Prove

Problem 1

Given a circle with center OO and diameter MNMN, prove:
(i) MAN=90+PQR\angle MAN = 90^{\circ} + \angle PQR,
(ii) QPR+2×MAN=360\angle QPR + 2 \times \angle MAN = 360^{\circ}.

See Solution

Problem 2

Prove that two lines are parallel if and only if alternate exterior angles are congruent: 18 \angle 1 \cong \angle 8 .

See Solution

Problem 3

Prove that if BP B P and PQ P Q are tangents, then (i) ABPQ A B \parallel P Q and (ii) MP×AM=BM×MQ M P \times A M = B M \times M Q .

See Solution

Problem 4

Prove that in a given diagram, (i) AB A B is parallel to PQ P Q and (ii) MP×AM=BM×MQ M P \times A M = B M \times M Q .

See Solution

Problem 5

Prove that if BP B P and PQ P Q are tangents, then (i) ABPQ A B \parallel P Q and (ii) MP×AM=BM×MQ M P \times A M = B M \times M Q .

See Solution

Problem 6

Show that the roots of mx2+2x+1=m m x^{2}+2 x+1=m are always real for any real constant m m .

See Solution

Problem 7

Show that the roots of the equation mx2+2x+1=0 m x^{2}+2 x+1=0 are real for a real constant m m .

See Solution

Problem 8

Prove that if BP B P and PQ P Q are tangents to circles, then (i) ABPQ A B \parallel P Q and (ii) MP×AM=BM×MQ M P \times A M = B M \times M Q .

See Solution

Problem 9

1. Prove n7n n^{7}-n is divisible by 42 for all positive integers n n . Show primes ≠ 2, 5 divide numbers like 1, 11, etc.
2. Prove if p>3 p>3 is prime, then p21(mod24) p^{2} \equiv 1(\bmod 24) .
3. Find the number of trailing zeros in 1000! 1000! .
4. If p p and p2+2 p^{2}+2 are primes, prove p3+2 p^{3}+2 is prime.
5. Prove gcd(2a1,2b1)=2gcd(a,b)1 \operatorname{gcd}(2^{a}-1,2^{b}-1)=2^{\operatorname{gcd}(a, b)}-1 for positive integers a,b a, b .

See Solution

Problem 10

Prove that n7n n^{7}-n is divisible by 42 for all positive integers n n and that primes other than 2 or 5 divide infinitely many of 1,11,111,1111, 1, 11, 111, 1111, etc.

See Solution

Problem 11

Prove that for any positive integer n n , n7n n^{7}-n is divisible by 42. Also, show p21(mod24) p^{2} \equiv 1(\bmod 24) for primes p>3 p>3 .

See Solution

Problem 12

Prove that n7n n^{7}-n is divisible by 42 for all positive integers n n and p>3 p>3 prime, p21(mod24) p^{2} \equiv 1(\bmod 24) .

See Solution

Problem 13

Any two parallel lines lie in the same plane. True or False?

See Solution

Problem 14

Is it true or false that 'If two rays are parallel, then the lines containing them must be coplanar'?

See Solution

Problem 15

Prove x2x+274 x^{2}-x+2 \geq \frac{7}{4} for all values of x x .

See Solution

Problem 16

Prove that for a sector with radius rr cm and perimeter 50 cm, θ=360π(25r1)\theta = \frac{360}{\pi} \left(\frac{25}{r} - 1\right).

See Solution

Problem 17

Une piscine rectangulaire de 10 m sur 15 m est entourée d'une bande de gazon de xx m. Montre que la clôture fait 50+8x50 + 8x m et l'aire des allées de gazon est 50x+4x250x + 4x^2. Calcule pour x=2x=2 m.

See Solution

Problem 18

Soit nn un entier. Trouve l'entier précédent et suivant de nn. Prouve que la somme de 3 entiers consécutifs est un multiple de 3.

See Solution

Problem 19

Définis RR en fonction de xx pour le programme donné. Prouve que RR est le carré de xx. Factorise 6425x2(85x)264-25 x^{2}-(8-5 x)^{2} et 49x2+28x+42549 x^{2}+28 x+4-25.

See Solution

Problem 20

Le mât mesure 3,6 m. Vérifie si les triangles VEN et VNT sont rectangles avec les longueurs 4,2 m et 3,9 m. Justifie.

See Solution

Problem 21

A ring of weight 8.5 N is on a string with tension TT. Show that Tsinθ=12T \sin \theta = 12 and Tcosθ=3.5T \cos \theta = 3.5, then find θ\theta.

See Solution

Problem 22

Prove that sin3θ+sinθ=4sinθ4sin3θ\sin 3\theta + \sin \theta = 4 \sin \theta - 4 \sin^3 \theta.

See Solution

Problem 23

Find the derivative of f(x)=x2f(x) = x^2 using the limit definition: f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 24

Nyatakan sama ada semua segi empat tepat adalah segi empat sama: benar atau palsu?

See Solution

Problem 25

Buat kesimpulan umum secara induksi untuk urutan nombor 12,32,256,-\frac{1}{2}, \frac{3}{2}, \frac{25}{6}, \ldots mengikut pola yang diberikan.

See Solution

Problem 26

Demuestra la ley de Boyle: pV=p V= const, la ley de Charles: V/T=V / T= const, y la ley de Gay-Lussac: p/T=p / T= const.

See Solution

Problem 27

A particle with mass m1m_{1} and momentum p1p_{1} collides elastically with mass m2m_{2} at rest. Show E3E_{3} and p3p_{3} formulas.

See Solution

Problem 28

True or false: For a population proportion confidence interval, we use z\mathrm{z}-distribution, not t\mathrm{t}-distribution.

See Solution

Problem 29

Verify that (AB)T=BTAT(A B)^{T} = B^{T} A^{T} for matrices A=[121302450]A=\begin{bmatrix}1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0\end{bmatrix} and B=[100210013]B=\begin{bmatrix}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}.

See Solution

Problem 30

Find the value of xx if mPQR=6x7\mathrm{m} \angle \mathrm{PQR}=6x-7 and mRQT=20x+5\mathrm{m} \angle \mathrm{RQT}=20x+5 sum to 180°.

See Solution

Problem 31

函数 f(x)f(x) 定义在 R\mathbf{R} 上,满足 f(x+y)=f(x)f(y)f(x+y)=f(x) \cdot f(y),且存在 x1x2x_{1} \neq x_{2} 使得 f(x1)f(x2)f\left(x_{1}\right) \neq f\left(x_{2}\right)。求 f(0)f(0) 并证明 f(x)>0f(x)>0 对任意 xRx \in \mathbf{R} 成立。

See Solution

Problem 32

Prove that in cyclic quadrilateral ABCDABCD, the lines XYXY and ZWZW are parallel, where XX, YY, ZZ, and WW are feet of perpendiculars.

See Solution

Problem 33

Demonstrați că în triunghiul dreptunghic, lungimea medianei pe ipotenuză este AO=BC2A O=\frac{B C}{2}.

See Solution

Problem 34

Si aX,bRa \in \mathbb{X}, b \in \mathbb{R} y cRc \in \mathbb{R}, evalúa las proposiciones sobre aa, bb y cc.

See Solution

Problem 35

Sean A y B subconjuntos de un conjunto Re. ¿Cuáles son las afirmaciones verdaderas sobre ellos?

See Solution

Problem 36

Dadas las matrices cuadradas AA y BB de orden nn y una constante real kk, determina si las siguientes afirmaciones son verdaderas.

See Solution

Problem 37

Considerați punctele coliniare M,O,NM, O, N și punctele PP și QQ de o parte și de alta a dreptei MNM N. Demonstrați: a) MQNPM Q \equiv N P; b) MPNQM P \equiv N Q; c) MPQNQP\triangle M P Q \equiv \triangle N Q P; d) MPNNQM\triangle M P N \equiv \triangle N Q M.

See Solution

Problem 38

9) Sif estinationale. - Verifica si son verdaderas las siguientes afirmaciones para a,b,cRa, b, c \in \mathbb{R}: a) (ab)(acbc)(a \leq b) \Rightarrow(a c \leq b c) b) (abc>0)(acbc)(a \leq b \wedge c>0) \Rightarrow(a c \geq b c) c) (ab=0)(a=0b=0)(a b=0) \Rightarrow(a=0 \wedge b=0) d) (ab=c)(a=cb=c)(a b=c) \Rightarrow(a=c \vee b=c) e) (abc<0)(acbc)(a \geq b \wedge c<0) \Rightarrow(a c \leq b c)

See Solution

Problem 39

Compare the 15th 15^{\text {th }} term of the arithmetic sequence 150,650,1150,1650,...150,650,1150,1650,... and geometric sequence 4,12,36,108,...4,12,36,108,.... Show your work.

See Solution

Problem 40

Une piscine rectangulaire de 10m x 15m a une bande de gazon de xx m. Montre que la clôture mesure 50+8x50 + 8x.

See Solution

Problem 41

Soit nn un entier. a) Trouve l'entier précédent nn. b) Trouve l'entier suivant nn. Prouve que la somme de 3 entiers consécutifs est un multiple de 3.

See Solution

Problem 42

For n100n \geq 100, show that in two piles of cards numbered nn to 2n2n, at least one pile has two cards summing to a perfect square.

See Solution

Problem 43

Show that the limit limitx2x2x2\operatorname{limit}_{x \rightarrow 2} \frac{|x-2|}{x-2} does not exist.

See Solution

Problem 44

Show that p(qr)(pq)(pr)p \Rightarrow(q \wedge r) \equiv(p \Rightarrow q) \wedge(p \Rightarrow r) is always true.

See Solution

Problem 45

Un voilier a un mât de 3,6 m3,6 \mathrm{~m} avec un étai de 4,2 m4,2 \mathrm{~m} et des haubans de 3,9 m3,9 \mathrm{~m}. Est-ce que les triangles VEN et VNT sont rectangles ? Justifie.

See Solution

Problem 46

Is the transformation from y=3xy=3^{x} to y=53(x2)+9y=5 \cdot 3^{-(x-2)}+9 unique? List transformations to prove or disprove the claim.

See Solution

Problem 47

Show that if for each xAx \in A, there exists an open set UU with UAU \subset A, then AA is open in XX.

See Solution

Problem 48

In a coordinate plane, ABC\triangle ABC is a right triangle with A(4,1)A(-4,1) and B(2,1)B(2,1). Area is 9 sq. units. Find point CC.

See Solution

Problem 49

In a coordinate plane, ABC\triangle ABC has A(4,1)A(-4,1) and B(2,1)B(2,1) with area 9 sq. units. Find other CC coordinates besides (2,4)(2,4).

See Solution

Problem 50

Verify the Ka\mathrm{K}_{\mathrm{a}} value of benzoic acid given H3O+\mathrm{H}_{3} \mathrm{O}^{+} concentration is 3.08×103M3.08 \times 10^{-3} \mathrm{M} in 0.150M0.150 \mathrm{M} solution.

See Solution

Problem 51

Derive the equation 2as=v2u22as = v^2 - u^2 for final velocity vv, initial velocity uu, acceleration aa, and displacement ss.

See Solution

Problem 52

Derive the formula for final velocity: Vf=Vi+atV_f = V_i + a t.

See Solution

Problem 53

Prove the system y=Ayy' = A y is solvable when A=[ab0c]A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} is upper triangular.

See Solution

Problem 54

Show that the system y=Ay\mathbf{y}^{\prime}=A \mathbf{y} can be solved directly for a 2×22 \times 2 upper triangular matrix AA with constant entries. Use the form [xy]=[ab0c][xy]\left[\begin{array}{l} x \\ y \end{array}\right]^{\prime}=\left[\begin{array}{ll} a & b \\ 0 & c \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right] and solve the second equation first.

See Solution

Problem 55

Prove that (3a+2b+3c)3=(a+b)3+(b+2c)3+(c+2a)3+450(3a+2b+3c)^{3}=(a+b)^{3}+(b+2c)^{3}+(c+2a)^{3}+450 for constants aa, bb, cc.

See Solution

Problem 56

Prove that cos2xcosx2cos3xcos9x2=sin5xsin5x2\cos 2x \cos \frac{x}{2} - \cos 3x \cos \frac{9x}{2} = \sin 5x \sin \frac{5x}{2}.

See Solution

Problem 57

Prove the following for subsets A,BSA, B \subset S: (a) ABA \subset B iff AB=BA \cup B = B; (b) ABA \subset B iff AB=AA \cap B = A; (c) AC(B)A \subset C(B) iff AB=A \cap B = \varnothing; (d) C(A)BC(A) \subset B iff AB=SA \cup B = S; (e) ABA \subset B iff C(B)C(A)C(B) \subset C(A); (f) AC(B)A \subset C(B) iff BC(A)B \subset C(A).

See Solution

Problem 58

Prove that Cos2θ+Sin2θ=1\operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta=1. Do all rough work on the answer scripts.

See Solution

Problem 59

ABCD\square A B C D 中, AC,BDA C, B D 交于点 OO, 点 E,FE, FACA C 上, AE=CFA E=C F。证明四边形 EBFDE B F D 是平行四边形和菱形。

See Solution

Problem 60

Prove that c2=a2+b22abcosCc^{2}=a^{2}+b^{2}-2ab\cos C.

See Solution

Problem 61

Show that cos2θ+sin2θ=1 \cos^{2} \theta + \sin^{2} \theta = 1 .

See Solution

Problem 62

Show that cos2θ+sin2θ=1\cos ^{2} \theta+\sin ^{2} \theta=1 is true for any angle θ\theta.

See Solution

Problem 63

Numărul xyz\overline{x y z} satisface xyz=xy+yz+zx\overline{x y z}=\overline{x y}+\overline{y z}+\overline{z x}. a) Poate x=2x=2? Justifică. b) Găsește xyz\overline{x y z}.

See Solution

Problem 64

Find the center (h,k)(h, k) and radius rr of the circle from (xh)2+(yk)2=r2(x-h)^{2}+(y-k)^{2}=r^{2}. Derive the general equation of a circle.

See Solution

Problem 65

Identify the pattern in the sequence 0,3,18,570, 3, 18, 57 and extend it. Prove your conclusion using induction.

See Solution

Problem 66

Solve the equation (n+1)2n!+(n+1)!=(n+2)!(n+1)^{2} \cdot n !+(n+1) !=(n+2) ! for n.

See Solution

Problem 67

1. (a) Show that y2=12x2y^{2}=\frac{1}{2} x^{2} if log(x2+y2)log3=log(x2y2)\log \left(x^{2}+y^{2}\right)-\log 3=\log \left(x^{2}-y^{2}\right). (b) Find mnm n such that log3m+3log27n=5\log _{3} m+3 \log _{27} n=5. (c) If lnp=7\ln p=7, what is logpe\log _{p} \sqrt{e}?

See Solution

Problem 68

Arjun needs a \$350,000 loan for 20 years at 4.2\% interest, compounded monthly. Find his monthly repayments, approx. \$2160.

See Solution

Problem 69

Arjun needs a \350,000loanfor20yearsat4.2%interest,compoundedmonthly.Findhismonthlyrepaymentofabout350,000 loan for 20 years at 4.2\% interest, compounded monthly. Find his monthly repayment of about 2160$.

See Solution

Problem 70

4. Într-un pătrat ABCDA B C D, cu punctele E,F,GE, F, G pe laturi, arată că triunghiul DEGD E G este isoscel și află unghiul dintre DFD F și EGE G.

See Solution

Problem 71

Prove the identity: 1cosxcosx1+sinx=tanx\frac{1}{\cos x}-\frac{\cos x}{1+\sin x}=\tan x using trigonometric identities.

See Solution

Problem 72

Prove the identity: 1cosxcosx1+sinx=tanx\frac{1}{\cos x}-\frac{\cos x}{1+\sin x}=\tan x.

See Solution

Problem 73

1. Într-o livadă sunt 160 de pomi. În prima zi s-au plantat 60%60\% meri și 40%40\% nuci, iar în a doua zi 76 pomi. Află procentul din prima zi și câți meri și nuci s-au plantat.
2. Consideră E(x)=x2(x+1)2(x+2)2+(x+3)2E(x)=x^{2}-(x+1)^{2}-(x+2)^{2}+(x+3)^{2}. Arată că E(x)=4E(x)=4 pentru orice xx și calculează suma S=122232+42++402S=1^{2}-2^{2}-3^{2}+4^{2}+\ldots+40^{2}.
3. În sistemul de axe xOyx O y, A(3,2)A(3,2), BB simetricul lui AA față de OxO x, și CC simetricul lui AA față de OO. Arată că C=(3,2)C=(-3,-2) și determină funcția corespunzătoare lui BCBC.
4. Semicercul de centru DD este tangent la laturile ABA B și ACA C ale triunghiului isoscel ABCA B C. Demonstrează că DD este mijlocul lui BCB C și află raza semicercului, știind că BC=30 cmB C=30 \mathrm{~cm} și AD=20 cmA D=20 \mathrm{~cm}.

See Solution

Problem 74

1. Acum doi ani, mama avea de 5 ori vârsta fiicei. În 6 ani, fiica va avea 1/3 din vârsta mamei. Poate mama avea 40 de ani? Determină vârsta fiicei.

See Solution

Problem 75

Check if triangles ABC\triangle ABC and XYZ\triangle XYZ are congruent using transformations: reflect and translate.

See Solution

Problem 76

Find angle OQPO Q P given points P,Q,RP, Q, R on a circle with mQPR=35m\angle Q P R=35^{\circ} and mORP=30m\angle O R P=30^{\circ}.

See Solution

Problem 77

Prove that 24x+1+3245(x+1)2^{4x+1} + 32^{\frac{4}{5}(x+1)} is divisible by 9.

See Solution

Problem 78

Prove that 5+232+3=43\frac{5+2 \sqrt{3}}{2+\sqrt{3}} = 4-\sqrt{3}.

See Solution

Problem 79

Given (2h3k):(h+2k)=3:5(2 h-3 k):(h+2 k)=3: 5, show h=3kh=3 k and find h:kh: k.

See Solution

Problem 80

Prove that 2n+1+32n12^{n+1}+3^{2n-1} is divisible by 7 for all positive integers nn.

See Solution

Problem 81

Soit II et JJ deux intervalles ouverts, avec (IQ)(JQ)=(I \cap \mathbb{Q}) \cap (J \cap \mathbb{Q}) = \varnothing. Prouvez que IJ=I \cap J = \varnothing.

See Solution

Problem 82

Démontrez que les nombres suivants sont irrationnels : 1. x+y\sqrt{x}+\sqrt{y} avec x,yx,y rationnels positifs irrationnels. 2. 2+3+5\sqrt{2}+\sqrt{3}+\sqrt{5}.

See Solution

Problem 83

Prove that sin60tan45tan30sin240tan315tan210=0\sin 60^{\circ} \cdot \tan 45^{\circ} \cdot \tan 30^{\circ} - \sin 240^{\circ} \cdot \tan 315^{\circ} \cdot \tan 210^{\circ} = 0.

See Solution

Problem 84

Prove the identity: sinx1+cosx+1+cosxsinx=2sinx\frac{\sin x}{1+\cos x}+\frac{1+\cos x}{\sin x}=\frac{2}{\sin x}.

See Solution

Problem 85

Soient AA et BB deux parties non-vides de R\mathbb{R} avec aba \leq b pour tout aAa \in A et bBb \in B. Montrez que AA est majoré, BB est minoré et sup(A)inf(B)\sup (A) \leq \inf (B).

See Solution

Problem 86

A. Verify (3,125+3,168)+4,375=3,125+(3,168+4,375)(3,125+3,168)+4,375=3,125+(3,168+4,375) using the associative property. B. Show 3,125+3,168+4,365=11,078(550+692)3,125+3,168+4,365=11,078-(550+692). C. Prove 3,168+4,375+3,125=(3,168+3,125)3,168+4,375+3,125=(3,168+3,125). D. Confirm (4,168+3,125)+4,375=3,125+(1,168+3,168)(4,168+3,125)+4,375=3,125+(1,168+3,168).

See Solution

Problem 87

Beweisen Sie durch Induktion, dass 2n+1n22n2n + 1 \leq n^2 \leq 2^n für alle n4n \geq 4 gilt.

See Solution

Problem 88

Jika r=25r=25, maka r2=625r^{2}=625. Jika r2=625r^{2}=625, maka r=25r=25.

See Solution

Problem 89

Est-ce que p2p^{2} est un nombre premier si pp est un nombre premier?

See Solution

Problem 90

Is the statement "A number can only be divisible by exactly one number" true or false? Explain your choice.

See Solution

Problem 91

Is it true that in an isosceles right triangle, the hypotenuse is 2\sqrt{2} times one leg's length? A. Yes B. No C. Maybe D. Sometimes E. Not applicable

See Solution

Problem 92

Explain why, when multiplying powers like amana^m \cdot a^n, we add the exponents to get am+na^{m+n}.

See Solution

Problem 93

Is it true that if two chords in the same circle are congruent, their minor areas are also congruent? A. Yes B. No C. Maybe D. Sometimes E. Not applicable

See Solution

Problem 94

Identify the two true statements: 1) A line is one-dimensional. 2) A plane has an endpoint. 3) The intersection of two planes can be a line. 4) Parallel lines intersect at 45 degrees.

See Solution

Problem 95

If BB is the midpoint of AC\overline{AC}, DD is the midpoint of CE\overline{CE}, and ABDE\overline{AB} \cong \overline{DE}, prove that AE=4ABAE=4AB.

See Solution

Problem 96

Calculate the products of matrices SS and TT: STS T and TST S to show multiplication is not commutative. Fill in the boxes.

See Solution

Problem 97

Billy needs help matching customers to cars based on arrival times and licenses. Use clues to find out who rented the Mustang.

See Solution

Problem 98

Show that matrix multiplication is not commutative by calculating STS T and TST S for the matrices S=[4132]S=\begin{bmatrix} 4 & 1 \\ -3 & -2 \end{bmatrix} and T=[0443]T=\begin{bmatrix} 0 & 4 \\ -4 & 3 \end{bmatrix}.

See Solution

Problem 99

Prove that 2x46x3+3x2+3x22 x^{4}-6 x^{3}+3 x^{2}+3 x-2 is divisible by x23x+2x^{2}-3 x+2 without division.

See Solution

Problem 100

Is the equation 4x1+8x=74x - 1 + 8x = 7 true? Yes or No.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord