Calculus

Problem 21901

Find the derivative f(0)f'(0) for the function f(x)=2ex+1+e8f(x)=2 e^{x+1}+e^{8}.

See Solution

Problem 21902

Berechne den Grenzwert: limx3.8x47.6x4\lim _{x \rightarrow \infty} \frac{3.8 x^{4}-7.6}{x^{4}} und gib das Ergebnis auf zwei Dezimalstellen an!

See Solution

Problem 21903

Bestimme die erste Ableitung von f(x)=(5x36)3f(x)=(5 x^{3}-6)^{3} bei x=1.7x^{*}=1.7 und gib das Ergebnis auf zwei Dezimalstellen an.

See Solution

Problem 21904

Evaluate the integral 253y(25y2)dy\int_{2}^{5} 3 y(2-5 y^{2}) d y.

See Solution

Problem 21905

Evaluate the integral: 015t4(1+t5)3dt\int_{0}^{1} \frac{5 t^{4}}{\left(1+t^{5}\right)^{3}} d t

See Solution

Problem 21906

Find the derivative of the integral from 2 to x2x^2 of cost\cos t with respect to tt.

See Solution

Problem 21907

Evaluate the integral using the 2nd Fundamental Theorem of Calculus: 233x2dx\int_{-2}^{3} 3 x^{2} d x.

See Solution

Problem 21908

Berechne den Grenzwert der Folge an=13n5nn2a_{n} = -1 - \frac{3}{n} - \frac{5n}{n^{2}} mit Grenzwertsätzen.

See Solution

Problem 21909

Ibuprofen levels halve every 2.1 hours. Find the decay rate kk (to 3 decimal places) for the exponential model.

See Solution

Problem 21910

In an Exponential Decay Model with initial quantity 500 decreasing to 300 in 10 days, how long to reach 200?

See Solution

Problem 21911

A circular oil spill's area increases at 4 km2/hr4 \mathrm{~km}^{2}/\mathrm{hr}. Find the radius growth rate when r=16 kmr=16 \mathrm{~km}. Use A=πr2A=\pi r^{2}.

See Solution

Problem 21912

Find dydt\frac{d y}{d t} when y=6y=6, given y2=7x+1y^{2}=7 x+1 and dxdt=3\frac{d x}{d t}=-3.

See Solution

Problem 21913

Find the derivative of f(x)=3x45x3+3f(x)=3 x^{4}-5 x^{3}+3. Choose the correct option: A, B, C, or D.

See Solution

Problem 21915

Find dxdt\frac{d x}{d t} when x=3x=3 given that xy=9\frac{x}{y}=9 and dydt=23\frac{d y}{d t}=-\frac{2}{3}.

See Solution

Problem 21916

Find the derivative of f(x)=2(x4)f(x)=2(\sqrt[4]{x}) for x>0x>0. Options: A. 12x5/4\frac{1}{2} x^{5 / 4} B. 52x5/4-\frac{5}{2} x^{-5 / 4} C. 12x3/4\frac{1}{2} x^{-3 / 4} D. 6(x3)6(\sqrt[3]{x})

See Solution

Problem 21917

Find the derivative of f(x)=x(5x3)+10x6f(x)=\sqrt{x}(5x-3)+10x-6. What is f(x)f^{\prime}(x)? A. B. C. D.

See Solution

Problem 21918

Find the tangent line equation for f(x)=x5f(x)=\frac{\sqrt{x}}{5} at x=4x=4. Options: A. y=x20+15y=\frac{x}{20}+\frac{1}{5} B. y=13x16y=13 x-16 C. y=4x25+85y=-\frac{4 x}{25}+\frac{8}{5} D. y=39x80y=-39 x-80

See Solution

Problem 21919

Find the marginal profit from the function P(x)=1,080+30x3x2P(x)=1,080+30 x-3 x^{2} at x=16x=16. Options: A. -66 B. 384 C. 480 D. 1,080.

See Solution

Problem 21920

A ball is thrown to 50 feet, then bounces to 50/650/6, 50/3650/36, etc. What is the total distance traveled when it stops?

See Solution

Problem 21921

Solve the differential equation: dydx=x2+xyy2\frac{dy}{dx} = \frac{x^2 + xy}{y^2}.

See Solution

Problem 21922

Find the derivative using the quotient rule for y=x3x1y=\frac{x^{3}}{x-1}. Which is yy^{\prime}? A, B, C, or D?

See Solution

Problem 21923

Find the difference quotient for f(x)=x27f(x)=x^{2}-7: calculate f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} and simplify, where h0h \neq 0.

See Solution

Problem 21924

Find the derivative of y=(4x+3)5y=(4 x+3)^{5}. Choose the correct option: A, B, C, or D.

See Solution

Problem 21925

Find the derivative of y=4ex2y=4 e^{x^{2}}. A. 8xe8 x e B. 8xe4x28 x e^{4 x^{2}} C. 8xe2x8 x e^{2 x} D. 8xex28 x e^{x^{2}}

See Solution

Problem 21926

Find the arc length of y=13(x2+2)3/2y=\frac{1}{3}(x^{2}+2)^{3/2} on [3,6][3,6]. The length is \square.

See Solution

Problem 21927

Calculate the half-life of a radioactive substance that decays from 6.10mg6.10 \mathrm{mg} to 1.40mg1.40 \mathrm{mg} in 1.40 minutes. Round to 2 significant digits.

See Solution

Problem 21928

Find the derivative of y=ln(7+x2)y=\ln(7+x^{2}). Choose from: A. 2xx2+7\frac{2 x}{x^{2}+7} B. 2x\frac{2}{x} C. 12x+7\frac{1}{2 x+7} D. 14x\frac{14}{x}.

See Solution

Problem 21929

Find the marginal average profit from selling xx cookbooks given P(x)=(9x4)(5x2)P(x)=(9x-4)(5x-2). Choices: A. 45x3845x-38, B. 45x845x-8, C. 458x245-\frac{8}{x^{2}}, D. 4538x245-\frac{38}{x^{2}}.

See Solution

Problem 21930

Find the rate of change of AA w.r.t. rr in A=3,000(1+r1200)96A=3,000\left(1+\frac{r}{1200}\right)^{96} when r=4r=4.

See Solution

Problem 21931

Find the rate of change of sales given by S(t)=23060e0.8tS(t)=230-60 e^{-0.8 t} at t=3t=3. Round to the nearest tenth.

See Solution

Problem 21932

Find local extrema using the first derivative test for f(x)=x2x2+3f(x)=\frac{x^{2}}{x^{2}+3}. Identify points and values.

See Solution

Problem 21933

Determine the largest interval where the function f(x)=x34xf(x)=x^{3}-4x is decreasing. Options: A. (,233)\left(-\infty,-\frac{2 \sqrt{3}}{3}\right) B. (233,233)\left(-\frac{2 \sqrt{3}}{3}, \frac{2 \sqrt{3}}{3}\right) C. (,)(-\infty, \infty) D. (233,)\left(\frac{2 \sqrt{3}}{3}, \infty\right)

See Solution

Problem 21934

Find all values of cc in [1,4][1,4] for the function f(x)=x+4xf(x) = x + \frac{4}{x} using the Mean Value Theorem (MVT).

See Solution

Problem 21935

Find f(1)f^{\prime \prime}(1) for f(x)=3x44x3f(x)=\frac{3x-4}{4x-3}. Options: A. 7 B. 44 C. 32 D. -56

See Solution

Problem 21936

Find the function f(x)f(x) if f(x)=7x+5sin(x)f^{\prime \prime}(x)=7 x+5 \sin (x), f(0)=4f(0)=4, and f(0)=2f^{\prime}(0)=2.

See Solution

Problem 21937

Calculate the tangential velocity of a satellite orbiting at a distance of 4.23×107 m4.23 \times 10^{7} \mathrm{~m} from Earth's center.

See Solution

Problem 21938

Find the acceleration a(t)a(t) from the position function s(t)=2t34t2+4t+6s(t)=2 t^{3}-4 t^{2}+4 t+6. Options: A, B, C, D.

See Solution

Problem 21939

Given the function f(x)=5x64x5f(x)=5 x^{6}-4 x^{5}, find critical numbers, intervals of increase/decrease, local maxima/minima, concavity, inflection points, and asymptotes.

See Solution

Problem 21940

Find critical numbers for f(x)=x39x2+27x+4f(x)=x^{3}-9 x^{2}+27 x+4 and determine if they are max, min, or neither.

See Solution

Problem 21941

Find the year of maximum profit and its value for the function f(x)=28x2+840x4592f(x)=-28 x^{2}+840 x-4592.
(a) Derivative: f(x)=f^{\prime}(x)=\square; Year: \square; (b) Maximum profit: \$\square million.

See Solution

Problem 21942

Find the tangent line equation for f(x)=2x2+2xf(x)=2 x^{2}+2 x at x=4x=4.

See Solution

Problem 21943

Find the slope of the tangent line for f(x)=4x54x2f(x)=-4 x^{5}-4 x-2 at x=1x=-1.

See Solution

Problem 21944

Find the production level for the lowest average cost per wheel using C(x)=0.01x30.5x2+174x;(0,100]C(x)=0.01 x^{3}-0.5 x^{2}+174 x ;(0,100]. What is the minimum average cost?

See Solution

Problem 21945

Find the tangent line equation of f(x)=3x2+4xf(x)=-3 x^{2}+4 x at x=3x=-3.

See Solution

Problem 21946

Given the function f(x)f(x) with f>0f' > 0 on (1,2)(-1,2) and (4,)(4,\infty), and f<0f' < 0 on (,1)(-\infty,-1) and (2,4)(2,4), sketch its graph.

See Solution

Problem 21947

Find the slope of the tangent line for f(x)=2x2+3f(x)=-2 x^{2}+3 at x=4x=-4.

See Solution

Problem 21948

Find the derivative f(x)f^{\prime}(x), critical numbers using the quadratic formula, second derivative f(x)f^{\prime \prime}(x), and local extrema years.

See Solution

Problem 21949

A marshy area is contaminated. The element's percentage after xx months is f(x)=x2+254x,1x12f(x)=\frac{x^{2}+25}{4 x}, 1 \leq x \leq 12. Find f(x)f'(x), when is the minimum, and what is the minimum percentage?

See Solution

Problem 21950

For the function M(x)=.015x2+1.34x7.7M(x)=-.015 x^{2}+1.34 x-7.7 for 30x6030 \leq x \leq 60, find max and min MPG and their speeds.

See Solution

Problem 21951

Berechne den Anstieg der Funktion f(x)=12x22f(x) = \frac{1}{2} x^{2} - 2 bei x0=2x_0 = 2.

See Solution

Problem 21952

How much heat (in kJ) is needed to turn 1802 g of ice at 15C-15^{\circ} \mathrm{C} to steam at 146C146^{\circ} \mathrm{C}?

See Solution

Problem 21953

Find the max and min of f(x)=x23x+1f(x) = x^2 - 3x + 1 on the interval [3,2][-3, 2].

See Solution

Problem 21954

Cells in a culture follow P(t)=3000e0.1tP(t)=3000 e^{0.1 t}. Find initial cells, a differential equation, doubling time, and when there are 9,000 cells.

See Solution

Problem 21955

After tt hours, the cell count is given by P(t)=3000e0.1tP(t) = 3000 e^{0.1 t}. Find: (a) initial cell count, (b) the differential equation for P(t)P(t).

See Solution

Problem 21956

Find the initial cell count, the differential equation for P(t)=3000e0.1tP(t)=3000 e^{0.1 t}, and when the population doubles.

See Solution

Problem 21957

Find the consumer surplus at equilibrium for demand D(x)=4xD(x) = \frac{4}{\sqrt{x}} and supply S(x)=xS(x) = \sqrt{x}.

See Solution

Problem 21958

Find the integral of 4x\frac{4}{\sqrt{x}} with respect to xx.

See Solution

Problem 21959

Cells in a culture grow as P(t)=3000e0.1tP(t)=3000 e^{0.1 t}. Find: (a) initial cells, (b) differential equation, (c) doubling time, (d) when 9000 cells.

See Solution

Problem 21960

Find the local extrema of the function. Options: A. (-2,5),(0,0),(2,5) B. (-2,5),(2,5) C. (0,0) D. None.

See Solution

Problem 21961

Calculate the integral: (6+x2+5x3)dx\int\left(-6+x^{2}+5 x^{-3}\right) dx and simplify the answer.

See Solution

Problem 21962

Find the function f(x)f(x) if its derivative is f(x)=12(x1)32f^{\prime}(x)=-\frac{1}{2} \cdot (x-1)^{-\frac{3}{2}}.

See Solution

Problem 21963

Calculate the integral: (46x3)dx\int(4-6 x^{-3}) dx and provide the answer in simplest form.

See Solution

Problem 21964

Find the integral and express the result in simplest form: (4x3)dx\int(4 x-3) d x

See Solution

Problem 21965

Calculate the integral of 5x4+2x35 x^{4}+2 x^{-3} and simplify the result.

See Solution

Problem 21966

Calculate the integral: (43x35x2)dx\int(4-3 x^{3}-5 x^{-2}) \, dx and simplify your answer.

See Solution

Problem 21967

Given the function f(x)=3xx216f(x)=\frac{3 x}{x^{2}-16}, find critical numbers, intervals of decrease, local maxima/minima, inflection points, concavity, and asymptotes.

See Solution

Problem 21968

Find the indefinite integral: ex9x8dx\int e^{x^{9}} x^{8} d x. Use u=x9u=x^{9} and eudu=eu+C\int e^{u} d u=e^{u}+C.

See Solution

Problem 21969

Find the local linear approximation k k for g(1.2) g(1.2) given dydx=y2x \frac{d y}{d x} = y^{2} - x and g(1)=2 g(1) = 2 .

See Solution

Problem 21970

Berechne die durchschnittliche Steigung mm der Funktion f(x)=2x34f(x) = 2 \cdot x^{3} - 4 im Intervall [1,5][1, 5].

See Solution

Problem 21971

Insect population is P(t)=400e0.03tP(t)=400 e^{0.03 t}. Find initial count, the differential equation, doubling time, and when P(t)=2400P(t)=2400.

See Solution

Problem 21972

Insect population is given by P(t)=400e0.01tP(t)=400 e^{0.01 t}. Find: (a) initial insects, (b) differential equation, (c) doubling time, (d) time for P(t)=1200P(t)=1200.

See Solution

Problem 21973

Bestimme die durchschnittliche Steigung mm von der Funktion f(x)=0,5x3+x21,5x2f(x)=0,5 x^{3}+x^{2}-1,5 x-2 im Intervall [3;2][-3; 2].

See Solution

Problem 21974

Insect population is given by P(t)=400e0.03tP(t)=400 e^{0.03t}. Find initial count, differential equation, doubling time, and when P(t)=2400P(t)=2400.

See Solution

Problem 21975

Find where the function f(x)=4(x+3)21f(x)=4(x+3)^{2}-1 is increasing and decreasing. List the intervals.

See Solution

Problem 21976

Find the local linear approximation for the function gg at x=1x=1 and determine if k=5.6k=5.6 or k=2.6k=2.6 is an over/underestimate for g(1.2)g(1.2).

See Solution

Problem 21977

Deposit \4000at7.54000 at 7.5% interest compounded continuously. Find: (a) formula for A(t)$, (b) its differential equation, (c) balance after 6 years, (d) when balance hits \$6000, (e) growth rate at \$6000.

See Solution

Problem 21978

Insect population is P(t)=400e0.03tP(t)=400 e^{0.03 t}. Find: (a) initial count, (b) its differential equation, (c) doubling time, (d) time for 2400 insects.

See Solution

Problem 21979

Berechne die durchschnittliche Steigung der Funktion f(x)=3x22xf(x)=3x^{2}-2x im Intervall [1;3][1; 3].

See Solution

Problem 21980

Deposit \$4000 at 7.5% interest compounded continuously. Find:
(a) Formula for A(t)A(t) after tt years. (b) Differential equation for A(t)A(t). (c) Balance after 6 years.

See Solution

Problem 21981

Deposit \$2000 at 5.5% interest compounded continuously. Find:
(a) Formula for A(t)A(t) after tt years. (b) Differential equation for A(t)A(t). (c) Balance after 7 years. (d) Time to reach \$4000. (e) Growth rate when balance is \$4000.

See Solution

Problem 21982

Berechnen Sie die durchschnittliche Steigung von f(x)=x4+3x2f(x) = x^{4} + 3x^{2} auf dem Intervall [2;4][-2; 4].

See Solution

Problem 21983

A dog received 15 units of medicine. After 35 min, 9 units remained. Find the formula for f(t)f(t), where f(t)f(t) is the amount left.

See Solution

Problem 21984

Cigarette demand: p=1000.5qd3qd2p=100-0.5 q_{d}^{3}-q_{d}^{2}; supply: p=20+0.5qs3p=20+0.5 q_{s}^{3}. Find equilibrium, elasticity, revenue, and tax effects.

See Solution

Problem 21985

Find limxπ23cosx2xπ\lim _{x \rightarrow \frac{\pi}{2}} \frac{3 \cos x}{2 x-\pi}. Choose from (A) 32-\frac{3}{2}, (B) 0, (C) +32+\frac{3}{2}, (D) nonexistent.

See Solution

Problem 21986

Berechnen Sie die durchschnittliche Steigung von f(x)=5x32x2+xf(x)=-5x^{3}-2x^{2}+x im Intervall [7;4][-7; 4].

See Solution

Problem 21987

Find the area enclosed by the ellipse defined by x=acosθx=a \cos \theta, y=bsinθy=b \sin \theta and the curve x=t22tx=t^{2}-2t, y=ty=\sqrt{t}.

See Solution

Problem 21988

Berechne die durchschnittliche Steigung der Funktion f(x)=4x2+1f(x) = -4x^2 + 1 im Intervall [1;1][-1; 1] mit mdurchschnitt=f(1)f(1)2m_{\text{durchschnitt}} = \frac{f(1) - f(-1)}{2}.

See Solution

Problem 21989

Evaluate the limits using L'Hôpital's Rule. Enter INF for \infty, -INF for -\infty, or DNE if the limit does not exist. a) limxπ/25tanxcosx=5\lim _{x \rightarrow \pi / 2} 5 \tan x \cos x=5 b) limxπ/24tanxsin(2x)=\lim _{x \rightarrow \pi / 2} 4 \tan x \sin (2 x)=\square

See Solution

Problem 21990

Calculate the distance driven between 1:00pm and 2:15pm given v(t)=5t4+44t3144t2+170tv(t)=-5 t^{4}+44 t^{3}-144 t^{2}+170 t and start at 165 miles from home.

See Solution

Problem 21991

Evaluate the integral A=0(sinx)(0F(y))dyA = \int_{0}^{(\sin x)}(0-F(y)) d y and simplify to find the result.

See Solution

Problem 21992

Gegeben ist die Funktion f(x)=x3+xf(x)=x^{3}+x mit f(x)=3x2+1f^{\prime}(x)=3 x^{2}+1. Berechne f(1)f^{\prime}(-1), f(2)f^{\prime}(2), finde xx für f(x)=4f^{\prime}(x)=4 und wo die Steigung 13 ist.

See Solution

Problem 21993

Find the semicircle radius for a church window with perimeter pp to maximize area. Use π\pi for π\pi. Radius:

See Solution

Problem 21994

Berechnen Sie die durchschnittliche Steigung von f(x)=2x53x2f(x) = -2x^{5} - 3x^{2} im Intervall [3;4][3; 4].

See Solution

Problem 21995

Dr. Acula wants to minimize metal use for cylindrical cans. Find height h(r)h(r) for min surface area and Amin(V)A_{\min}(V) for volume VV.

See Solution

Problem 21996

Berechne die durchschnittliche Steigung von f(x)=0,5x413x2+2f(x) = 0,5 x^{4} - \frac{1}{3} x^{2} + 2 im Intervall [0;5][0; 5].

See Solution

Problem 21997

Find the critical points, intervals of increase, local max/min, concavity, and inflection points for f(x)=x39x2+15x+1f(x)=x^{3}-9x^{2}+15x+1.

See Solution

Problem 21998

Find the arc length of the curve y=2lnxx216y=2 \ln x-\frac{x^{2}}{16} from x=4x=4 to x=24x=24. Answer: \square

See Solution

Problem 21999

A radioactive substance starts at 33.8 mg and decays every 6 days.
(a) Write the formula y=eDty=\square_{e} \mathbb{D}_{t}.
(b) Find the amount after 16 days, rounding to the nearest tenth.

See Solution

Problem 22000

Gegeben ist die Geschwindigkeits-Zeit-Funktion v(t)=11000(t454t3+956t25754t3229)v(t)=-\frac{1}{1000}(t^{4}-54 t^{3}+956 t^{2}-5754 t-3229).
a) Finde die Anfangsgeschwindigkeit v(0)v(0). b) Bestimme die Zeitpunkte, an denen die Geschwindigkeit extremal ist. c) Finde die Wendepunkte und analysiere die Beschleunigung. d) Berechne v(5)v(5), v(10)v(10), v(15)v(15), v(20)v(20) und skizziere den Graphen.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord