Calculus

Problem 18401

Find the derivative of f(x)=x2+5x+5f(x)=-x^{2}+5x+5 and calculate f(4)f^{\prime}(-4).

See Solution

Problem 18402

Profit function for xx BabCo Lounge Chairs is P(x)=30x1500.2x2P(x)=30 x-150-0.2 x^{2}.
a. Calculate profit increase from selling 11 vs. 10 chairs.
b. Find marginal profit at x=10x=10.

See Solution

Problem 18403

A company sells xx widgets weekly with price-demand p(x)=18xp(x)=18-x. Find marginal revenue R(x)R'(x) and estimate revenue gain from 5 to 6 widgets. $\$

See Solution

Problem 18404

Find the marginal cost function for the microwave production cost C(x)=62,000+40xC(x)=62,000+40x. What is C(x)C'(x)?

See Solution

Problem 18405

Gegeben ist f:x12x3x212x+1f: x \mapsto \frac{1}{2} x^{3}-x^{2}-\frac{1}{2} x+1 a) Zeige, dass -1, 1 und 2 Nullstellen sind b) Berechne die Fläche unter dem Graphen von ff und der xx-Achse c) Vergleiche mit 12f(x)dx\int_{-1}^{2} f(x) d x

See Solution

Problem 18406

Find the profit function P(x)P(x) from price p=255x30p=255-\frac{x}{30} and cost C(x)=56000+60xC(x)=56000+60x. Then, calculate P(1500)P^{\prime}(1500).

See Solution

Problem 18407

Acme Office Supplies makes file cabinets.
a. Calculate the extra cost for 11 vs. 10 cabinets: C(11)C(10)C(11) - C(10). b. Find the marginal cost function: C(x)=C'(x) = . c. Use C(x)C'(x) to estimate the extra cost for 11 cabinets: $C'(10) \approx \$.

See Solution

Problem 18408

Given the function f(x)=2xx249f(x)=\frac{2 x}{x^{2}-49}, find critical numbers, intervals of decrease, local maxima, minima, inflection points, concavity, and asymptotes.

See Solution

Problem 18409

Find the derivative of the function f(x)=(x5+4x+1)(1205x)f(x)=\left(x^{5}+4 x+1\right)(120-5 x). What is f(x)f^{\prime}(x)?

See Solution

Problem 18410

Find the area under the curve y=sinxy=\sin x from x=0x=0 to x=π2x=\frac{\pi}{2}.

See Solution

Problem 18411

Find where the function f(x)=2x318x2+30x+14f(x)=2 x^{3}-18 x^{2}+30 x+14 is increasing using its derivative f(x)f^{\prime}(x).

See Solution

Problem 18412

Find where the function f(x)=4x2+12x7f(x)=-4 x^{2}+12 x-7 is increasing using its derivative f(x)f^{\prime}(x).

See Solution

Problem 18413

Find the position function s(t)s(t) of a particle with a(t)=2sintcosta(t)=2 \sin t-\cos t, s(0)=6s(0)=6, v(0)=0v(0)=0.

See Solution

Problem 18414

Evaluate the integral: 253xx2dx\int_{-2}^{5}\left|3 x-x^{2}\right| d x

See Solution

Problem 18415

Find the curvature and any inflection points for the following functions: a) f(x)=x3+2xf(x)=x^{3}+2x b) f(x)=x5+1f(x)=x^{5}+1 c) f(x)=x6xf(x)=x-6x

See Solution

Problem 18416

Evaluate the derivative: ddx0x(earccott)dt\frac{d}{d x} \int_{0}^{x}\left(e^{\operatorname{arccot} t}\right) d t.

See Solution

Problem 18417

Find the cost change for producing 200 to 300 widescreen TVs using C(x)=10000+5000xC(x)=10000+5000x. Also, calculate the average rate of change.

See Solution

Problem 18418

Find the derivative of h(x)=1ex2lntdth(x)=\int_{1}^{e^{x}} 2 \ln t \, dt.

See Solution

Problem 18419

Finn krumningen og vendepunkter for funksjonene: a) f(x)=x3+2xf(x)=x^{3}+2 x, b) f(x)=x5+1f(x)=x^{5}+1, c) f(x)=x26x2f(x)=x^{2}-6 x^{2}.

See Solution

Problem 18420

Evaluate the derivative f(x)f'(x) of f(x)=2x23x+79x2+x6f(x)=\frac{2 x^{2}-3 x+7}{9 x^{2}+x-6} at x=2x=2, rounded to 2 decimal places.

See Solution

Problem 18421

Bestem krumningen og vendefunkter for: a) f(x)=x3+2xf(x)=x^{3}+2 x, c) f(x)=x46x2f(x)=x^{4}-6 x^{2}, 6) f(x)=x5+1f(x)=x^{5}+1.

See Solution

Problem 18422

Find the derivative of the integral: ddx0x(earccott)dt\frac{d}{d x} \int_{0}^{x}\left(e^{\operatorname{arccot} t}\right) d t

See Solution

Problem 18423

Which integrals are true? Choose all that apply:
1) x4dx=15x5+A\int x^{4} dx = \frac{1}{5} x^{5} + A 2) x8dx=19x9+B\int x^{-8} dx = -\frac{1}{9} x^{-9} + B 3) 1dx=1+C\int 1 dx = 1 + C 4) sin(x)dx=cos(x)+C\int \sin(x) dx = \cos(x) + C 5) exdx=ex\int e^{x} dx = e^{x} 6) cos(x)dx=sin(x)+C\int \cos(x) dx = \sin(x) + C

See Solution

Problem 18424

Given f(x)=2x2f(x)=2-x^{2}, find: a. f(8)f(2)6=\frac{f(8)-f(2)}{6}=, b. f(2+h)f(2)h=\frac{f(2+h)-f(2)}{h}=, c. limh0f(2+h)f(2)h=\lim_{h \to 0} \frac{f(2+h)-f(2)}{h}=.

See Solution

Problem 18425

Calculate profit from selling xx palm trees using P(x)=20x0.01x2100P(x)=20x-0.01x^2-100. Find for 17 trees, average change from 14-17, and instantaneous rate at 17.

See Solution

Problem 18426

Find the revenue change for selling x=7x=7 to x=9x=9 widgets using R(x)=140x0.5x2R(x)=140x-0.5x^{2}. Also, calculate the average rate of change.

See Solution

Problem 18427

Bestem lerumningen og eventuelle vendefunkter for: a) f(x)=x3+2xf(x)=x^{3}+2x, b) f(x)=x5+1f(x)=x^{5}+1, c) f(x)=x46x2f(x)=x^{4}-6x^{2}.

See Solution

Problem 18428

Find the derivatives: a. f(2)f'(2) for f(x)=4x3f(x)=4x^3, b. g(3)g'(3) for g(x)=13x1/2g(x)=13x^{1/2}, c. h(4)h'(4) for h(x)=8xh(x)=8x, d. j(5)j'(5) for j(x)=120x1j(x)=120x^{-1}.

See Solution

Problem 18429

Find the derivative of h(x)=1x2z2z4+1dzh(x)=\int_{1}^{\sqrt{x}} \frac{2 z^{2}}{z^{4}+1} d z using the Fundamental Theorem of Calculus.

See Solution

Problem 18430

Finn vendepunkter for: a) f(x)=x3+2xf(x)=x^{3}+2x, b) f(x)=x5+1f(x)=x^{5}+1, c) f(x)=x26x2f(x)=x^{2}-6x^{2}.

See Solution

Problem 18431

Find the derivative of g(x)=4x251+t2dtg(x)=\int_{4}^{x^{2}} 5 \sqrt{1+t^{2}} dt.

See Solution

Problem 18432

Bestimmen Sie den Inhalt der Fläche unter der Funktion f(x)=0,1x2+10f(x)=-0,1 x^{2}+10 für die gegebenen Grenzen.

See Solution

Problem 18433

Find the integral of x\sqrt{x} with respect to xx: xdx=\int \sqrt{x} d x=

See Solution

Problem 18434

Approximate the mass of air in a 1 m² column, 5 km tall, using densities f(x)=1.225(0.903)xf(x)=1.225(0.903)^{x}. Compare two methods.

See Solution

Problem 18435

Find the integral of x12x^{\frac{1}{2}}.

See Solution

Problem 18436

Calculate the integral: 5x2dx\int 5 x^{-2} d x.

See Solution

Problem 18437

Find the indefinite integral of the function: (98x4+2x7)dx\int\left(9-8 x^{4}+2 x^{7}\right) d x

See Solution

Problem 18438

Show that a hemispherical bowl (radius 10 in) is 5/165 / 16 full when water is 5 in deep, using A=π(20yy2)A = \pi(20y - y^2).

See Solution

Problem 18439

Find the indefinite integral of 3x(4x2+3)7dx3 x(4 x^{2}+3)^{7} \, dx.

See Solution

Problem 18440

Find the area under the curve of f(x)=x22x+3f(x)=x^{2}-2x+3 from x=1x=-1 to x=2x=2.

See Solution

Problem 18441

Evaluate the integral: 15sinudu\int -\frac{1}{5} \sin u \, du

See Solution

Problem 18442

Vis at f(x)=13x32x2+3x+13f(x)=\frac{1}{3} x^{3}-2 x^{2}+3 x+\frac{1}{3} vokser for alle xx, finn minimum vekstfart og likning for vendetangenten.

See Solution

Problem 18443

Find the derivative of f(x)=x2x3f(x)=\sqrt{x}-\frac{2}{x^{3}}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 18444

Berechne die Stammfunktion von 5x2dx\int \frac{5}{x^{2}} dx.

See Solution

Problem 18445

Evaluate the integral from 0 to 1/4 of 11r2dr\frac{1}{\sqrt{1-r^{2}}} \, dr.

See Solution

Problem 18446

Evaluate the limit of the integral from 0 to π of sin(9x) dx.

See Solution

Problem 18447

Evaluate the integral from 1 to 6: 1610x27x+9xdx\int_{1}^{6} \frac{10 x^{2}-7 x+9}{x} d x.

See Solution

Problem 18448

Evaluate the integral: 6ecosxsinxdx\int 6 e^{\cos x} \sin x \, dx

See Solution

Problem 18449

Find the integral tan8xsec2xdx\int \tan^{8} x \sec^{2} x \, dx using the substitution u=tanxu = \tan x.

See Solution

Problem 18450

Evaluate the integral using the substitution u=x3+3u=x^{3}+3: x2x3+3dx\int x^{2} \sqrt{x^{3}+3} \, dx.

See Solution

Problem 18451

Find the integral: x2/5x3/55dx\int x^{-2 / 5} \sqrt{x^{3 / 5}-5} \, dx

See Solution

Problem 18452

Find the area under the curve y=2x+2y=\sqrt{2 x+2} from x=0x=0 to x=1x=1. Round to three decimal places.

See Solution

Problem 18453

Evaluate the integral: 6+4x7+6x+2x2dx\int \frac{6+4 x}{\sqrt{7+6 x+2 x^{2}}} d x

See Solution

Problem 18454

Evaluate the integral: exex+7dx\int \frac{e^{x}}{e^{x}+7} d x

See Solution

Problem 18455

Evaluate the integral from 1 to 4 of 1x\frac{1}{\sqrt{x}} dx.

See Solution

Problem 18456

Evaluate the integral: 2sinxcos(cosx)dx\int 2 \sin x \cos (\cos x) d x

See Solution

Problem 18457

Find the particle's position with v(t)=sintcostv(t)=\sin t-\cos t and initial position s(0)=3s(0)=3.

See Solution

Problem 18458

Evaluate the integral: 44sinx1+x2dx\int_{-4}^{4} \frac{\sin x}{1+x^{2}} d x.

See Solution

Problem 18459

Berechnen Sie die Extrem- und Wendepunkte für die Funktionen: a) f(x)=(x+2)exf(x)=(x+2)e^{-x}, b) f(x)=(x7)exf(x)=(x-7)e^{x}, c) f(x)=x2exf(x)=x^2e^{-x}, d) f(x)=(x23)exf(x)=(x^2-3)e^{x}, e) f(x)=(x2+4)exf(x)=(-x^2+4)e^{-x}, f) f(x)=ex2f(x)=e^{-x^2}, g) f(x)=2xe2x7f(x)=2xe^{2x-7}, h) f(x)=(x1)e2x+1f(x)=(x-1)e^{2x+1}, i) f(x)=(x8)e12xf(x)=(-x-8)e^{\frac{1}{2}-x}.

See Solution

Problem 18460

Hausaufgabe 14: Betrachten Sie die Differentialgleichung sin(y)y2xcos(y)=0\sin (y) \cdot y^{\prime}-2 x \cdot \cos (y)=0 für y(0,π)y \in(0, \pi).
(a) Verifizieren Sie: cos(x)=sin(π2x)\cos (x)=\sin \left(\frac{\pi}{2}-x\right) und arccos(cos(x))=x\arccos (\cos (x))=x für x[0,π]x \in[0, \pi]. Skizzieren Sie den Graphen von arccos:[1,+1]R\arccos :[-1,+1] \rightarrow \mathbb{R}.
(b) Bestimmen Sie alle konstanten Lösungen der Differentialgleichung.
(c) Bestimmen Sie alle Lösungen der Differentialgleichung.
(d) Lösen Sie das Anfangswertproblem sin(y)y2xcos(y)=0\sin (y) \cdot y^{\prime}-2 x \cdot \cos (y)=0, mit y(0)=π4y(0)=\frac{\pi}{4}.

See Solution

Problem 18461

Evaluate the integral from 1 to 4 of x2+8xdx\frac{x^{2}+8}{\sqrt{x}} \, dx.

See Solution

Problem 18462

Bestimme die Ableitung von 3x23 x^{2}.

See Solution

Problem 18463

Find the integral: 15sinudu\int -\frac{1}{5} \sin u \, du

See Solution

Problem 18464

Find the tangent line equation for f(x)=xx2+1f(x)=\frac{x}{\sqrt{x^{2}+1}} that goes through (1,0).

See Solution

Problem 18465

Überprüfe die Geschwindigkeit eines Klippenspringers, der aus 28 m Höhe fällt, mit h(t)=285t2h(t)=28-5 t^{2}. Ist sie 90 km/h90 \mathrm{~km/h}?

See Solution

Problem 18466

Bestimme die Uhrzeit mit dem höchsten Zuschauerandrang, die Zuschauerzahl um 18 Uhr und den Durchschnitt von 16 bis 18 Uhr. Funktion: f(x)=20xe20,05xf(x)=20 x \cdot e^{2-0,05 x}.

See Solution

Problem 18467

Freier Fall auf dem Mond:
a) Berechne s(1)s(1) und die durchschnittliche Geschwindigkeit. b) Finde die Momentangeschwindigkeit nach 10 Sekunden. c) Bestimme die Aufprallgeschwindigkeit aus 4 m Höhe.

See Solution

Problem 18468

Integrieren Sie die Funktion f(x)=4xf(x)=\sqrt{4-x}.

See Solution

Problem 18469

Hausaufgabe 14: Betrachten Sie die Differentialgleichung sin(y)y2xcos(y)=0\sin (y) \cdot y' - 2 x \cdot \cos (y) = 0 für y(0,π)y \in (0, \pi).
(a) Verifizieren Sie die Identitäten cos(x)=sin(π2x)\cos (x)=\sin \left(\frac{\pi}{2}-x\right) und arccos(cos(x))=x\arccos (\cos (x))=x für x[0,π]x \in [0, \pi]. Skizzieren Sie den Graphen von arccos\arccos auf [1,1][-1, 1].
(b) Finden Sie alle konstanten Lösungen der Differentialgleichung.
(c) Bestimmen Sie alle Lösungen der Differentialgleichung.
(d) Lösen Sie das Anfangswertproblem sin(y)y2xcos(y)=0\sin (y) \cdot y' - 2 x \cdot \cos (y) = 0, y(0)=π4y(0)=\frac{\pi}{4}.

See Solution

Problem 18470

Solve the integral using substitution: 3(2t3)3dt\int 3(2 t-3)^{-3} d t and include the constant CC.

See Solution

Problem 18471

Solve the integral using substitution: 2e3xdx\int 2 e^{3 x} d x. Include the constant of integration CC.

See Solution

Problem 18472

Solve the integral using substitution: 1x6dx\int \frac{1}{x-6} dx. Include the constant CC.

See Solution

Problem 18473

Solve the integral using substitution: 27y+3dy\int \frac{-2}{\sqrt{7 y+3}} d y, and include the constant CC.

See Solution

Problem 18474

Find the tangent line equation for the function f(x)=7x2+9x+4f(x)=-7 x^{2}+9 x+4 at the point where x=4x=4.

See Solution

Problem 18475

Solve the integral using substitution: 1x+1dx\int \frac{1}{x+1} d x. Use CC for the constant of integration.

See Solution

Problem 18476

Find the tangent line equation for f(x)=x212f(x)=x^{2}-12 at x=5x=-5.

See Solution

Problem 18477

Solve the integral using substitution: (3x8+6x4)13(24x7+6)dx\int\left(3 x^{8}+6 x-4\right)^{\frac{1}{3}}\left(24 x^{7}+6\right) d x and include constant CC.

See Solution

Problem 18478

Evaluate the integral: 5e5t(1+4e5t)3dt\int 5 e^{-5 t}\left(1+4 e^{-5 t}\right)^{3} d t

See Solution

Problem 18479

Solve the integral using substitution: e2x8+716x7dx\int e^{2 x^{8}+7} \cdot 16 x^{7} d x and include constant CC.

See Solution

Problem 18480

Solve the integral using substitution: (x6)4dx\int (x-6)^{4} \, dx and include the constant CC.

See Solution

Problem 18481

Find the tangent line equation for the function f(x)=x2+2f(x)=x^{2}+2 at the point where x=10x=10.

See Solution

Problem 18482

Solve the integral using substitution: 2e4y(2+3e4y)3dy\int 2 e^{4 y}\left(2+3 e^{4 y}\right)^{3} d y. Use CC for the constant.

See Solution

Problem 18483

Find the limit as xx approaches 2 for x2+x6x2\frac{x^{2}+x-6}{|x-2|}. Also, determine where ff is discontinuous.

See Solution

Problem 18484

Find the limit: lim+ex+sin4xexcosx\lim _{+\infty} \frac{e^{x}+\sin 4 x}{e^{x}-\cos x}

See Solution

Problem 18485

Find the first and second derivatives of f(x)=1ln(x)f(x)=\frac{1}{\ln (x)}.

See Solution

Problem 18486

Find where f(x)=8x22x4f(x)=8 x^{2}-2 x^{4} is increasing, decreasing, and the xx-coordinates of relative maxima and minima.

See Solution

Problem 18487

Show that the function f(x)={x4sin(1x)if x00if x=0f(x)=\begin{cases} x^{4} \sin \left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x=0 \end{cases} is continuous at x=0x=0.

See Solution

Problem 18488

Find the first and second derivatives of f(x)=ln(x)ln(x)f(x)=\frac{\ln (\sqrt{x})}{\ln (x)} for positive real xx.

See Solution

Problem 18489

Find the derivative of these functions: a) y=xcos2xy=x \cos 2 x, b) f(x)=x2sin(3xπ)f(x)=-x^{2} \sin (3 x-\pi), c) y=2sinθcosθy=2 \sin \theta \cos \theta.

See Solution

Problem 18490

Find the average rate of change of f(x)=2x3+1f(x)=2x^{3}+1 from x=2x=2 to x=4x=4 and include the calculated value.

See Solution

Problem 18491

Find the average rate of change of f(x)=2x3+1f(x)=2 x^{3}+1 from x=2x=2 to x=4x=4 and include the value in your response.

See Solution

Problem 18492

Find local max and min of f(x)=x+1xf(x)=x+\sqrt{1-x} using first and second derivative tests. Which method do you prefer?

See Solution

Problem 18493

Find the derivative (f1)(0)\left(f^{-1}\right)^{\prime}(0) for the function f(x)=x38f(x)=x^{3}-8. First, solve for aa where f(a)=0f(a)=0.

See Solution

Problem 18494

Bestimme den Definitionsbereich von f(x)=x(x1)ln(x1)f(x)=x-(x-1) \cdot \ln (x-1) und die Ableitung f(x)f^{\prime}(x). Zeige, dass ff nur einen Extrempunkt bei H(22)H(2 \mid 2) hat.

See Solution

Problem 18495

Find the derivative of y=tan1(x)y=\tan ^{-1}(\sqrt{x}) with respect to xx: compute dy/dxd y / d x.

See Solution

Problem 18496

Find the derivative f(x)f^{\prime}(x) for the function f(x)=tan3(x)f(x)=\tan ^{3}(\sqrt{x}).

See Solution

Problem 18497

Differentiate y=((x+1)cosxx2)3y=\left(\frac{(x+1) \cos x}{x^{2}}\right)^{3} using logarithmic differentiation to find dydx\frac{d y}{d x}.

See Solution

Problem 18498

Determine the horizontal asymptotes of the function f(x)=82x2x2+5x+6f(x)=\frac{8-2 x^{2}}{x^{2}+5 x+6}.

See Solution

Problem 18499

Find the derivative of the composition (ff)(x)(f \circ f)^{\prime}(x) for f(x)=lnx3,x>0f(x)=\ln x^{3}, \quad x>0.

See Solution

Problem 18500

Find the derivative of y=8tanxy=8^{\tan x} with respect to xx. What is dydx\frac{dy}{dx}?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord