Geben Sie Zahlen an, die:
a) ganze, aber keine rationalen Zahlen sind. /(v)?
b) Brüche und negative Zahlen sind. −42y,−21
c) reell, aber nicht rational sind.
d) irrationale Zahlen sind, deren Quadrat natürliche Zahlen sind.
1. Order −42,−13,6,38 from least to greatest: −42≤−13≤6≤38. 2. Order −621,−521,−4,−6 from least to greatest: −621≤−6≤−521≤−4. 3. Order −8.999,0,17.56,−832 from least to greatest: −8.999≤0≤−832≤17.56. 4. Order −104,31,198,−5 from least to greatest: −5≤−104≤31≤198.
Find the number of unique passwords with 2 digits, where each digit can be a number or a letter. Solution: There are 10 digits (0-9) and 26 letters (A-Z), so each digit can be chosen from 36 possibilities. Therefore, the total number of possible passwords is 36×36=1,296.
Find the least possible number that when divided by 6 leaves a remainder of 2, and when divided by 7 leaves a remainder of 3. Determine if Daniel's claim that the least number is 38 is correct.