Calculus

Problem 6101

Find the derivative of f(x)=12e13x+2f(x)=\frac{1}{2} e^{\frac{1}{3} x+2} and simplify it.

See Solution

Problem 6102

Gegeben ist die Funktion f(x)=19(3x+2)3f(x)=\frac{1}{9}(3 x+2)^{3}. Bestimme die Steigung in P(2f(2))P(2 \mid f(2)), waagerechte Tangenten und Punkte mit 4545^{\circ} Steigungswinkel.

See Solution

Problem 6103

Bestimme die erste Ableitung von faf_{a} für die Funktionen: a) fa(x)=1ax2+axf_{a}(x)=\frac{1}{a} \cdot x^{2}+a x, b) fa(x)=acos(x)+af_{a}(x)=a \cdot \cos (x)+a, c) fa(x)=asin(x)+ax2f_{a}(x)=-a \cdot \sin (x)+a x^{2}.

See Solution

Problem 6104

Berechne die Ableitungen fa(x)f_{a}^{\prime}(x) und fa(21)(x)f_{a}^{(21)}(x) für die Funktionen: a) fa(x)=cos(ax)f_{a}(x)=\cos (a x), b) fa(x)=(ax+5)21f_{a}(x)=(a x+5)^{21}, c) fa(x)=sin(a2x)f_{a}(x)=\sin \left(-a^{2} x\right).

See Solution

Problem 6105

Bestimmen Sie die Ableitungen der folgenden Funktionen: a) f(x)=1(x1)3f(x)=\frac{1}{(x-1)^{3}}, b) f(x)=1(1x)3f(x)=\frac{1}{(1-x)^{3}}, c) f(x)=1(3x+2)2f(x)=\frac{1}{(3x+2)^{2}}, d) f(x)=13(x+2)2f(x)=\frac{1}{3}(x+2)^{-2}, e) f(x)=x+3f(x)=\sqrt{x+3}, f) f(t)=3t+1f(t)=\sqrt{3t+1}, g) f(x)=5x2+1f(x)=\sqrt{5x^{2}+1}, h) f(t)=2tf(t)=\sqrt{\frac{2}{t}}, i) f(x)=2cos(3x)f(x)=2\cos(3x), j) f(t)=sin(5t3+1)f(t)=\sin(5t^{3}+1), k) f(x)=cos(x)f(x)=\sqrt{\cos(x)}, l) f(t)=1sin(t)f(t)=\frac{1}{\sin(t)}.

See Solution

Problem 6106

Find the total displacement of an object from a mountain-shaped velocity vs. time graph.

See Solution

Problem 6107

Zeichnen Sie im Intervall [2;2][-2 ; 2] den Graphen einer Funktion ff für folgende Integrale: a) 00, b) 22, c) 4-4, d) π\pi.

See Solution

Problem 6108

Find the tangent lines at x=2x=2 for: a. y=f(x)+g(x)y=f(x)+g(x), b. y=f(x)3g(x)y=f(x)-3g(x), c. y=2f(x)y=2f(x) given tangents.

See Solution

Problem 6109

Find the tangent line equations at x=4x=4 for: a. y=f(x)+g(x)y=f(x)+g(x) b. y=f(x)2g(x)y=f(x)-2g(x) c. y=3f(x)y=3f(x) Given: f(4)=3f'(4)=3 and g(4)=3g'(4)=3.

See Solution

Problem 6110

Leiten Sie die folgenden Funktionen ab, nutzen Sie die Produktregel oder formen Sie sie um: a) f(x)=x(x+1)2f(x)=\sqrt{x} \cdot(x+1)^{2} b) f(x)=(x+2)3xf(x)=(x+2)^{3} \cdot x c) f(x)=1x(x4+3x2)f(x)=\frac{1}{x} \cdot\left(x^{4}+3 x^{2}\right)

See Solution

Problem 6111

Berechne die Ableitung mit Produkt- und Kettenregel, dann umformen und mit Potenz- und Summenregel ableiten für: a) f(x)=(5x)(3+x)f(x)=(5-x) \cdot(3+x) b) g(x)=3x(0,5x+1)2g(x)=3 x \cdot(0,5 x+1)^{2} c) h(x)=1x(x2+5x)h(x)=\frac{1}{x} \cdot\left(x^{2}+5 x\right)

See Solution

Problem 6112

Zeigen Sie, dass für b>0b > 0 gilt: 0bx3dx=14b4\int_{0}^{b} x^{3} dx = \frac{1}{4} b^{4}. Hinweis: 03+13++(n1)3=14(n1)2n20^{3}+1^{3}+\ldots+(n-1)^{3}=\frac{1}{4}(n-1)^{2}n^{2}.

See Solution

Problem 6113

The student claims the derivative of x2x^{2} is 2x2 x^{\prime}. Identify the mistake and provide the correct derivative.

See Solution

Problem 6114

Check if Rolle's theorem applies to g(x)=8x43x2g(x)=8 x^{4}-3 x^{2} on [3,3][-3,3] and find values cc that satisfy it.

See Solution

Problem 6115

Check if Rolle's Theorem applies to f(x)=2sin(2x)f(x)=2 \sin (2 x) on [0,2π][0,2 \pi] and find all cc satisfying it.

See Solution

Problem 6116

Check if f(x)=2x2xf(x)=2 \sqrt{x}-2 x meets the Mean Value Theorem on [4,25][4,25] and find cc values.

See Solution

Problem 6117

Check if Rolle's theorem applies to g(x)=8x43x2g(x)=8 x^{4}-3 x^{2} on [3,3][-3,3] and find values cc that satisfy it.

See Solution

Problem 6118

Leite die Funktion f(x)=23x3+3x2+4xf(x)=\frac{2}{3} x^{3}+3 x^{2}+4 x ab.

See Solution

Problem 6119

Find local extrema of Q(x)=(x2)(x4)(x5)+7Q(x)=(x-2)(x-4)(x-5)+7 by deriving, setting to zero, and analyzing intervals. Graph Q(x)Q(x).

See Solution

Problem 6120

Bestimmen Sie den Gesamtinhalt AA zwischen f(x)=16x432x2f(x)=\frac{1}{6} x^{4}-\frac{3}{2} x^{2} und der x-Achse im Intervall I=[3;3,5]I=[-3 ; 3,5].

See Solution

Problem 6121

Rabbit population on an island is given by P(t)=140t0.3t4+1000P(t)=140t-0.3t^{4}+1000. Find max population and when it disappears.

See Solution

Problem 6122

Bestimme den Gesamtinhalt AA zwischen f(x)=x33xf(x) = x^3 - 3x und der x-Achse im Intervall I=[2,2.5]I = [-2, 2.5].

See Solution

Problem 6123

Berechnen Sie die Steigung der Funktion an den angegebenen Stellen: a) f(x)=x2,x0=2f(x)=x^{2}, x_{0}=2 b) f(x)=3x2,x0=1f(x)=-3 x^{2}, x_{0}=1 d) f(x)=x,x0=2f(x)=\sqrt{x}, x_{0}=2 e) f(x)=2x2+3x,x0=3f(x)=2 x^{2}+3 x, x_{0}=3.

See Solution

Problem 6124

Berechne die Ableitung von f(x)=xf(x)=\sqrt{x} bei x0=2x_{0}=2.

See Solution

Problem 6125

Gegeben ist die Funktion f(x)=x32x2x+2f(x)=x^3-2x^2-x+2. Finde die Nullstellen, berechne die Fläche unter ff und das Integral von 1-1 bis 22.

See Solution

Problem 6126

Calculate the integral: (ax2+6x)dx\int (a x^{2} + 6 x) \, dx.

See Solution

Problem 6127

Untersuchen Sie die Wendepunkte der Funktionen und skizzieren Sie die Graphen: a) f(x)=12x332x2f(x)=\frac{1}{2} x^{3}-\frac{3}{2} x^{2} für 1,5x3,5-1,5 \leq x \leq 3,5 b) f(x)=18x54f(x)=\frac{1}{8} x^{5}-4 für 2x2-2 \leq x \leq 2

See Solution

Problem 6128

Find dydx\frac{d y}{d x} given the equation xy=x+x21x y = x + x^{2} - 1.

See Solution

Problem 6129

Find the limit: limx(x33x23x)\lim _{x \rightarrow \infty}\left(\sqrt[3]{x^{3}-3 x^{2}}-x\right).

See Solution

Problem 6130

Question 1: Given Y=ZK+BNY=Z K+B N, find output per worker yy in terms of capital per worker kk, and determine the marginal and average product of kk. Also, derive the dynamic equation of kk considering growth rate nn and depreciation rate dd.

See Solution

Problem 6131

Find f(a)f^{\prime}(a) for f(x)=x3f(x)=\sqrt[3]{x} using the limit definition. Show f(0)f^{\prime}(0) doesn't exist.

See Solution

Problem 6132

Find the slope of the graph of f(x)=65x2f(x)=-6-5 x^{2} at the point (4,86)(4,-86). If it doesn't exist, enter 'DNE'.

See Solution

Problem 6133

Derive the dynamic equation of capital kk from the production function Y=ZK+BNY=Z K+B N with growth rates nn and dd.

See Solution

Problem 6134

Find f(a)f^{\prime}(a) for f(x)=x3f(x)=\sqrt[3]{x} using f(a)=limh0f(a+h)f(a)hf^{\prime}(a)=\lim_{h \to 0} \frac{f(a+h)-f(a)}{h}, a0a \neq 0.

See Solution

Problem 6135

Find the slope of f(x)=65x2f(x)=-6-5 x^{2} at the point (4,86)(4,-86). If no slope, enter 'DNE'.

See Solution

Problem 6136

Find the derivative f(0)f^{\prime}(0) by calculating the left limit limx0\lim _{x \rightarrow 0^{-}} \square and right limit limx0+\lim _{x \rightarrow 0^{+}} \square.

See Solution

Problem 6137

Find the tangent line equation for f(x)=xf(x) = \sqrt{x} at (1,1)(1,1) and graph both using a utility.

See Solution

Problem 6138

Find the equations of the tangent lines to f(x)=x2f(x)=x^{2} that pass through (1,3)(1,-3). Negative slope: y=y=, Positive slope: y=y=.

See Solution

Problem 6139

Find the derivative drdθ\frac{d r}{d \theta} for the function r=sinθtanθr=\sin \theta \tan \theta.

See Solution

Problem 6140

Given the production function Y=ZK+BNY=Z K+B N, find output per worker yy as a function of capital per worker kk, and determine the marginal and average product of kk. Also, derive the dynamic equation of kk and state conditions for steady state and endogenous growth.

See Solution

Problem 6141

Given the production function Y=ZK+BNY=Z K+B N, find output per worker yy in terms of kk, and determine the marginal and average products. Then derive the dynamic equation for kk and state conditions for steady state and endogenous growth.

See Solution

Problem 6142

Given the function Y=ZK+BNY=Z K+B N, find output per worker yy as a function of capital per worker kk. Determine marginal and average products of kk. Then, derive the motion equation of kk and discuss conditions for steady state vs. endogenous growth.

See Solution

Problem 6143

A ball falls from OO to PP (20 m down) and bounces on a 5050^{\circ} incline. Find its speed at impact and time to QQ.

See Solution

Problem 6144

Find the derivative yy', given the function y=x2y=x^{2} at the point (2,4)(2,4).

See Solution

Problem 6145

Find the derivative of the function y=67x4y=\frac{6}{7 x^{4}} and simplify your answer.

See Solution

Problem 6146

Estimate the slope of the tangent line to y=x2/3y=x^{2/3} at (1,1) and verify it analytically. Find yy'.

See Solution

Problem 6147

Given the production function Y=ZK+BNY=Z K+B N, find output per worker yy as a function of capital per worker kk, and determine marginal and average products. Also, derive the dynamic equation of kk, conditions for steady state vs. endogenous growth, and analyze growth rates over time. Finally, calculate long-run growth rate of output per worker with s=0.4,Z=1,B=2,d=0.08s=0.4, Z=1, B=2, d=0.08, and n=0.02n=0.02, and compare with B=5B=5.

See Solution

Problem 6148

Find the tangent line equation for the function f(x)=8x4+11x23f(x)=-8 x^{4}+11 x^{2}-3 at the point (1,0)(1,0). y=y=

See Solution

Problem 6149

Find the derivative of the function f(x)=x10x3f(x)=\sqrt{x}-10 \sqrt[3]{x}. What is f(x)f^{\prime}(x)?

See Solution

Problem 6150

Find the derivative of f(x)=2x3+6x2xf(x) = \frac{2x^3 + 6x^2}{x}.

See Solution

Problem 6151

Find the slope of f(x)=3(2x)2f(x)=3(2-x)^{2} at the point (7,75) using a graphing utility. Calculate f(7)f^{\prime}(7).

See Solution

Problem 6152

Find the integral of x3exx^{3} e^{x} with respect to xx.

See Solution

Problem 6153

Find the integral of e2xsin(3x)e^{2 x} \sin (3 x) with respect to xx.

See Solution

Problem 6154

Find the integral of sin4x\sin^{4} x with respect to xx: sin4xdx\int \sin^{4} x \, dx.

See Solution

Problem 6155

Calculate the integral sin(4x)cos(5x)dx\int \sin (4 x) \cos (5 x) d x.

See Solution

Problem 6156

Evaluate the integral: exex5+4exdx\int \frac{e^{-x}}{e^{x}-5+4 e^{-x}} d x

See Solution

Problem 6157

Calculate the integral 4x23x+24x24x+3dx\int \frac{4 x^{2}-3 x+2}{4 x^{2}-4 x+3} d x.

See Solution

Problem 6158

Evaluate the integral: x32xx2dx\int \frac{x}{\sqrt{3-2 x-x^{2}}} d x

See Solution

Problem 6159

Determine if the following integrals are convergent or divergent: (i) 0+ex2dx\int_{0}^{+\infty} e^{-x^{2}} d x, (ii) 0+4x(9+x)dx\int_{0}^{+\infty} \frac{4}{\sqrt{x}(9+x)} d x.

See Solution

Problem 6160

Prove that f(x)=0111+(tx)3dtf(x)=\int_{0}^{1} \frac{1}{1+(t x)^{3}} dt is continuous at zero: show limx0+f(x)=f(0)\lim_{x \to 0^{+}} f(x)=f(0).

See Solution

Problem 6161

Calculate I0I_{0}, show (2n+1)In=22nIn1(2n+1)I_{n}=\sqrt{2}-2nI_{n-1}, and find I1I_{1} and I2I_{2}.

See Solution

Problem 6162

Find the limit: limx0+(1+sin(4x))cotx\lim _{x \rightarrow 0^{+}}(1+\sin (4 x))^{\cot x}.

See Solution

Problem 6163

Find the derivative of f(t)=ln(t4+7)f(t) = \ln(t^4 + 7). What is f(t)f'(t)?

See Solution

Problem 6164

Find the derivative dy/dxd y / d x for y=exx2+1y=e^{x} \sqrt{x^{2}+1}. What is dydx=\frac{d y}{d x}=?

See Solution

Problem 6165

Find the derivative of the function f(x)=6tan1(6ex)f(x)=6 \tan^{-1}(6 e^{x}). What is f(x)f^{\prime}(x)?

See Solution

Problem 6166

Find the derivative of q(r)=4r2r+3q(r) = \frac{4 r}{2 r + 3}. Simplify first if helpful. What is q(r)q^{\prime}(r)?

See Solution

Problem 6167

Find the derivative of f(x)=πcosxf(x)=\pi^{\cos x}. What is f(x)f^{\prime}(x)?

See Solution

Problem 6168

Determine if I'Hôspital's rule applies to evaluate the limit: limx1x2+6x+5x2+x\lim _{x \rightarrow-1} \frac{x^{2}+6 x+5}{x^{2}+x}.

See Solution

Problem 6169

Determine if l'Hôpital's rule applies to evaluate the limit: limx9x2+10x18x25x\lim _{x \rightarrow-\infty} \frac{9 x^{2}+10 x-1}{8 x^{2}-5 x}

See Solution

Problem 6170

Find the derivative of h(t)=40016t2h(t)=400-16 t^{2} at (3,256)(3,256) and explain the falling speed of the bundle.

See Solution

Problem 6171

Evaluate limx1x22x+1x2x\lim _{x \rightarrow 1} \frac{x^{2}-2 x+1}{x^{2}-x} using l'Hospital's rule if applicable.

See Solution

Problem 6172

Find the derivative of the function f(t)=1t3(cott+5)f(t)=\frac{1}{t^{3}}(\cot t+5). What is f(t)f^{\prime}(t)?

See Solution

Problem 6173

Find the rate of growth of the area A(t)=π(70+6t)2A(t)=\pi(70+6t)^{2} one hour after spotting the oil slick. Express as a derivative.

See Solution

Problem 6174

Find the slope of the tangent to g(x)=3x4g(x) = 3x^4 at the point (2,48)(-2, 48) using g(2)g^{\prime}(-2).

See Solution

Problem 6175

Solve the differential equation: y2yx=x2cosxy' - \frac{2y}{x} = x^2 \cos x.

See Solution

Problem 6176

Find the derivative of the function s(x)=(3x62x+2)3s(x)=\left(\frac{3 x-6}{2 x+2}\right)^{3}.

See Solution

Problem 6177

Differentiate the function y=9π+2x2+1y=\frac{9}{\pi}+\frac{2}{x^{2}+1} with respect to xx.

See Solution

Problem 6178

Find xx where the derivative f(x)=0f^{\prime}(x)=0 for f(x)=xx2+9f(x)=\frac{x}{x^{2}+9}.

See Solution

Problem 6179

Find the tangent line equation to ff at x=2x=2, where f(x)=x67x5f(x)=\frac{x-6}{7x-5}.

See Solution

Problem 6180

Find the rate of fish production change at time t=7t=7 months, given Q(K)=107K1/3Q(K)=107 K^{1/3} and K(t)=0.5t2+300t+501K(t)=0.5 t^2 + 300 t + 501.

See Solution

Problem 6181

Find the derivative of h(x)=(3.1x3)21(3.1x3)2h(x)=(3.1 x-3)^{2}-\frac{1}{(3.1 x-3)^{2}}. What is h(x)h^{\prime}(x)?

See Solution

Problem 6182

Find the derivative h(x)h^{\prime}(x) for the function h(x)=f(x)x15h(x)=\frac{f(x)}{x^{15}}.

See Solution

Problem 6183

Find the rate of change of f(t)=88t99t88f(t)=\frac{88 t}{99 t-88} after 1 hour. Round to the nearest integer.

See Solution

Problem 6184

Estimate the cost of manufacturing 71 bicycles if C(70)=9000C(70)=9000 and C(70)=95C^{\prime}(70)=95. Cost is approximately \$\square.

See Solution

Problem 6185

Estimate the cost of manufacturing 61 bicycles if C(60)=4000C(60)=4000 and C(60)=45C^{\prime}(60)=45. The cost is approximately \$ \square.

See Solution

Problem 6186

Find the marginal cost for the function C(x)=15,000+30x+1,000xC(x)=15,000+30x+\frac{1,000}{x} at production level x=100x=100. Units: dollars.

See Solution

Problem 6187

Find xx where the derivative f(x)=0f^{\prime}(x)=0 for f(x)=xx2+49f(x)=\frac{x}{x^{2}+49}. What are the values of xx?

See Solution

Problem 6188

Find the marginal cost, revenue, and profit from C(x)=3xC(x)=3x and R(x)=8x0.001x2R(x)=8x-0.001x^2. Where is marginal profit zero? x=x=

See Solution

Problem 6189

Solve the equation: dydxcosx+ycosx=2cosx\frac{d y}{d x} \cos x + \frac{y}{\cos x} = \frac{2}{\cos x}.

See Solution

Problem 6190

Find dxdt\frac{d x}{d t} at x=3x=-3 given y=3x24y=-3 x^{2}-4 and dydt=1\frac{d y}{d t}=-1. What is dxdt\frac{d x}{d t}?

See Solution

Problem 6191

Airing xx commercials costs C(x)=20+5,000x+0.04x2C(x)=20+5,000x+0.04x^{2}.
(a) Find C(x)C^{\prime}(x) and estimate cost increase at x=4x=4.
(b) Find Cˉ(x)\bar{C}(x) and evaluate Cˉ(4)\bar{C}(4).

See Solution

Problem 6192

Find the marginal cost function C(x)C'(x) for C(x)=20+5,000x+0.04x2C(x)=20+5,000x+0.04x^2. Estimate cost increase at x=4x=4 and compare with exact cost of fifth commercial. Find average cost function Cˉ\bar{C} and evaluate Cˉ(4)\bar{C}(4). What does this tell you about the average cost?

See Solution

Problem 6193

A snowball's radius decreases at 0.1 cm/min0.1 \mathrm{~cm} / \mathrm{min}. Find the volume decrease rate when radius is 17 cm17 \mathrm{~cm}. Use V=43πr3V=\frac{4}{3} \pi r^{3}.

See Solution

Problem 6194

Cost to produce xx servings: C(x)=350+0.10x+0.002x2C(x)=350+0.10 x+0.002 x^{2}. Revenue from xx servings: R(x)=1.1xR(x)= 1.1x.
(a) Find R(x)R^{\prime}(x) and P(x)P^{\prime}(x).
(b) Compute revenue, profit, marginal revenue, and profit for 200 servings (in \$). Interpret results.
(c) When is marginal profit zero? Interpret.

See Solution

Problem 6195

Evaluate the integral from 1 to 2: 12x5x31dx\int_{1}^{2} x^{5} \sqrt{x^{3}-1} \, dx

See Solution

Problem 6196

Calculate the average rate of change of f(x)=5x23f(x)=5 x^{2}-3 from x=1x=1 to x=bx=b. Express your answer in terms of bb.

See Solution

Problem 6197

Find the max rate of change of f(x,y)=ln(x2+y2)f(x, y)=\ln(x^{2}+y^{2}) at (5,4)(5,4) and the direction (unit vector) it occurs.

See Solution

Problem 6198

Find the rate of change of f(x,y)=4xy+y2f(x, y)=4xy+y^{2} at (4,1)(4,1) in the direction v=2i2j\vec{v}=-2i-2j. Also, determine the direction and maximum rate of change.

See Solution

Problem 6199

Find the rate at which the distance between Joe and Dave's cars is decreasing when Joe is 0.4 km0.4 \mathrm{~km} and Dave is 0.3 km0.3 \mathrm{~km} from the intersection.

See Solution

Problem 6200

At 1:00 p.m., ship A is 80 km south of ship B. A sails north at 30 km/h and B east at 40 km/h. Find distance change rate at 3:00 p.m.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord