Calculus

Problem 4701

Find f(1)f^{\prime}(-1) for the piecewise function: f(x)=3x+5f(x) = -3x + 5 (if x<1x < -1) and f(x)=x2+3f(x) = -x^2 + 3 (if x1x \geq -1). Options: A. -3 B. -2 C. 2 D. 3 E. nonexistent.

See Solution

Problem 4702

Find the limit as xx approaches infinity for the expression 1x\frac{1}{x}.

See Solution

Problem 4703

Gegeben ist die Funktion f(x)=2x2xxf(x)=-2 x^{2} \cdot x^{x} für x[7;0]x \in[-7 ; 0].
1. a) Berechne f(7)f(-7) und erkläre die Bedeutung.
b) Finde den tiefsten Punkt des Flussbettes.
c) Prüfe, ob der Winkel von 4545^{\circ} überschritten wird, ohne die Ränder zu betrachten.

See Solution

Problem 4704

Bestimme die Extremstellen der Funktionen: a) f(x)=x3x2+1f(x)=x^{3}-x^{2}+1, b) f(x)=14x4f(x)=\frac{1}{4} x^{4}, c) f(x)=14x42x22f(x)=\frac{1}{4} x^{4}-2 x^{2}-2, d) f(x)=45x52x4f(x)=\frac{4}{5} x^{5}-2 x^{4}, e) f(x)=sin(x)f(x)=\sin (x) für x[0.2π]x \in[0.2 \pi].

See Solution

Problem 4705

Find h(1)h'(1) for h(x)=f(g(x))h(x)=f(g(x)) given f(1)=2f(1)=2, f(1)=3f'(1)=3, f(2)=4f'(2)=-4, g(1)=2g(1)=2, g(1)=3g'(1)=-3, g(2)=5g'(2)=5.

See Solution

Problem 4706

Find the tangent line equation for g(x)=xf(x)g(x)=x \cdot f(x) at x=2x=2 given f(2)=6f(2)=6 and ff' has horizontal tangents at x=1,3x=1,3.

See Solution

Problem 4707

Find the limit: limxf(x)\lim _{x \rightarrow-\infty} f(x) for the function f(x)=2xe2xf(x)=2 x e^{2 x}.

See Solution

Problem 4708

Find limxf(x)\lim_{x \rightarrow -\infty} f(x) for the function f(x)=2xe2xf(x) = 2x e^{2x}.

See Solution

Problem 4709

Find the limit: limxf(x)\lim _{x \rightarrow-\infty} f(x) where f(x)=2xe2xf(x)=2 x e^{2 x}.

See Solution

Problem 4710

Find the curve equation through (0,2)(0,2) with slope m=xym = \frac{x}{y}.

See Solution

Problem 4711

Solve the differential equation: dzdt+et+z=0\frac{d z}{d t}+e^{t+z}=0.

See Solution

Problem 4712

Solve 2y=x+y2 y' = x + y using the substitution u=x+yu = x + y.

See Solution

Problem 4713

Solve dydx=ytanx\frac{d y}{d x}=y \tan x, with y=1y=1 at x=0x=0. Also, show dNdt=kN\frac{d N}{d t}=-\frac{k}{\sqrt{N}} for cockroaches.

See Solution

Problem 4714

Bestimmen Sie die Werte von tRt \in \mathbb{R}, für die ft(x)=12x3+tx2+6x2f_{t}(x)=\frac{1}{2} x^{3}+t x^{2}+6 x-2 a) keine und b) genau einen waagerechten Tangentenpunkt hat. Zeigen Sie, dass dieser Punkt kein Extrempunkt ist.

See Solution

Problem 4715

Find the oscillation rate of the spring at t=5t=5 s for s(t)=3sints(t)=3 \sin t. Round to four decimal places.

See Solution

Problem 4716

Find the first three derivatives of f(x)=2x3+exf(x)=2x-3+e^{-x} and identify its local extrema. Show your work.

See Solution

Problem 4717

Find xx in f(x)=5x8cosxf(x)=5x-8\cos x for 0<x<2π0<x<2\pi where the tangent line slope is 9. x=x=

See Solution

Problem 4718

Find the 100th, 101st, and 102nd derivatives of the function f(x)=n=0(x2)4nf(x) = \sum_{n=0}^{\infty}(x-2)^{4n} at x=2x=2.

See Solution

Problem 4719

A patient receives 50 mg of medicine that decreases by 10%10\% each hour. How much remains after 6 hours using A(t)=lertA(t)=l e^{r t}?

See Solution

Problem 4720

Find the first and second derivatives of f(x)=(x+1)e0.5xf(x)=(x+1) \cdot e^{-0.5 x}.

See Solution

Problem 4721

Determine the horizontal asymptotes of the function f(x)=(3x7)(x+2)3(x10)(x+2)f(x) = \frac{(3x-7)(x+2)}{3(x-10)(x+2)}.

See Solution

Problem 4722

Determine the horizontal asymptotes for the function f(x)=2x+23x2x4f(x)=\frac{2 x+2}{3 x^{2}-x-4}.

See Solution

Problem 4723

Determine the horizontal asymptotes of the function f(x)=(2x+1)(x2)x(2x+1)f(x)=\frac{(2 x+1)(x-2)}{x(2 x+1)}.

See Solution

Problem 4724

Determine the horizontal asymptotes of the function f(x)=2x65x216x+3f(x)=\frac{2 x-6}{5 x^{2}-16 x+3}.

See Solution

Problem 4725

Determine the horizontal asymptotes of the function f(x)=2(x8)(2x3)(x8)f(x)=\frac{2(x-8)}{(2 x-3)(x-8)}.

See Solution

Problem 4726

Determine the horizontal asymptotes of the function f(x)=2x282x2+x45f(x)=\frac{2 x^{2}-8}{2 x^{2}+x-45}.

See Solution

Problem 4727

Evaluate the integral ExydV\iiint_{E} x y \, dV for the tetrahedron with vertices (0,0,0),(4,0,0),(0,1,0),(0,0,7)(0,0,0),(4,0,0),(0,1,0),(0,0,7).

See Solution

Problem 4728

Determine the horizontal asymptotes for the function f(x)=3(x+4)(x4)x(2x1)f(x)=\frac{3(x+4)(x-4)}{x(2 x-1)}.

See Solution

Problem 4729

Determine the horizontal asymptotes of the function f(x)=3x22x2+2x112f(x)=\frac{3 x-2}{2 x^{2}+2 x-112}.

See Solution

Problem 4730

Find the first and second derivatives of f(x)=xe0.5xf(x)=x \cdot e^{-0.5 x}.

See Solution

Problem 4731

Evaluate the integral y2dy(y2+16)3/2\int \frac{y^{2} d y}{\left(y^{2}+16\right)^{3 / 2}}.

See Solution

Problem 4732

Differentiate g(n)=an2+cna(anc)6g(n)=\frac{a n^{2}+c n}{a}-(a n-c)^{6} with respect to nn. Result: 2an+c2 a n+c.

See Solution

Problem 4733

Differentiate g(x)=xe+e2x+ex1+e3x4g(x)=\frac{x}{e}+e^{2} x+e x^{-1}+e \sqrt{3 x-4}.

See Solution

Problem 4734

Find the xx-coordinates where the graph of f(x)=8x63x4+17f(x)=8 x^{6}-3 x^{4}+17 has horizontal tangents. df(x)dx=48x512x3\frac{d f(x)}{d x}=48 x^{5}-12 x^{3}

See Solution

Problem 4735

Differentiate g(n)=an2+cna(anc)6g(n)=\frac{a n^{2}+c n}{a}-(a n-c)^{6} with respect to nn.

See Solution

Problem 4736

Zeichne den Graphen von h(t)=18t22t+8h(t)=\frac{1}{8} t^{2}-2 t+8. Bestimme, wann der Behälter leer und halb voll ist und die Sinkgeschwindigkeit.

See Solution

Problem 4737

Find yy^{\prime} from x3+y2=43x^{3}+y^{2}=43 at x=3x=3, y=4y=4. Provide the exact answer (fractions, not decimals).

See Solution

Problem 4738

Bestimme die Punkte, wo f(x)=2f(x)=2 und berechne die Steigung. Vergleiche die mittlere Steigung für 1,5x2,51,5 \leq x \leq 2,5 mit der Steigung bei x=2x=2.

See Solution

Problem 4739

Find the derivative of f(t)=24tf(t)=\frac{2}{4-t} at t=5t=-5 using limits, then find the tangent line equation at that point.

See Solution

Problem 4740

Schreibe die Funktionen ohne Brüche und analysiere das Gelände-Modell f(x)=18xsin(π2x)+2f(x)=\frac{1}{8} x \cdot \sin \left(\frac{\pi}{2} x\right)+2 für 0x50 \leq x \leq 5. Bestimme die Punkte, die 2 km über NHN liegen, und berechne die Steigung dort. Vergleiche die mittlere Steigung für 1,5x2,51,5 \leq x \leq 2,5 mit der Steigung bei x=2x=2.

See Solution

Problem 4741

Bestimmen Sie die ersten beiden Ableitungen für die Funktionen: a) f(x)=x2g(x)f(x)=x^{2} \cdot g(x) b) f(x)=xg(x)f(x)=x \cdot g^{\prime}(x) c) f(x)=x(g(x))2f(x)=x \cdot(g(x))^{2} d) f(x)=g(x)g(x)f(x)=g(x) \cdot g^{\prime}(x)

See Solution

Problem 4742

Find the function f(x)f(x) if f(x)=xe4x4ee4xf'(x)=x e^{-4x}-4e e^{-4x}. Factor out e4xe^{-4x}.

See Solution

Problem 4743

Untersuchen Sie, ob der Graph von f(x)=x(g(x))2f(x)=x \cdot (g(x))^{2} den Graphen von gg in P(1,1)P(1,1) berührt, wo die Steigung -1 ist.

See Solution

Problem 4744

Bestimme die Ableitungsfunktion von ff und die Tangentensteigung an x=1x=-1. Funktionen: a) f(x)=x5f(x)=x^{5}, b) f(x)=x4f(x)=x^{4}, c) f(x)=x3f(x)=x^{3}, d) f(x)=x6f(x)=x^{6}, e) f(x)=x9f(x)=x^{9}, f) f(x)=x11f(x)=x^{11}, g) f(x)=x12f(x)=x^{12}, h) f(x)=x25f(x)=x^{25}, i) f(x)=x2f(x)=x^{2}.

See Solution

Problem 4745

Determine the horizontal asymptotes of the function f(x)=2(3x+8)(3x8)3(x+2)(x2)f(x)=\frac{2(3 x+8)(3 x-8)}{3(x+2)(x-2)}.

See Solution

Problem 4746

Determine the horizontal asymptotes of the function f(x)=2x(5x+4)(x+3)(x3)f(x)=\frac{2 x(5 x+4)}{(x+3)(x-3)}.

See Solution

Problem 4747

Determine the horizontal asymptotes of the function f(x)=3x2+51x+2102x+20f(x)=\frac{3 x^{2}+51 x+210}{2 x+20}.

See Solution

Problem 4748

Find the 6th derivative of f(x)=cos(ln(1+x2))f(x)=\cos(\ln(1+x^{2})) at x=0x=0 using the Taylor series.

See Solution

Problem 4749

Determine the horizontal asymptotes of the function f(x)=x212x+202x4f(x)=\frac{x^{2}-12 x+20}{2 x-4}.

See Solution

Problem 4750

Find f(1)f^{\prime}(1) for the function f(x)=lnx3+x2f(x)=\ln x^{3}+x^{2}.

See Solution

Problem 4751

Berechne den Flächeninhalt zwischen dem Graphen von ff und der xx-Achse für die Intervalle: a) f(x)=16x312x2f(x)=\frac{1}{6} x^{3}-\frac{1}{2} x^{2}, I=[1;2]I=[-1 ; 2] und I=[3;2]I=[-3 ; 2] b) f(x)=x34xf(x)=x^{3}-4 x c) f(x)=14(x+3)(x1)(x2)f(x)=\frac{1}{4}(x+3)(x-1)(x-2), I=[3;2]I=[-3 ; 2] d) f(x)=2x2f(x)=\frac{2}{x^{2}}, I=[1;3]I=[1 ; 3]

See Solution

Problem 4752

Determine the horizontal asymptotes of the function f(x)=2x(x8)3(x+9)(x7)f(x)=\frac{2 x(x-8)}{3(x+9)(x-7)}.

See Solution

Problem 4753

Determine the horizontal asymptotes for the function f(x)=x8x25x24f(x)=\frac{x-8}{x^{2}-5 x-24}.

See Solution

Problem 4754

Berechne das Integral 114xdx\int \frac{1}{1-4 x} \cdot d x durch Substitution.

See Solution

Problem 4755

Berechne das unbestimmte Integral 3xsin(4x)dx\int 3 x \cdot \sin (4 x) \, dx.

See Solution

Problem 4756

Berechne das unbestimmte Integral 3xln(4x)dx\int 3 x \cdot \ln (4 x) \, dx.

See Solution

Problem 4757

Find the slope of the tangent line to f(x)=x36x+3f(x)=x^{3}-6x+3 at the point (0,3)(0,3).

See Solution

Problem 4758

Find the first and second derivatives of f(x)=(x2x)e0.5xf(x)=(x^{2}-x) \cdot e^{-0.5 x} and simplify by factoring common terms.

See Solution

Problem 4759

Find the derivative dhdx\frac{d h}{d x} for the function h(x)=cπh(x)=c \pi, where cc is a constant.

See Solution

Problem 4760

Find the derivative dydx\frac{d y}{d x} for the function y=sin1(12x+5)y=\sin^{-1}\left(\frac{1}{2 x+5}\right).

See Solution

Problem 4761

Find the derivative of f(x)=xe0.5xf(x)=x \cdot e^{-0.5 x} and simplify by factoring out common terms.

See Solution

Problem 4762

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the equation x28y2=3-x^{2}-8 y^{2}=3.

See Solution

Problem 4763

Find the derivative dydx\frac{d y}{d x} for the function y=sin1(12x+5)y=\sin ^{-1}\left(\frac{1}{2 x+5}\right).

See Solution

Problem 4764

Find the first three derivatives of f(x)=(1x)exf(x)=(1-x) \cdot e^{-x} and simplify by factoring out common terms.

See Solution

Problem 4765

How long (in hours) to metabolize half the caffeine? Use the equation dCdt=0.14C\frac{d C}{d t}=-0.14 C. Round to nearest integer.

See Solution

Problem 4766

Graph the function 1x52x33x2+6\frac{1}{x^{5}-2 x^{3}-3 x^{2}+6} on given intervals and estimate vertical asymptotes.

See Solution

Problem 4767

Find the derivative of the function s=8t9/4+3e5s=8 t^{9/4}+3 e^{5}.

See Solution

Problem 4768

Find the derivative of rr with respect to ss for r=14s353s2r=\frac{1}{4 s^{3}}-\frac{5}{3 s^{2}}.

See Solution

Problem 4769

Find the first derivative of rr with respect to ss where r=12s73s2r=\frac{1}{2 s}-\frac{7}{3 s^{2}}.

See Solution

Problem 4770

Find the first and second derivatives of f(x)=(x21)exf(x)=(x^{2}-1) \cdot e^{-x} and simplify by factoring common terms.

See Solution

Problem 4771

Find the derivative of rr with respect to ss for r=14s353s2r=\frac{1}{4 s^{3}}-\frac{5}{3 s^{2}}.

See Solution

Problem 4772

Find the derivative of f(x)=(x+1)e0.5xf(x)=(x+1) \cdot e^{-0.5 x} using the product rule.

See Solution

Problem 4773

Find the tangent line equation for f(x)f(x) at x=1x=1 where f(x)=x42x35x4f(x)=x^{4}-2 x^{3}-5 x-4.

See Solution

Problem 4774

Find the tangent line to f(x)=ln(x)f(x)=\ln (x) at x=e1x=e^{-1}: determine mm and bb for y=mx+by=m x+b.

See Solution

Problem 4775

Find the value of cc where the black line is tangent to y=15xy=1 \cdot 5^{x} at the point (0,1)(0,1).

See Solution

Problem 4776

Calculate the grams of carbon-14 left after 5944 years using the model A=16e0.000121tA=16 e^{-0.000121 t}. Round to the nearest whole number.

See Solution

Problem 4777

Find the tangent line equation for y=2xy=2^{x} at the point (2,4)(2,4). Tangent line: y=y=

See Solution

Problem 4778

Find the rate of increase of the rocking chair's value given by V=65(1.65)tV=65(1.65)^{t} at time tt (years since 1975).

See Solution

Problem 4779

Differentiate the function: y=4x67xy=4x-6 \cdot 7^{x}.

See Solution

Problem 4780

Show that f(x)dx=12cos2(x)+C\int f(x) d x=\frac{-1}{2} \cos ^{2}(x)+C for f(x)=sin(x)cos(x)f(x)=\sin (x) \cos (x) using differentiation.

See Solution

Problem 4781

Find the population change rate in Slim Chance on January 1, 1993, using P=27000(0.94)tP=27000(0.94)^{t}.

See Solution

Problem 4782

Show that f(x)dx=12sin2(x)+C\int f(x) dx = \frac{1}{2} \sin^2(x) + C for f(x)=sin(x)cos(x)f(x) = \sin(x) \cos(x) using differentiation.

See Solution

Problem 4783

Calculate the derivative ddxsin(x)tan(x)et2dt\frac{d}{d x} \int_{\sin (x)}^{\tan (x)} e^{t^{2}} d t for x(π2,π2)x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right).

See Solution

Problem 4784

Given f(x)=sin(x)cos(x)f(x)=\sin (x) \cos (x), prove: a) f(x)dx=12sin2(x)+C\int f(x) dx=\frac{1}{2} \sin ^{2}(x)+C; b) f(x)dx=12cos2(x)+C\int f(x) dx=\frac{-1}{2} \cos ^{2}(x)+C.

See Solution

Problem 4785

Find the tangent line equation to y=f(x)y=f(x) at x=1x=1 for f(x)=4x36x+3f(x)=-4 x^{3}-6 x+3.

See Solution

Problem 4786

Find the tangent line equation at x=9x=9 for the function y=6xy=6 \sqrt{x}.

See Solution

Problem 4787

Find the tangent line equation for f(t)=24tf(t)= \frac{2}{4-t} at t=5t=-5.

See Solution

Problem 4788

Find the normal line to f(x)=ax27axf(x)=a x^{2}-7 a x at x=9x=9, where aa is a positive constant.

See Solution

Problem 4789

Given f(x)=sin(x)cos(x)f(x)=\sin (x) \cos (x), show both integrals yield the same result plus a constant.

See Solution

Problem 4790

Find the derivative of f(t)=24tf(t)=\frac{2}{4-t} at t=5t=-5 using the limit definition.

See Solution

Problem 4791

Find the value(s) of xx where the tangent line to f(x)=2x25xf(x)=2 x^{2}-5 x is parallel to 6x+2y=2-6 x+2 y=2.

See Solution

Problem 4792

Find points on the graph of y=f(x)y=f(x) with horizontal tangents for f(x)=5x4+x3f(x)=-5 x^{4}+x^{3}.

See Solution

Problem 4793

Find the difference quotient f(x)f(3)x3\frac{f(x)-f(3)}{x-3} for f(x)=5+5x5x2f(x)=5+5x-5x^{2} and simplify it as x3x \rightarrow 3.

See Solution

Problem 4794

Find the derivative of the function k(z)=4z+13k(z)=4z+13 at z=az=a using the limit definition. What is k(a)=?k^{\prime}(a)=?

See Solution

Problem 4795

Find the tangent line equation at (3,11)(3, 11) with slope 33.

See Solution

Problem 4796

Estimate the derivative of f(x)=2xf(x) = 2^x at points 0, 1, 2, and 3 using small increment h=0.000001h=0.000001.
a. Find f(0)f^{\prime}(0) to four decimal places. f(0)? f^{\prime}(0) \approx \text{?}
b. Find f(1)f^{\prime}(1), f(2)f^{\prime}(2), and f(3)f^{\prime}(3) to four decimal places. f(1)? f^{\prime}(1) \approx \text{?} f(2)? f^{\prime}(2) \approx \text{?} f(3)? f^{\prime}(3) \approx \text{?}

See Solution

Problem 4797

Set up a definite integral for the volume of the solid formed by rotating the area bounded by x=2y,x=0,y=9x=2 \sqrt{y}, x=0, y=9 around x=7x=7.

See Solution

Problem 4798

Find the derivative f(1)f^{\prime}(1) of the piecewise function f(x)=52x2f(x) = 5 - 2x^{2} for x>1x > 1 and f(x)=74xf(x) = 7 - 4x for x1x \leq 1. If not differentiable at c=1c=1, enter DNE.

See Solution

Problem 4799

Find the tangent line equation for f(x)=59+x2f(x)=\frac{5}{9+x^{2}} at x=3x=3. Use y=f(x)y=f(x) for the equation.

See Solution

Problem 4800

Find the instantaneous rate of change of the volume v=15+5512x3v=\frac{15+5 \sqrt{5}}{12} x^{3} of an icosahedron at x=ax=a. v(a)=v^{\prime}(a)=

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord