Calculus

Problem 29901

Find the derivative of cos3x\cos^3 x with respect to xx.

See Solution

Problem 29902

Find the derivative of the function f(x)=x27xf(x) = \sqrt{x^{2} - 7x}.

See Solution

Problem 29903

Find the tangent line equation to the curve y=8excos(x)y=8 e^{x} \cos (x) at the point (0,8)(0,8).

See Solution

Problem 29904

Find the derivative of the function y=6+6e7xy=\sqrt{6+6 e^{7 x}}.

See Solution

Problem 29905

Find the derivative of y=(x)3xy=(\sqrt{x})^{3 x} using logarithmic differentiation.

See Solution

Problem 29906

Find the limit using the squeeze theorem: limx0xsin(9x)\lim _{x \rightarrow 0} x \sin \left(\frac{9}{x}\right).

See Solution

Problem 29907

Differentiate y=ln(e3x+11x)y=\ln \left(e^{3 x}+\frac{11}{x}\right). Find dydx\frac{d y}{d x}.

See Solution

Problem 29908

Find the limit: limx0x3cothx\lim _{x \rightarrow 0} x^{3} \cot h x.

See Solution

Problem 29909

Differentiate ysec(x)=6xtan(y)y \sec (x) = 6 x \tan (y) implicitly to find dxdy\frac{dx}{dy}. What is xx'?

See Solution

Problem 29910

Given the function B(x)=3x2/3xB(x)=3 x^{2 / 3}-x, find the intervals of increase, decrease, local max/min values, and concavity.

See Solution

Problem 29911

Find limx1f(x)\lim _{x \rightarrow 1} f(x) for f(x)=x7(x1)2f(x)=\frac{x-7}{(x-1)^{2}} by computing values in the table.

See Solution

Problem 29912

Differentiate the function f(x)=xtan(2x4)f(x)=x \tan(2x^{4}). What is f(x)f^{\prime}(x)?

See Solution

Problem 29913

Find the velocity of s(t)=5t+2t2s(t)=5t+2t^{2} after 2 seconds and time to reach 30 m/s30 \mathrm{~m/s}.

See Solution

Problem 29914

Differentiate the function f(x)=πexf(x)=\pi^{e x}. What is f(x)f^{\prime}(x)?

See Solution

Problem 29915

Differentiate the function f(x)=6xx6f(x)=\frac{6^{x}}{x^{6}}. Find f(x)f^{\prime}(x).

See Solution

Problem 29916

Compute f(x)=x7(x1)2f(x) = \frac{x-7}{(x-1)^2} and find limx1f(x)\lim_{x \rightarrow 1} f(x).

See Solution

Problem 29917

A square's side increases at 3 cm/s3 \mathrm{~cm/s}. Find the area increase rate when the area is 81 cm281 \mathrm{~cm}^{2}. cm2/s\mathrm{cm}^{2} / \mathrm{s}

See Solution

Problem 29918

Find the area represented by the integral 018x9dx\int_{0}^{18}|x-9| d x.

See Solution

Problem 29919

Find the derivative of g(r)=0rx2+5dxg(r)=\int_{0}^{r} \sqrt{x^{2}+5} \, dx. What is g(r)g^{\prime}(r)?

See Solution

Problem 29920

Calculate the indefinite integral: 5x32xxdx\int \frac{5 x^{3}-2 \sqrt{x}}{x} d x (use CC for the constant).

See Solution

Problem 29921

Evaluate the integral from 1 to 8: 18(x84x)dx\int_{1}^{8}\left(\frac{x}{8}-\frac{4}{x}\right) d x.

See Solution

Problem 29922

Evaluate the integral: ecos(34t)sin(34t)dt\int e^{\cos (34 t)} \sin (34 t) d t (include constant CC).

See Solution

Problem 29923

Estimate (1.999)5(1.999)^{5} using linear approximation or differentials.

See Solution

Problem 29924

Evaluate the integral: 014dx(8+4x)23\int_{0}^{14} \frac{d x}{\sqrt[3]{(8+4 x)^{2}}}

See Solution

Problem 29925

Find the pulse rate change for heights 51 inches (y=594511/2y=594 \cdot 51^{-1/2}) and 68 inches (y=594681/2y=594 \cdot 68^{-1/2}).

See Solution

Problem 29926

Find the derivative dydx\frac{d y}{d x} for the function y=2x918x5y=\frac{2 x-9}{18 x^{5}}.

See Solution

Problem 29927

Find the limit: limx0+ln(x)=\lim _{x \rightarrow 0^{+}} \ln (x)=

See Solution

Problem 29928

Find the derivative S(t)S^{\prime}(t) of sales function S(t)=0.03t3+0.8t2+5t+3S(t)=0.03 t^{3}+0.8 t^{2}+5 t+3. Then compute S(7)S(7), S(7)S^{\prime}(7), and interpret S(13)=269.11S(13)=269.11, S(13)=41.01S^{\prime}(13)=41.01.

See Solution

Problem 29929

Find the rate of change of pulse rate y=594x1/2y=594 x^{-1/2} for heights 51 and 68 inches. Calculate for 51 inches.

See Solution

Problem 29930

Find the instantaneous rate of change of pulse rate y=590x1/2y=590 x^{-1/2} for heights 31 and 55 inches.

See Solution

Problem 29931

Find the derivative of 7x3685x3\frac{7 x^{3}}{6}-\frac{8}{5 x^{3}}. What is ddx(7x3685x3)\frac{d}{d x}\left(\frac{7 x^{3}}{6}-\frac{8}{5 x^{3}}\right)?

See Solution

Problem 29932

Find the tangent line equation for f(x)=14+x2f(x)=\frac{1}{4+x^{2}} at x=1x=1 where the slope is 225-\frac{2}{25}.

See Solution

Problem 29933

Find the marginal cost function for C(x)=210+6.2x0.04x2C(x)=210+6.2 x-0.04 x^{2}. What is C(x)=?C^{\prime}(x)=?

See Solution

Problem 29934

Find f(x)f^{\prime}(x) using four steps, then calculate f(5)f^{\prime}(5), f(7)f^{\prime}(7), and f(9)f^{\prime}(9) for f(x)=12x+7f(x)=12\sqrt{x+7}.

See Solution

Problem 29935

Find the marginal cost function for C(x)=174+1.4xC(x)=174+1.4 x. What is C(x)=C^{\prime}(x)=\square?

See Solution

Problem 29936

Find the marginal revenue function for R(x)=x(130.08x)R(x)=x(13-0.08 x). What is R(x)R^{\prime}(x)?

See Solution

Problem 29937

Find the limit of postage cost C(x)C(x) as xx approaches 3 oz from the left and right. Options: A. \$0.91, B. Does not exist.

See Solution

Problem 29938

Find the marginal profit function given C(x)=180+0.6xC(x)=180+0.6 x and R(x)=3x0.02x2R(x)=3 x-0.02 x^{2}. P(x)=P^{\prime}(x)=\square

See Solution

Problem 29939

Find the derivative h(t)h^{\prime}(t) for the function h(t)=2t1/29t2/7h(t)=\frac{2}{t^{1/2}}-\frac{9}{t^{2/7}}.

See Solution

Problem 29940

Find f(x)f^{\prime}(x) for f(x)=4x5+xf(x)=\frac{4 x}{5+x}, then calculate f(1)f^{\prime}(1), f(2)f^{\prime}(2), and f(3)f^{\prime}(3).

See Solution

Problem 29941

Postage costs \0.39forthefirstounceand$0.26foreachadditionalounce.Findthelimitsas0.39 for the first ounce and \$0.26 for each additional ounce. Find the limits as x$ approaches 3.

See Solution

Problem 29942

Differentiate y=3x44x3x2y=\frac{3x^{4}-4x^{3}}{x^{2}}

See Solution

Problem 29943

Find the derivative f(x)f^{\prime}(x) of the function f(x)=4x5+xf(x)=\frac{4 x}{5+x} using the four-step process.

See Solution

Problem 29944

Find the derivative dydx\frac{d y}{d x} for the function y=πx3y=\frac{\pi}{\sqrt{x^{3}}}.

See Solution

Problem 29945

Find the derivative of the function: 12x2+x\frac{1}{2x^2} + \sqrt{x}.

See Solution

Problem 29946

Find the marginal average cost function given C(x)=128+2.7xC(x)=128+2.7 x and R(x)=7x0.09x2R(x)=7 x-0.09 x^{2}.

See Solution

Problem 29947

Find the derivative of f(x)=(2x)3f(x)=\left(\frac{2}{\sqrt{x}}\right)^{3}.

See Solution

Problem 29948

Find values of xx where r(x)=ln3xx6r(x)=\ln \left|\frac{3 x}{x-6}\right| is discontinuous and determine the limits.

See Solution

Problem 29949

Find the cost of producing the 71st food processor using C(x)=2200+80x0.2x2C(x)=2200+80x-0.2x^2. Exact cost: \$\square.

See Solution

Problem 29950

Find f(x)f^{\prime}(x) using the four-step process, then calculate f(1)f^{\prime}(1), f(2)f^{\prime}(2), and f(3)f^{\prime}(3) for f(x)=4x5+xf(x)=\frac{4 x}{5+x}.

See Solution

Problem 29951

Find the derivative of f(x)=x(2x+1)f(x)=\sqrt{x}(2x+1) and select all correct options (MSQ) from the given choices.

See Solution

Problem 29952

Compute the limit as xx approaches -1 for the expression x33x24xx2+6x+5\frac{x^{3}-3 x^{2}-4 x}{x^{2}+6 x+5} and explain your steps.

See Solution

Problem 29953

Find the derivative f(x)f'(x) of the function f(x)=1+1x3+5x32ef(x) = 1 + \frac{1}{x^3} + \frac{5}{\sqrt{x^3}} - 2e.

See Solution

Problem 29954

Find the cost of producing the 41st food processor using C(x)=1600+50x0.6x2C(x)=1600+50x-0.6x^2. Exact cost: \$\square.

See Solution

Problem 29955

Find the derivative of x12(3x+12)x^{\frac{1}{2}}\left(3x + \frac{1}{2}\right).

See Solution

Problem 29956

Find the derivative of f(x)=x(2x+1)f(x)=\sqrt{x}(2x+1). Select all correct options (MSQ): x12(3x+12)x^{-\frac{1}{2}}(3x+\frac{1}{2}), 32x+x12\frac{3}{2}x+x^{\frac{1}{2}}.

See Solution

Problem 29957

Estimate the slope of the tangent line for v(T)=70Tv(T)=70 \sqrt{T} at T=400T=400.  slope =\text { slope }=

See Solution

Problem 29958

Find the derivative of f(x)=x(2x+1)f(x)=\sqrt{x}(2x+1). Select all correct options (MSQ):
1. x12(3x+12)x^{-\frac{1}{2}}(3x+\frac{1}{2})
2. 32x+x12\frac{3}{2}x+x^{\frac{1}{2}}
3. 3x12+12x123x^{\frac{1}{2}}+\frac{1}{2}x^{-\frac{1}{2}}
4. x12(3x+12)x^{\frac{1}{2}}(3x+\frac{1}{2})

See Solution

Problem 29959

Find the derivative of f(x)=x(2x+1)f(x)=\sqrt{x}(2 x+1). Select all correct options (MSQ):
1. x12(3x+12)x^{-\frac{1}{2}}\left(3 x+\frac{1}{2}\right)
2. 32x+x12\frac{3}{2} x+x^{\frac{1}{2}}
3. 3x12+12x12x12(3x+12)\frac{3 x^{\frac{1}{2}}+\frac{1}{2} x^{-\frac{1}{2}}}{x^{\frac{1}{2}}\left(3 x+\frac{1}{2}\right)}

See Solution

Problem 29960

Estimate the slope of the tangent line of y(x)=1x+1y(x)=\frac{1}{x+1} at x=0x=0.

See Solution

Problem 29961

Find where R(x)R(x) has a horizontal tangent, profit function P(x)P(x), its tangent, and graph C(x),R(x),P(x)C(x), R(x), P(x) for 0x20000 \leq x \leq 2000.

See Solution

Problem 29962

The cost function is C(x)=2400+80x0.3x2C(x)=2400+80 x-0.3 x^{2}. Find the cost of the 61st processor exactly and using marginal cost.

See Solution

Problem 29963

Find the limit: limx1x1xx28x+7\lim _{x \rightarrow 1} \frac{x-\frac{1}{x}}{x^{2}-8 x+7}.

See Solution

Problem 29964

Find xx where R(x)R(x) has a horizontal tangent, profit function P(x)P(x), and graph C(x),R(x),P(x)C(x), R(x), P(x) for 0x20000 \leq x \leq 2000.

See Solution

Problem 29965

Evaluate the limits and value of f(x)=x21f(x)=x^{2}-1 at x=1x=1. Find: a. limx1f(x)\lim _{x \rightarrow 1^{-}} f(x), b. limx1f(x)\lim _{x \rightarrow 1} f(x), c. limx1f(x)\lim _{x \rightarrow 1} f(x), d. f(1)f(1).

See Solution

Problem 29966

Evaluate the limits and value for f(x)=x21f(x)=x^{2}-1 when x1x \neq 1: a. limx1f(x)=\lim _{x \rightarrow 1^{-}} f(x)= b. limx1f(x)=\lim _{x \rightarrow 1} f(x)= c. limx1f(x)=\lim _{x \rightarrow 1} f(x)= d. f(1)=f(1)=

See Solution

Problem 29967

Find the limits and values for the piecewise function g(x)g(x) defined as: g(x)={3x+1,x15,1<x<2x,x>2g(x)=\left\{\begin{array}{cc}3 x+1, & x \leq-1 \\ 5, & -1<x<2 \\ x, & x>2\end{array}\right. a. limx1g(x)\lim _{x \rightarrow-1} g(x), b. limx2g(x)\lim _{x \rightarrow 2} g(x), c. g(1)g(-1), d. g(2)g(2).

See Solution

Problem 29968

Find the derivative of the function f(x)=2x27x+9f(x)=2 x^{2}-7 x+9.

See Solution

Problem 29969

Differentiate the function f(x)=3(2x2+1)4f(x) = \frac{-3}{(2x^2 + 1)^4}.

See Solution

Problem 29970

Find the derivative of f(x) = x(2x+1)\sqrt{x}(2x+1).

See Solution

Problem 29971

Evaluate the limits and value of the function f(x)=x21f(x)=x^{2}-1 for x1x \neq 1: a. limx1f(x)=\lim _{x \rightarrow 1^{-}} f(x)=, b. limx1f(x)=\lim _{x \rightarrow 1} f(x)=, c. limx1f(x)=\lim _{x \rightarrow 1} f(x)=, d. f(1)=f(1)=.

See Solution

Problem 29972

Find the limits and values of the piecewise function:
a. limx2h(x)\lim _{x \rightarrow-2} h(x), b. limx1h(x)\lim _{x \rightarrow 1} h(x), c. h(2)h(-2), d. h(1)h(1).

See Solution

Problem 29973

Find the limits and values for the piecewise function g(x)g(x) defined as:
g(x)={3x+1,x15,1<x<2x,x>2g(x)=\begin{cases}3 x+1, & x \leq-1 \\ 5, & -1<x<2 \\ x, & x>2\end{cases}
a. limx1g(x)\lim _{x \rightarrow-1} g(x), b. limx2g(x)\lim _{x \rightarrow 2} g(x), c. g(1)g(-1), d. g(2)g(2).

See Solution

Problem 29974

Find the limit: limx0ln(14x)x\lim _{x \rightarrow 0} \frac{\ln (1-4 x)}{x}.

See Solution

Problem 29975

Berechnen Sie die mittlere Änderungsrate für ff in den Intervallen I=[1;3]I=[1;3], J=[3;1]J=[-3;-1], K=[1;2]K=[-1;2] für a) f(x)=x2f(x)=x^2, b) f(x)=x3+2xf(x)=x^3+2x, c) f(x)=2x2xf(x)=2x^2-x.

See Solution

Problem 29976

Find the limit: limx0ln(x+5)ln5x\lim _{x \rightarrow 0} \frac{\ln (x+5)-\ln 5}{x}.

See Solution

Problem 29977

Berechne die Steigung von ff an x0x_{0} mit der hh-Methode für: b) f(x)=2x2+1,x0=2f(x)=2 x^{2}+1, x_{0}=-2 und c) f(x)=3x+2,x0=2f(x)=3 x+2, x_{0}=2.

See Solution

Problem 29978

Pour tout x>0x>0, montrer que si f(x)=lnxf(x)=\ln x, alors f(x)=1xf'(x)=\frac{1}{x}.

See Solution

Problem 29979

Die Funktion f(t)=3t315t2+200tf(t) = \frac{-}{3} t^{3} - 15 t^{2} + 200 t beschreibt die Änderungsrate der Infektionen.
a. Berechne f(10)f(10) und erkläre den Wert.
b. Finde den Zeitpunkt, an dem die meisten Menschen sich anstecken.

See Solution

Problem 29980

In einem Tank sind 20.000 l Benzin. Der Zu/Abfluss wird durch f(x)=0,1x42x3+9,6x2f(x)=0,1 x^{4}-2 x^{3}+9,6 x^{2} (0 x\leq x \leq 12) modelliert.
a. Benzinmenge nach 5 Minuten? b. Zeitpunkt maximaler Benzinmenge? c. Wann steigt die Benzinmenge am stärksten und was ist die Zuflussrate?

See Solution

Problem 29981

Find the following limits: (a) limx+lnxx\lim _{x \rightarrow+\infty} \frac{\ln x}{x}, (b) limx0ln(1+x)x\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}, (c) limx0+xlnx\lim _{x \rightarrow 0^{+}} x \cdot \ln x.

See Solution

Problem 29982

Si uu est dérivable et positif sur I, quel est le signe de la dérivée de ln(u(x))\ln (u(x)) ?

See Solution

Problem 29983

Gegeben ist die Funktion f(x)=(12x)exf(x)=(1-2 x) \cdot e^{x}. Finde die Achsenschnittpunkte, waagrechte Tangenten und die Tangentengleichung bei P(01)P(0 \mid 1).

See Solution

Problem 29984

Soit f(x)=ln(1+ex)f(x)=\ln(1+e^{x}), calculez f(x)f^{\prime}(x). Trouvez le signe de ln(2x4)\ln(2x-4) sur [12;+)[12;+\infty).

See Solution

Problem 29985

The area of a rectangle grows at 300 cm²/hour. What is this rate in m²/min? (1(1 m =100=100 cm)

See Solution

Problem 29986

Find f(1)f^{\prime}(1) for f(x)=2x+ln2xf(x)=2^{\sqrt{x}}+\ln 2^{x}. Choose from: (a) ln4\ln 4, (b) ln8\ln 8, (c) ln32\ln 32, (d) ln64\ln 64.

See Solution

Problem 29987

Calculate the integral: cosxdx1+2sinx\int \frac{\cos x d x}{1+2 \sin x}. Choose the correct answer from the options provided.

See Solution

Problem 29988

Find the limit: limn(e1)k=01ek(1+2n)n\lim _{n \rightarrow \infty} \frac{(e-1) \sum_{k=0}^{\infty} \frac{1}{e^{k}}}{\left(1+\frac{2}{n}\right)^{n}}

See Solution

Problem 29989

Evaluate 132ex+5dx\int_{1}^{3} 2 e^{x+5} d x using 13exdx=e3e\int_{1}^{3} e^{x} d x=e^{3}-e. Rewrite 2ex+52 e^{x+5}.

See Solution

Problem 29990

Find the derivative of the function f(x)=x2+3x+5f(x) = x^{2} + 3x + 5.

See Solution

Problem 29991

Leite den Ausdruck 1x3\frac{1}{x^{3}} ab und erkläre den Prozess in einem kurzen Text.

See Solution

Problem 29992

Find where the tangent line to f(x)=x3ln(x)f(x)=x^{3} \ln (x) is horizontal, and if it intersects at (1,0)(1,0) for x(1,)x \in(1, \infty).

See Solution

Problem 29993

Find the derivative of the function (4x323x214x+5)9(4 x^{3}-\frac{2}{3} x^{2}-14 x+5)^{9}.

See Solution

Problem 29994

Find the values of xRx \in \mathbb{R} where f(x)=n=0e2nxf(x)=\sum_{n=0}^{\infty} e^{-2 n x} is defined and compute f(x)f^{\prime}(x).

See Solution

Problem 29995

Gegeben sind die Funktionen f(x)=3xf(x)=3^{x} und g(x)=(13)xg(x)=\left(\frac{1}{3}\right)^{x}. Zeichne die Graphen und vergleiche sie. Bestimme f(x)f'(x) und die Steigung bei x0=0x_{0}=0. Finde aa für h(x)=axh(x)=a^{x} mit Steigung bei x0=0x_{0}=0.

See Solution

Problem 29996

Bestimme die 1. und 2. Ableitung der Funktion ff für: a) f(x)=e2xf(x)=e^{2 x}, b) f(x)=2e4x+4f(x)=2 e^{-4 x+4}, c) f(x)=e0,5x+exf(x)=e^{0,5 x+e \cdot x}, d) f(x)=1,5ex+e2xf(x)=1,5 e^{-x}+e^{-2 x}, e) f(x)=4e0,25x8ef(x)=4 e^{0,25 x}-8 e, f) f(x)=e2x+2ex+2xf(x)=e^{2 x+2 e^{x}+2 x}.

See Solution

Problem 29997

Differentiate ln(1+y)\ln(1+y) with respect to xx and set it equal to a1+ydydx\frac{a}{1+y} \frac{dy}{dx}.

See Solution

Problem 29998

Evaluate the integral: dxxlnx\int \frac{d x}{x \ln x}.

See Solution

Problem 29999

Find the derivative of y=3x+92xy=\frac{3x+9}{2-x}.

See Solution

Problem 30000

Calculate the integral 01x3x4+9dx\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{4}+9}} d x.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord