Calculus

Problem 6701

Berechne die Steigung von ff an x0x_0 mit der h-Methode für: a) f(x)=x2,x0=1f(x)=x^{2}, x_{0}=1 b) f(x)=2x2,x0=1f(x)=2 x^{2}, x_{0}=-1 c) f(x)=x3,x0=2f(x)=x^{3}, x_{0}=2 d) f(x)=2x,x0=1f(x)=2 x, x_{0}=1

See Solution

Problem 6702

Find the equations of (a) the tangent line and (b) the normal line to y=f(x)y=f(x) at x=2x=2, given f(2)=3f(2)=3 and f(2)=5f'(2)=5.

See Solution

Problem 6703

Given the function y=f(x)y=f(x) with f(x)=143+x2f(x)=\frac{14}{3+x^{2}}, find the slope and equation of the tangent line at point P(2,2)P(2,2).

See Solution

Problem 6704

Given y=f(x)=143+x2y=f(x)=\frac{14}{3+x^{2}}, x0x \geq 0, and point P(2,2)P(2,2), find the slope mm and equation y=y= of the tangent line to f1f^{-1} at PP.

See Solution

Problem 6705

Calculate the volume of the solid formed by rotating the area between y=x3y = x^3, y=1y = 1, and x=2x = 2 around y=3y = -3.

See Solution

Problem 6706

Find (f1)(4)\left(f^{-1}\right)^{\prime}(4) given f(5)=4f(-5)=4 and f(5)=4f^{\prime}(-5)=-4.

See Solution

Problem 6707

Find dydx\frac{d y}{d x} for 14x6+4x28y+y10=1914 x^{6}+4 x^{28} y+y^{10}=19 and the tangent line at (1,1)(1,1) in mx+bm x+b form.

See Solution

Problem 6708

Find dydx\frac{d y}{d x} for the cone volume V=13πx2yV=\frac{1}{3} \pi x^{2} y at x=7x=7, y=21y=21, with V=343πV=343 \pi. dydx= \frac{d y}{d x} =

See Solution

Problem 6709

Find the derivative dydx\frac{d y}{d x} for the function y=sec1(1x)y=\sec^{-1}\left(\frac{1}{x}\right).

See Solution

Problem 6710

Bestimme die Integrale: a) (36x2)dx\int(3-6 x^{2}) dx b) 02(2xx2)dx\int_{0}^{2}(2 x-x^{2}) dx

See Solution

Problem 6711

Berechne die Flächeninhalte unter f(x)=sin(x)f(x) = \sin(x) für die Intervalle: [0;2π][0 ; 2 \pi], [0;5π][0 ; 5 \pi], [0;nπ][0 ; n \cdot \pi], [2π;8π][2 \pi ; 8 \pi].

See Solution

Problem 6712

Find the derivative of the function f(x)=45x5f(x)=\frac{4}{5 x^{5}} in simplest form without negative exponents.

See Solution

Problem 6713

Find the derivative of the function y=x43y=-\sqrt[3]{x^{4}}, expressed in radical form and simplified.

See Solution

Problem 6714

Find the derivative of the function y=1xy=-\frac{1}{x} and express it without negative exponents.

See Solution

Problem 6715

Find the derivative of the function f(x)=12x3f(x)=-\frac{1}{2 x^{3}} and express it without negative exponents.

See Solution

Problem 6716

Bestimme die Ableitung für x0=1x_{0}=1 mit einer Näherungstabelle für den Differenzenquotienten für: a) f(x)=x2f(x)=x^{2}, b) f(x)=x3f(x)=x^{3}, c) f(x)=x2+3f(x)=x^{2}+3, d) f(x)=2x31f(x)=2 x^{3}-1.

See Solution

Problem 6717

Bestimme die Ableitung von f(x)=x2f(x)=x^{2} an x0=4x_{0}=4 durch Näherungstabellen für den Differenzenquotienten.

See Solution

Problem 6718

Bestimmen Sie Grenzwerte für x+x \rightarrow+\infty und xx \rightarrow-\infty, asymptotische Gleichungen und Schnittpunkte der Funktionen a) bis d).

See Solution

Problem 6719

Determine the behavior of f(x)=1x7f(x) = \frac{1}{x-7} as xx \rightarrow \infty. Options: a) 0 from above, b) undefined, c) 0 from below, d) 1/3.

See Solution

Problem 6720

Find the derivative of the function y=x2(2lnx2)y=x^{2}(2-\ln x^{2}).

See Solution

Problem 6721

Find where the function f(x)=4xx2+4f(x)=\frac{4 x}{x^{2}+4} has a horizontal tangent.

See Solution

Problem 6722

Find the derivative of y=x216x3y=\frac{\sqrt{x}}{2}-\frac{1}{6x^3}.

See Solution

Problem 6723

Gegeben ist die Funktion f(x)=x23xf(x)=x^2-3x. Zeichnen Sie den Graphen für 1x4-1 \leq x \leq 4 und bestimmen Sie Steigung und Winkel bei x0=2x_0=2.

See Solution

Problem 6724

Berechne die Steigung von ff bei x0x_{0} für: a) f(x)=x2,x0=1f(x)=x^{2}, x_{0}=-1 b) f(x)=0,5x2,x0=2f(x)=0,5 x^{2}, x_{0}=2 c) f(x)=ax2,x0=1f(x)=a x^{2}, x_{0}=1

See Solution

Problem 6725

Berechnen Sie die Steigung von f(x)=x2f(x)=x^{2} bei x0=1x_{0}=-1.

See Solution

Problem 6726

Berechne die Steigung von ff an x0x_0: a) f(x)=x2,x0=1f(x)=x^{2}, x_{0}=-1 b) f(x)=0,5x2,x0=2f(x)=0,5 x^{2}, x_{0}=2 c) f(x)=ax2,x0=1f(x)=a x^{2}, x_{0}=1

See Solution

Problem 6727

Find the derivative of the function f(x)=6x+33x+5f(x)=\frac{6 x+3}{3 x+5}. What is f(x)f^{\prime}(x)?

See Solution

Problem 6728

Find the derivative of the function y=13xsinxy=13^{-x} \sin x.

See Solution

Problem 6729

Vermuten Sie den Grenzwert gg der Folge an=n+42na_{n}=\frac{n+4}{2 n} und bestimmen Sie nn, sodass ang<0,001\left|a_{n}-g\right|<0,001. Beweisen Sie die Konvergenz.

See Solution

Problem 6730

Bestimme die Integrale: a) (36x2)dx\int(3-6 x^{2}) \, dx b) 02(2xx2)dx\int_{0}^{2}(2 x-x^{2}) \, dx c) 02exdx\int_{0}^{2} e^{-x} \, dx

See Solution

Problem 6731

Find the derivative f(0)f^{\prime}(0) for the piecewise function: f(x)=4x2x2f(x)=4x-2x^{2} for x<0x<0 and f(x)=8x2+4xf(x)=8x^{2}+4x for x0x \geq 0.

See Solution

Problem 6732

Find critical numbers for the function f(x)=x+9x+4f(x)=\frac{x+9}{x+4}.

See Solution

Problem 6733

Determine the interval where the function f(x)=x+9x+4f(x)=\frac{x+9}{x+4} is increasing.

See Solution

Problem 6734

Find the derivative of f(x)=x+5f(x)=\sqrt{x+5} using the definition. Simplify the difference quotient and evaluate the limit:
f(x)=limh0(f(x+h)f(x)h)=limh0()= f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)=\lim _{h \rightarrow 0}(\square)=\square

See Solution

Problem 6735

Leiten Sie die Funktion ff ab für: a) f(x)=xsin(x)f(x)=x \cdot \sin (x), b) f(x)=3xcos(x)f(x)=3 x \cdot \cos (x), d) f(x)=x(2x3)f(x)=\sqrt{x} \cdot(2 x-3), e) f(x)=xcos(x)f(x)=\sqrt{x} \cdot \cos (x), h) f(x)=sin(x)cos(x)f(x)=\sin (x) \cdot \cos (x), k) f(x)=(x2+3x)sin(x)f(x)=(x^{2}+3 x) \cdot \sin (x), c) f(x)=(3x+2)xf(x)=(3 x+2) \cdot \sqrt{x}, f) f(x)=(53x)sin(x)f(x)=(5-3 x) \cdot \sin (x), i) f(x)=x2sin(x)f(x)=x^{2} \cdot \sin (x), l) f(x)=x(x52x3)f(x)=\sqrt{x} \cdot(x^{5}-2 x^{3}).

See Solution

Problem 6736

2 Ergänzen Sie die Ableitungen: a) f(x)=x2sin(x);f(x)=sin(x)+x2f(x)=x^{2} \cdot \sin (x) ; f^{\prime}(x)=\square \cdot \sin (x)+x^{2}. b) f(x)=(2x3)cos(4x);f(x)=cos(4x)(2x3)sin(4x)f(x)=(2 x-3) \cdot \cos (4 x) ; f^{\prime}(x)=\square \cdot \cos (4 x)-(2 x-3) \cdot \sin (4 x). c) f(x)=sin(2x)3x1;f(x)=13x1+sin(2x)Δ23x1f(x)=\sin (2-x) \cdot \sqrt{3 x-1} ; f^{\prime}(x)=-1 \cdot \square \cdot \sqrt{3 x-1}+\sin (2-x) \cdot \frac{\Delta}{2 \cdot \sqrt{3 x-1}}. d) f(x)=x(4x+1);f(x)=(4x+1)+Δ4f(x)=\sqrt{x} \cdot(4 x+1) ; f^{\prime}(x)=\square \cdot(4 x+1)+\Delta \cdot 4. e) f(x)=(x+2)3cos(3x);f(x)=3(x+2)2cos()+(x+2)(sin(3x))f(x)=(x+2)^{3} \cdot \cos (-3 x) ; f^{\prime}(x)=3 \cdot(x+2)^{2} \cdot \cos (\square)+(x+2) \cdot(-\sin (-3 x)).

See Solution

Problem 6737

Find the limit as xx approaches infinity: limx6x36x2+3xx32x+6\lim _{x \rightarrow \infty} \frac{6 x^{3}-6 x^{2}+3 x}{-x^{3}-2 x+6}

See Solution

Problem 6738

Find δ>0\delta > 0 such that for all xx, if 0<x2<δ0 < |x - 2| < \delta, then f(x)+17<0.01|f(x) + 17| < 0.01 for f(x)=9x+1f(x) = -9x + 1.

See Solution

Problem 6739

Find the limit as xx approaches infinity for x37x45x+x2/3+2\frac{\sqrt[3]{x}-7 x-4}{5 x+x^{2 / 3}+2} by simplifying.

See Solution

Problem 6740

Find the slope of the tangent to f(x)=x23f(x) = x^2 - 3 at P(4,13)P(-4, 13) using mtan=limh0f(a+h)f(a)hm_{\tan }=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}. Then, find the tangent line's equation.

See Solution

Problem 6741

Find the limit as x approaches infinity: limxx29x+9x36x2+19\lim _{x \rightarrow \infty} \frac{x^{2}-9 x+9}{x^{3}-6 x^{2}+19}

See Solution

Problem 6742

Berechnen Sie die Fläche unter der Kurve von f(x)=x3f(x) = x^3 im Intervall [0, 2].

See Solution

Problem 6743

Find the limit of f(x)=2+6x45x2f(x)=\frac{-2+\frac{6}{x}}{4-\frac{5}{x^{2}}} as xx \to \infty and xx \to -\infty.

See Solution

Problem 6744

Find the derivative of y=3x4+2x+5xy=\frac{3 x^{4}+2 x+5}{\sqrt{x}}: a) dydx\frac{d y}{d x}

See Solution

Problem 6745

Calculate the limit: limx4x2+35x+1\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}+3}}{5 x+1}.

See Solution

Problem 6746

Is the function f(x)=x236x6f(x)=\frac{x^{2}-36}{x-6} for x6x \neq 6 and f(6)=10f(6)=10 continuous at x=6x=6?

See Solution

Problem 6747

How much must lan invest at a continuous interest rate of 6.2%6.2\% to reach \$182,000 in 10 years? Round to the nearest hundredth.

See Solution

Problem 6748

Find the limit as xx approaches infinity: limx(xx26x)\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}-6 x}\right). Hint: Multiply by x+x26xx+x26x\frac{x+\sqrt{x^{2}-6 x}}{x+\sqrt{x^{2}-6 x}}.

See Solution

Problem 6749

Find the limit as xx approaches infinity: limx16x2+x3(x9)(x+1)\lim _{x \rightarrow \infty} \sqrt{\frac{16 x^{2}+x-3}{(x-9)(x+1)}}

See Solution

Problem 6750

Find the derivative of f(x)=19x2f(x)=1-9 x^{2} at x=3x=3 using the limit definition. Simplify and evaluate the limit.

See Solution

Problem 6751

Find limxa[6f(x)4g(x)7+g(x)]\lim _{x \rightarrow a}\left[\frac{-6 f(x)-4 g(x)}{-7+g(x)}\right] given limxaf(x)=2\lim _{x \rightarrow a} f(x)=-2 and limxag(x)=5\lim _{x \rightarrow a} g(x)=5.

See Solution

Problem 6752

Find the derivative of f(x)=19x2f(x)=1-9 x^{2} using the limit definition: f(x)=limh0(f(x+h)f(x)h)f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right).

See Solution

Problem 6753

Find the derivative of f(x)=19x2f(x)=1-9 x^{2} using the definition: f(x)=limh0(f(x+h)f(x)h)f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right). Simplify and evaluate the limit.

See Solution

Problem 6754

Find the limit as x approaches -7 for the expression 4x54x - 5.

See Solution

Problem 6755

Check if the function f(x)=5x2+23x+12x28xf(x)=\frac{5 x^{2}+23 x+12}{x^{2}-8 x} is continuous at a=8a=8.

See Solution

Problem 6756

Find where the function f(x)=x2x24f(x)=\frac{x^{2}}{x^{2}-4} has a horizontal tangent line.

See Solution

Problem 6757

Calculate the limit: limx2+1x24 \lim _{x \rightarrow 2^{+}} \frac{1}{x^{2}-4} .

See Solution

Problem 6758

Bestimme die Stammfunktion FF von f(x)=3x22xf(x)=3x^2-2x, die durch den Punkt P(21)P(2|-1) verläuft. Wähle CC passend.

See Solution

Problem 6759

Find the tangent line to f(x)=19x2f(x)=1-9 x^{2} at x=4x=4 with slope f(4)=72f^{\prime}(4)=-72 and point (4,143)(4,-143). What is y=y=?

See Solution

Problem 6760

Find the tangent line to f(x)=x26x+7f(x)=x^{2}-6x+7 that is:
a) Parallel to y=2x+4y=2x+4
b) Perpendicular to y=2x+4y=2x+4

See Solution

Problem 6761

Find f(x)f^{\prime \prime}(x) for the function f(x)=x33x24x12xf(x)=\frac{x^{3}-3 x^{2}-4 x-1}{2 x}.

See Solution

Problem 6762

Find the derivative of f(x)=x+5f(x)=\sqrt{x+5} using the limit definition. Simplify and evaluate the limit:
f(x)=limh0(f(x+h)f(x)h)=limh0()= f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)=\lim _{h \rightarrow 0}(\square)=
Hint: use the conjugate trick.

See Solution

Problem 6763

Find the maximum profit given the cost function C(q)=80+19qC(q) = 80 + 19q and price function p=632qp = 63 - 2q.

See Solution

Problem 6764

A function is continuous at a point if it satisfies these three conditions: 1) f(c)f(c) is defined, 2) limxcf(x)\lim_{x \to c} f(x) exists, 3) limxcf(x)=f(c)\lim_{x \to c} f(x) = f(c).

See Solution

Problem 6765

Evaluate the limit: limh0(f(7+h)f(7)h)\lim _{h \rightarrow 0}\left(\frac{f(7+h)-f(7)}{h}\right) for f(x)=9x2f(x)=\frac{9}{x-2}.

See Solution

Problem 6766

Elliot's roast cools from 165F165^{\circ} \mathrm{F} to 140F140^{\circ} \mathrm{F} in 12 min. How long to reach 125F125^{\circ} \mathrm{F}? Use T(t)=70+(16570)ektT(t)=70+\left(165-70\right)e^{-kt}. Find tt rounded to the nearest minute.

See Solution

Problem 6767

Find the derivative f(0)f^{\prime}(0) using the limits limx0\lim _{x \rightarrow 0^{-}} and limx0+\lim _{x \rightarrow 0^{+}} for the piecewise function f(x)f(x).

See Solution

Problem 6768

Find f(0)f^{\prime}(0) for the piecewise function: f(x)=4x2x2f(x)=4x-2x^{2} for x<0x<0 and f(x)=8x2+4xf(x)=8x^{2}+4x for x0x \geq 0.

See Solution

Problem 6769

Find h(4)h^{\prime}(4) for h(x)=5f(x)23g(x)h(x)=5 f(x)-\frac{2}{3} g(x) and h(x)=3+8f(x)h(x)=3+8 f(x) using given values.

See Solution

Problem 6770

Find the points where the function f(x)=x36x2+9x+4f(x)=x^{3}-6 x^{2}+9 x+4 has horizontal tangents.

See Solution

Problem 6771

Find the limit of the series n=1(3n515n4+5)\sum_{n=1}^{\infty}\left(\frac{3 n^{5}}{15 n^{4}+5}\right). Options: 0, 0.2, 5, \infty.

See Solution

Problem 6772

Find the limit of the series n=1(3n415n4+5)\sum_{n=1}^{\infty}\left(\frac{3 n^{4}}{15 n^{4}+5}\right). Options: 0, 0.2, 5, \infty.

See Solution

Problem 6773

Maximize or minimize f(x,y,z)=8xy+6xz+6yzf(x, y, z)=8xy+6xz+6yz with constraint xyz504=0xyz-504=0 using Lagrange multipliers. Check points (1,1,504)(1,1,504) and (1,504,504)(1,\sqrt{504},\sqrt{504}). Verify f(3783,3783,433783)1045.58f\left(\sqrt[3]{378}, \sqrt[3]{378}, \frac{4}{3}\sqrt[3]{378}\right) \approx 1045.58.

See Solution

Problem 6774

Find the limit of the series n=1(3n315n4+5)\sum_{n=1}^{\infty}\left(\frac{3 n^{3}}{15 n^{4}+5}\right). Options: 0, 0.2, 5, \infty.

See Solution

Problem 6775

Find the derivative of y=e(x23)ln(x2+3)y=e^{(x^{2}-3)} \ln (x^{2}+3).

See Solution

Problem 6776

Analyze the series 310+32+152+752+3252+\frac{3}{10}+\frac{3}{2}+\frac{15}{2}+\frac{75}{2}+\frac{325}{2}+\ldots for convergence or divergence.

See Solution

Problem 6777

Find the derivative of y=(3x21)3tan(3x)y=(3x^2-1)^3 \tan(3x).

See Solution

Problem 6778

Determine if the series with an=4n5n+1na_{n}=\frac{4^{n}}{5^{n+1} \cdot n} converges or diverges using the ratio test.

See Solution

Problem 6779

Find the derivative of y=ex3cos(x2)y=e^{x^{3} \cos(x^{2})}.

See Solution

Problem 6780

Find the net change and average rate of change of a function between points (-1,2) and (5,3).

See Solution

Problem 6781

Calculate the integral x4dxx24\int \frac{x^{4} d x}{\sqrt{x^{2}-4}}.

See Solution

Problem 6782

Find the derivative of y=x2+5x25y=\sqrt{\frac{x^{2}+5}{x^{2}-5}}.

See Solution

Problem 6783

For the function y=4x2y=4 x^{2}, find the average rate of change over [5,8][5,8] and the instantaneous rate at x=5x=5.

See Solution

Problem 6784

A smoothie machine starts with 300g of protein in 100L water. After 9 mins, find protein left with 10L/min water added, 20L/min dispensed.
(a) Find smoothie volume function over time. (b) Define protein density D(t)=P(t)V(t)D(t) = \frac{P(t)}{V(t)}. (c) Set up a differential equation for protein loss. (d) Solve it and find protein amount after 9 mins.

See Solution

Problem 6785

A particle moves with s(t)=t36t2+4ts(t)=t^{3}-6t^{2}+4t. Find velocity v(t)v(t), v(3)v(3), when at rest, and when moving positively.

See Solution

Problem 6786

Find the derivative of y=5x2csc3(6x2)y=5^{x^{2}} \csc ^{3}(6 x^{2}).

See Solution

Problem 6787

Find the derivative of f(x)=4xf(x)=4x.

See Solution

Problem 6788

Find the derivative of y=8x3+x53+log8(x3+5)ln(8)y=8^{x^{3}}+\sqrt[3]{x^{5}}+\log _{8}(x^{3}+5)-\ln(8).

See Solution

Problem 6789

Find the derivative of y=ln(cosx)3+ln4(cosx)y=\ln(\cos x)^{3}+\ln^{4}(\cos x).

See Solution

Problem 6790

Find the derivative of y=ln((3x+1)26x2(5x3)4)y=\ln \left(\frac{(3 x+1)^{2} \sqrt{6-x^{2}}}{(5-x^{3})^{4}}\right).

See Solution

Problem 6791

Calculate the integral: 24sec5θdθ\int 2^{4} \sec ^{5} \theta \, d\theta

See Solution

Problem 6792

Find the tangent line equation to the hyperbola y=3xy=\frac{3}{x} at the point (3,1)(3,1).

See Solution

Problem 6793

Find the derivative of y=x3+lnxex2(3x+1)4y=\frac{x^{3}+\ln x}{e^{x^{2}}(3 x+1)^{4}}.

See Solution

Problem 6794

Find the tangent and normal line equations to y=x2lnxy=x^{2} \ln x at the point (1,0)(1,0).

See Solution

Problem 6795

A ball is thrown with an initial velocity of 44ft/s44 \mathrm{ft/s}. Its height after tt seconds is y=44t16t2y=44t-16t^2.
(a) Find the average velocity for t=2t=2 over: (i) 0.5 seconds (ii) 0.1 seconds (iii) 0.05 seconds (iv) 0.01 seconds
(b) Estimate the instantaneous velocity at t=2t=2.

See Solution

Problem 6796

Explain why the function M(x)=1+1xM(x)=\sqrt{1+\frac{1}{x}} is continuous in its domain and state the domain in interval notation.

See Solution

Problem 6797

Find the derivative of the function f(x)=4x2f(x)=-4x-2.

See Solution

Problem 6798

Evaluate the limit using continuity: limx5x41x2\lim _{x \rightarrow 5} x \sqrt{41-x^{2}}.

See Solution

Problem 6799

Find where the functions have horizontal tangents: a) f(x)=x3e2xf(x)=x^{3} e^{2 x}, c) f(x)=x2x21f(x)=\frac{x^{2}}{\sqrt{x^{2}-1}}.

See Solution

Problem 6800

Find the derivatives of these functions: 1) y=3x2+3x+3y=3x^{2}+3x+3 2) f(x)=4x5f(x)=\sqrt{4x-5}

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord