3.

See Solution

Problem 23224

Approximate 8.43\sqrt[3]{8.4} using the tangent line of f(x)=x3f(x)=\sqrt[3]{x} at x=8x=8. Find mm and bb for y=mx+by=mx+b.

See Solution

Problem 23225

Given ff values for 3x93 \leq x \leq 9, which could be true: ff' negative/increasing, negative/decreasing, positive/increasing, or positive/decreasing?

See Solution

Problem 23226

Approximate 16.2\sqrt{16.2} using the tangent line of f(x)=xf(x)=\sqrt{x} at x=16x=16. Find L(x)=L(x)=. Provide 9 significant figures.

See Solution

Problem 23227

Find the consumers' surplus for the demand function d(x)=3500.09x2d(x) = 350 - 0.09 x^{2} at x=50x = 50.

See Solution

Problem 23228

Find the xx-coordinates of all relative maxima for the function f(x)=2x36x2+18x3f(x)=-2 x^{3}-6 x^{2}+18 x-3.

See Solution

Problem 23229

Find the interval(s) where the graph of y=xx3y=x-x^{3} is concave up. Choices: (A) (,0)(-\infty, 0) (B) (0,)(0, \infty) (C) (,13)(13,)\left(-\infty,-\sqrt{\frac{1}{3}}\right) \cup\left(\sqrt{\frac{1}{3}}, \infty\right) (D) (13,13)\left(-\sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}}\right)

See Solution

Problem 23230

Find Δy\Delta y for y=4x2y=4x^2 at x=4x=4 with Δx=0.4\Delta x=0.4 and find dydy with dx=0.4dx=0.4.

See Solution

Problem 23231

Evaluate the integral (2+sin2θ)2cosθdθ\int(2+\sin ^{2} \theta)^{2} \cos \theta d \theta using substitution.

See Solution

Problem 23232

Find intervals where the derivative of the function f(x)=x416x3f(x)=x^{4}-16 x^{3} is decreasing.

See Solution

Problem 23233

Find dyd y for y=tan(4x+4)y=\tan(4x+4) at x=3x=3 with dx=0.2d x=0.2 and dx=0.4d x=0.4.

See Solution

Problem 23234

Given y=4xy=4 \sqrt{x}, find Δy\Delta y for x=5x=5 and Δx=0.4\Delta x=0.4. Also, find dyd y for x=5x=5 and dx=0.4d x=0.4.

See Solution

Problem 23235

Find the tangent line equation for f(x)=108x3+1083f(x)=\sqrt[3]{108 x^{3}+108} at x=1x=1 in mx+bmx+b form. Approximate f(1.1)f(1.1) and find the error.

See Solution

Problem 23236

Find dyd y for y=tan(2x+7)y=\tan(2x+7) at x=1x=1 with dx=0.1d x=0.1 and dx=0.2d x=0.2.

See Solution

Problem 23237

What is the area between the curve y=x24y=x^{2}-4 and the xx-axis from x=2x=-2 to x=2x=2?

See Solution

Problem 23238

Approximate 64.13\sqrt[3]{64.1} using the tangent line of f(x)=x3f(x)=\sqrt[3]{x} at x=64x=64. Find mm and bb for y=mx+by=mx+b.

See Solution

Problem 23239

Graph y=12(x33x+7)y=\frac{1}{2}(x^{3}-3x+7): find domain, symmetries, derivatives, critical points, inflection points, and extremes. Domain: \square.

See Solution

Problem 23240

Find the tangent line of f(x)=128x3+3843f(x)=\sqrt[3]{128 x^{3}+384} at x=1x=1 in the form L(x)=mx+bL(x)=mx+b. Approximate f(1.1)f(1.1) and compute the error error|error| \approx (to 5 decimal places).

See Solution

Problem 23241

Find intervals where the function f(x)=12x4+6x348x2f(x)=\frac{1}{2} x^{4}+6 x^{3}-48 x^{2} is concave down.

See Solution

Problem 23242

Calculate the integral: sin5(2t)cos2(2t)dt\int \sin^{5}(2t) \cos^{2}(2t) \, dt

See Solution

Problem 23243

Graph the function y=12(x33x+7)y=\frac{1}{2}(x^{3}-3x+7), find derivatives, critical points, concavity, and extreme points. Identify intervals of concavity.

See Solution

Problem 23244

Evaluate the integral: ln(y2)3ydy\int \frac{\ln \left(y^{2}\right)}{3 y} d y.

See Solution

Problem 23245

Graph y=12(x33x+7)y=\frac{1}{2}(x^{3}-3x+7): find domain, symmetries, yy', yy'', critical points, increasing/decreasing intervals, inflection points, asymptotes, and extreme points. Identify vertical asymptotes.

See Solution

Problem 23246

Calculate the integral: sin(4x)(2+cos(4x))2dx\int \frac{\sin (4 x)}{(2+\cos (4 x))^{2}} d x

See Solution

Problem 23247

Find the xx-coordinates where the tangent line to f(x)=2x3+8x232x+4f(x)=2 x^{3}+8 x^{2}-32 x+4 is horizontal.

See Solution

Problem 23248

Find the derivative f(x)f^{\prime}(x) for the function f(x)=x2+4xf(x)=\sqrt{x^{2}+4x}.

See Solution

Problem 23249

A rock creates a ripple with radius increasing at 3ft/sec3 \mathrm{ft} / \mathrm{sec}. Find area increase speed when radius is 2 ft.

See Solution

Problem 23250

Calculate the integral: tan3(4x)sec2(4x)dx\int \tan^{3}(4x) \sec^{2}(4x) \, dx

See Solution

Problem 23251

Graph y=ln(14x2)y=\ln(14-x^{2}). Find domain, symmetries, derivatives yy', yy'', critical points, behavior, concavity, and extreme points. Domain: \square.

See Solution

Problem 23252

Calculate the integral I=0π/52sin(5t)dtI=\int_{0}^{\pi / 5} 2 \sin (5 t) d t.

See Solution

Problem 23253

Find functions gg where g(x)=2x2+4x+5xg^{\prime}(x)=\frac{2 x^{2}+4 x+5}{\sqrt{x}}.

See Solution

Problem 23254

Evaluate the integral I = ∫(2 + 6y - y²) dy from 0 to 3.

See Solution

Problem 23255

Calculate the integral I=0π/43+cos2θcos2θdθI=\int_{0}^{\pi / 4} \frac{3+\cos ^{2} \theta}{\cos ^{2} \theta} d \theta.

See Solution

Problem 23256

Calculate the average rate of change of temperature T(x)=70+32x2T(x)=70+\frac{3}{2} x^{2} from 2:00 P.M. to 4:00 P.M. and interpret it.

See Solution

Problem 23257

Find the average rate of change of g(x)=2x33x22g(x)=2 x^{3}-3 x^{2}-2 between x=1x=1 and x=2x=2. Simplify your answer.

See Solution

Problem 23258

Find the intervals where the derivative of the function f(x)=x318x2+81xf(x)=x^{3}-18 x^{2}+81 x is decreasing.

See Solution

Problem 23259

Differentiate 1x3\frac{1}{x^{3}} using the first principle.

See Solution

Problem 23260

Traffic harms kids. If CO\mathrm{CO} decays at 5.5%5.5\% per meter, find distance for CO\mathrm{CO} to be a third of 5000 ppm. Also, calculate average CO\mathrm{CO} from road to 10 meters.

See Solution

Problem 23261

Estimate the area under f(x)=9xf(x)=\frac{9}{x} from x=5x=5 to x=9x=9 using 2 and then 4 rectangles.

See Solution

Problem 23262

Evaluate the triple integral 231410(4x2yz3)dzdydx\int_{2}^{3} \int_{-1}^{4} \int_{1}^{0} (4 x^{2} y - z^{3}) \, dz \, dy \, dx.

See Solution

Problem 23263

Gegeben ist die Funktion f(x)=x36x2+11x6f(x)=x^{3}-6 x^{2}+11 x-6.
a) Zeigen Sie, dass der Wendepunkt auf der Geraden y=x2y=x-2 liegt.
b) Nach der Verschiebung hat der Punkt (2/0) die Koordinaten (3/2). Bestimmen Sie die Gleichung der Funktion hh.

See Solution

Problem 23264

Bestimmen Sie die Ableitung von ff an x0=2x_{0}=2 für die Funktionen: f(x)=x2f(x)=x^{2}, f(x)=2xf(x)=\frac{2}{x}, f(x)=2x23f(x)=2x^{2}-3, f(x)=x4f(x)=x^{4}, f(x)=x3f(x)=x^{3}, f(x)=4xx2f(x)=4x-x^{2}, f(x)=1xf(x)=-\frac{1}{x}, f(x)=5f(x)=5.

See Solution

Problem 23265

Berechnen Sie f\mathrm{f}^{\prime} mit der Produktregel für die folgenden Funktionen: a) t(x)=x4x5t(x)=x^{4} \cdot x^{5} b) f(x)=(2x2)(3x4)f(x)=(2 x^{2}) \cdot(3 x^{4}) c) f(x)=(x3+x2)(x2+x)f(x)=(x^{3}+x^{2}) \cdot(x^{2}+x) d) f(x)=xx,x>0f(x)=\sqrt{x} \cdot \sqrt{x}, x>0 e) f(x)=x3,1x,x0f(x)=x^{3}, \frac{1}{x}, x \neq 0 f) f(x)=(ax3+bx2)1x2,x0f(x)=(a x^{3}+b x^{2}) \cdot \frac{1}{x^{2}}, x \neq 0

See Solution

Problem 23266

Given the function ff with inflection points at x=6,3.4,1,7.2x=-6, -3.4, 1, 7.2, find the relationship between f(4)f(4), f(4)f'(4), and f(4)f''(4).

See Solution

Problem 23267

Berechne die Ableitungsfunktion W(t)W'(t) für W(t)=0,38t3+9,12t2+9,6W(t)=-0,38 t^{3}+9,12 t^{2}+9,6 im Bereich 0<t<160<t<16.

See Solution

Problem 23268

Berechnen Sie die folgenden Integrale: a) 02(3x2ex)dx\int_{0}^{2}(3 x^{2}-e^{x}) d x b) 14(x1)dx\int_{1}^{4}(\sqrt{x}-1) d x c) 0925xdx\int_{0}^{9} \frac{2}{5} \sqrt{x} d x d) 0π(sin(x)+cos(x))dx\int_{0}^{\pi}(\sin (x)+\cos (x)) d x e) 02(2+x)3dx\int_{0}^{2}(2+x)^{3} d x f) 23(1+1x2)dx\int_{2}^{3}(1+\frac{1}{x^{2}}) d x g) 153xdx\int_{1}^{5} \frac{3}{x} d x h) 1e(1x+1x2)dx\int_{1}^{e}(\frac{1}{x}+\frac{1}{x^{2}}) d x

See Solution

Problem 23269

Bestimme die allgemeine Formel für die Geschwindigkeit v(t)v(t) des Balls mit h(t)=h0+v0t5t2h(t)=h_{0}+v_{0} t-5 t^{2}.

See Solution

Problem 23270

Finde die allgemeine Stammfunktion von f(x)=9x7f(x)=9 x^{7}.

See Solution

Problem 23271

Bestimme die allgemeine Stammfunktion von f(x)=9x2f(x)=9x^2.

See Solution

Problem 23272

Finde die allgemeine Stammfunktion von f(x)=43x8f(x)=\frac{4}{3} x^{8}.

See Solution

Problem 23273

Ein Ball wird mit h(t)=1,5+5t5t2h(t)=1,5+5t-5t^{2} geworfen. Berechne v(t)v(t) nach 2s, wann v(t)v(t) halbiert ist und wann Höhe max. ist.

See Solution

Problem 23274

Bestimme die Ableitungsfunktion W(t)W'(t) von W(t)=0,38t3+9,12t2+9,6W(t)=-0,38 t^{3}+9,12 t^{2}+9,6 für 0<t<160<t<16 und erkläre ihre Bedeutung.

See Solution

Problem 23275

Vergleiche die Grenzkosten K(x)K'(x) mit den Stückkosten K(x)x\frac{K(x)}{x} für K(x)=0,02x30,6x2+6xK(x)=0,02 x^{3}-0,6 x^{2}+6 x.

See Solution

Problem 23276

Bestimme die allgemeine Stammfunktion von f(x)=16x7f(x)=16 x^{7}.

See Solution

Problem 23277

Finde die Ableitung von f(x)=12x22x+2f(x)=\frac{1}{2} x^{2}-2 x+2.

See Solution

Problem 23278

Berechne die Partialsumme SN=n=1N((1+1n)n(1+1n+1)n+1)S_{N}=\sum_{n=1}^{N}\left(\left(1+\frac{1}{n}\right)^{n}-\left(1+\frac{1}{n+1}\right)^{n+1}\right).

See Solution

Problem 23279

Find the value of kk such that k51x2dx=110\int_{k}^{5} \frac{1}{x^{2}} d x=\frac{1}{10}.

See Solution

Problem 23280

Bestimmen Sie den Wert der Reihe n=1((1+1n)n(1+1n+1)n+1)\sum_{n=1}^{\infty}\left(\left(1+\frac{1}{n}\right)^{n}-\left(1+\frac{1}{n+1}\right)^{n+1}\right).

See Solution

Problem 23281

Bestimme die allgemeine Stammfunktion von f(x)=49x4f(x)=\frac{4}{9} x^{4}.

See Solution

Problem 23282

Bestimme für welche qRq \in \mathbb{R} die Reihe n=3(qn+1qn)\sum_{n=3}^{\infty}(q^{n+1}-q^{n}) konvergiert.

See Solution

Problem 23283

Bestimme die Ableitung von f(x)=3x13x3f(x)=3x-\frac{1}{3}x^{3}.

See Solution

Problem 23284

Bestimme die Ableitungsfunktion von f(x)=12x32xf(x)=\frac{1}{2} x^{3}-2 x.

See Solution

Problem 23285

Untersuchen Sie die Funktion f(x)=ln(x2)f(x)=\ln (x-2) für x>2x>2. Zeigen Sie, dass der Flächeninhalt von D2D_{2} doppelt so groß ist wie der von D1D_{1}.

See Solution

Problem 23286

Finde eine Stammfunktion für: (I) f(x)=4xx24f(x)=\frac{4 x}{x^{2}-4} und (II) g(x)=e2x+eg(x)=e^{2 x}+e.

See Solution

Problem 23287

Funksjonen f(x)=ln(x2+14)f(x)=\ln \left(x^{2}+\frac{1}{4}\right): a) Finn definisjonsmengden. b) Deriver og finn ekstremalpunkter. c) Finn vendepunkt.

See Solution

Problem 23288

A stone is thrown from a 16 m16 \mathrm{~m} cliff at 4 m/s4 \mathrm{~m/s}. How far from the base does it land?

See Solution

Problem 23289

Gegeben ist die Produktionsfunktion x(v)=0,4v3+18v2+24vx(v)=-0,4 v^{3}+18 v^{2}+24 v mit v25v \leq 25.
a) Finde den Input vv, bei dem die Grenzproduktivität maximal ist. b) Beweise, dass im Bereich kein Produktionsmaximum existiert. c) Bestimme den Input vv, bei dem der Durchschnittsertrag maximal ist. d) Finde den Input vv, bei dem Grenzproduktivität und Durchschnittsertrag gleich sind.

See Solution

Problem 23290

Untersuchen Sie die Monotonie der Funktionen: a) f(x)=x2+8x5f(x)=x^{2}+8 x-5 b) f(x)=56x3+5x22f(x)=\frac{5}{6} x^{3}+5 x^{2}-2 c) f(x)=14x48xf(x)=\frac{1}{4} x^{4}-8 x d) f(x)=15x514x4f(x)=\frac{1}{5} x^{5}-\frac{1}{4} x^{4} e) f(x)=13x3+2x2+4xf(x)=\frac{1}{3} x^{3}+2 x^{2}+4 x f) f(x)=15x5133x3+36xf(x)=\frac{1}{5} x^{5}-\frac{13}{3} x^{3}+36 x

See Solution

Problem 23291

Find the derivative of f(x)=cos(2x)x2f(x)=\frac{\cos(2x)}{x^{2}}.

See Solution

Problem 23292

Find the derivative of f(x)=3+tan2xf(x)=\sqrt{3+\tan ^{2} x}.

See Solution

Problem 23293

Find the derivative of f(x)=1tanxf(x)=\frac{-1}{\tan x}. Choose the correct option for f(x)f^{\prime}(x).

See Solution

Problem 23294

Find the derivative of f(x)=xsinx+cosxf(x)=x \sin x+\cos x.

See Solution

Problem 23295

A sandbag is dropped from a balloon at 340 m340 \mathrm{~m} height, ascending at 12 m/s12 \mathrm{~m/s}.
a) Find the max height of the sandbag. b) Determine its position and velocity after 5.0 s5.0 \mathrm{~s}. c) How long to reach the ground after being dropped?

See Solution

Problem 23296

Alice throws a rock at 6.5 m/s6.5 \mathrm{~m/s} from a 27.5 m27.5 \mathrm{~m} bridge. What is its speed when it hits the river?

See Solution

Problem 23297

Bestimmen Sie die Ableitung von f(x)=(5x2)exf(x)=(5 x-2) \cdot e^{-x}.

See Solution

Problem 23298

Prove that the sequence an=(1)n(n+cosnπ2n)a_{n}=(-1)^{n}\left(\frac{n+\cos n \pi}{2 n}\right) is not convergent.

See Solution

Problem 23299

Find non-constant sequences ana_n and bnb_n such that: (a) limnan=3\lim_{n \to \infty} a_n = 3, bn0b_n \neq 0, limn(anbn2)=0\lim_{n \to \infty} (a_n b_n^2) = 0. (b) limnan=5\lim_{n \to \infty} a_n = 5, bnan|b_n| \neq |a_n|, limn(an+(1)nbn)=0\lim_{n \to \infty} (a_n + (-1)^n b_n) = 0.

See Solution

Problem 23300

Find the average rate of change of g(x)=x2+2x+3g(x)=-x^{2}+2x+3 between x=3x=3 and x=8x=8. Simplify your answer.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord