Calculus

Problem 12101

La courbe C\mathscr{C} représente l'audience d'une chaîne de TV de 2000 à 2019. Estimez les téléspectateurs le 1er janvier 2014 et calculez f(0)f^{\prime}(0) pour la tangente (AB)(AB) avec A(0;460)A(0 ; 460) et B(3;82)B(3 ; 82).

See Solution

Problem 12102

Find the value of cc such that f(π3)=6f'( \frac{\pi}{3} ) = 6 for f(x)=cln(sin(x))f(x) = c \ln(\sin(x)).

See Solution

Problem 12103

Find the Jacobian (x,y,z)(s,t,u)\frac{\partial(x, y, z)}{\partial(s, t, u)} for x=5t4s+3ux=5t-4s+3u, y=5s4t4uy=5s-4t-4u, z=2s5t4uz=2s-5t-4u.

See Solution

Problem 12104

Analyze the function f(x)=x218x2+18f(x)=\frac{x^{2}-18}{x^{2}+18}: find xx-intercepts, asymptotes, extrema, concavity, and sketch the graph.

See Solution

Problem 12105

Find the derivatives of 182x218 \sqrt{2x^{2}} and 612x261 \sqrt{2x^{2}}.

See Solution

Problem 12106

Check if the function f(x)f(x) is continuous at x=5x=5 for f(x)={x+20if x5x2if x<5f(x)=\begin{cases} x+20 & \text{if } x \geq 5 \\ x^2 & \text{if } x<5 \end{cases}.

See Solution

Problem 12107

Bestimme die Ableitung von 182x218 \sqrt{2 x^{2}}.

See Solution

Problem 12108

Find the first derivative of the function f(x)=x5/3ln(x)f(x) = x^{5/3} \ln(x).

See Solution

Problem 12109

Bestimme die Ableitung von f(x)=2x2f(x) = \sqrt{2 x^{2}}.

See Solution

Problem 12110

Find the limits: limxx218x2+18\lim_{x \rightarrow \infty} \frac{x^{2}-18}{x^{2}+18} and limxx218x2+18\lim_{x \rightarrow -\infty} \frac{x^{2}-18}{x^{2}+18}.

See Solution

Problem 12111

Untersuchen Sie die Umsatzfunktion U(t)=18t3+2t2U(t)=-\frac{1}{8} t^{3}+2 t^{2}: Maximum finden und prüfen, wann U(t)U(t) unter 40\% des Maximalumsatzes fällt.

See Solution

Problem 12112

Find the derivative of f(x)=9ln(x)xf(x)=\frac{9 \ln (x)}{x} at x=ex=e.

See Solution

Problem 12113

Find the derivative of yy with respect to tt for y=e(11cost+lnt)y=e^{(11 \cos t+\ln t)}. What is dydt\frac{\mathrm{dy}}{\mathrm{dt}}?

See Solution

Problem 12114

A volcano cone is 40m tall and 80m wide. If height increases by 0.5m/day, find volume change rate in m³/day.

See Solution

Problem 12115

Find the limits: limxx218x2+18=\lim _{x \rightarrow \infty} \frac{x^{2}-18}{x^{2}+18}=\square and limxx218x2+18=\lim _{x \rightarrow -\infty} \frac{x^{2}-18}{x^{2}+18}=\square.

See Solution

Problem 12116

Find the derivative of yy with respect to tt for y=e(9sint+lnt)y=e^{(9 \sin t+\ln t)}.

See Solution

Problem 12117

A volcanic cone with width 80m and height 40m grows at 0.5m/day (height) and 0.6m/day (width). Find its volume increase rate. Volume = 2000πm3/day2000 \pi \, m^{3} / \text{day}.

See Solution

Problem 12118

Find the derivative of yy with respect to xx for y=ln(x16)y=\ln(x^{16}).

See Solution

Problem 12119

Find the derivative of y=t(ln8t)2y = t(\ln 8 t)^{2} with respect to tt.

See Solution

Problem 12120

Untersuchen Sie die Berührungspunkte der Balken mit einer Funktion für Untersumme und Obersumme. Wo liegt die Differenz?

See Solution

Problem 12121

Find zeros of f(x)=cos(2x)f(x)=\cos(2x) using Newton's Method with x1=1.4x_1=1.4 and x1=1.5x_1=1.5. Explain convergence with a diagram.

See Solution

Problem 12122

Find the rate of volume change for a sphere with radius 1 m1 \mathrm{~m} dissolving at 3 cm/hour3 \mathrm{~cm}/\text{hour}.

See Solution

Problem 12123

Find the tangent line equation y=mx+by=m x+b for f(x)=9sinx2sinx+6cosxf(x)=\frac{9 \sin x}{2 \sin x+6 \cos x} at a=π6a=\frac{\pi}{6}.

See Solution

Problem 12124

Find the relative rate of change of yy at x=7x=7 for the function xx+5\frac{x}{x+5}.

See Solution

Problem 12125

Find the derivative of y=(x24)5(3x+5)4y=\left(x^{2}-4\right)^{5}(3x+5)^{4}.

See Solution

Problem 12126

Find the derivative of the function s(x)=4x+6s(x)=4x+6 using f(x)=limh0f(x+h)f(x)hf^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}. What is s(x)=s^{\prime}(x)=\square?

See Solution

Problem 12127

Untersuchen Sie, ob die mittlere Steigung von h(x)=x(x1)(x3)h(x)=x(x-1)(x-3) im Intervall [0,50,5][-0,5 \mid 0,5] mehr als 10%10\% von der Änderungsrate bei x0=0x_{0}=0 abweicht.

See Solution

Problem 12128

Find the relative rate of change of yy at x=7x=7 for the function xx+5\frac{x}{x+5}. Answer: \square

See Solution

Problem 12129

Find the marginal-cost function for the total-cost function c=9q2q+2+5000c=\frac{9 q^{2}}{q+2}+5000.

See Solution

Problem 12130

Find the marginal-cost function for the total-cost function c=8q2q2+2+5000c=\frac{8 q^{2}}{\sqrt{q^{2}+2}}+5000.

See Solution

Problem 12131

Find the critical numbers for the function f(θ)=2secθ+tanθf(\theta)=2 \sec \theta+\tan \theta in the interval 0<θ<2π0<\theta<2 \pi.

See Solution

Problem 12132

Find the derivative j(x)j^{\prime}(x) for j(x)=g(x)f(x)j(x)=\frac{g(x)}{f(x)} at x=1x=1, x=2x=2, and x=3x=3. Use a graph for guidance.

See Solution

Problem 12133

Find the limit as xx approaches -13 for the expression 12x225x+13\frac{12-\sqrt{x^{2}-25}}{x+13}.

See Solution

Problem 12134

Find the difference quotient f(a+h)f(a)h\frac{f(a+h)-f(a)}{h} and the limit limh0f(a+h)f(a)h\lim_{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} for f(x)=6x1f(x)=-6x-1.

See Solution

Problem 12135

Find the expression that makes this equation true: ddx(8x+7)5=5(8x+7)4?\frac{d}{d x}(8 x+7)^{5}=5(8 x+7)^{4} ? The missing part is \square.

See Solution

Problem 12136

Untersuchen Sie das Verhalten von f(x)=4x1xf(x)=\frac{4 x-1}{x} für xx \to \infty und xx \to -\infty durch Termvereinfachung.

See Solution

Problem 12137

Find the limit as xx approaches -13 for 12x225x+13\frac{12-\sqrt{x^{2}-25}}{x+13}. What is the answer?

See Solution

Problem 12138

Find the expression for ? that makes this equation true: ddx(3x+8)4=4(3x+8)3?\frac{d}{d x}(3 x+8)^{4}=4(3 x+8)^{3} ?

See Solution

Problem 12139

Use Newton's method to find the zero of f(x)=Tan1xf(x)=\operatorname{Tan}^{-1} x. Show convergence for small x1x_1 and divergence for large x1x_1. Find the transition value where approximations alternate.

See Solution

Problem 12140

Find the missing expression in the equation: ddx(56x2)7=7(56x2)6?\frac{d}{d x}\left(5-6 x^{2}\right)^{7}=7\left(5-6 x^{2}\right)^{6} ?

See Solution

Problem 12141

Find the limit as xx approaches -10 for the expression 9x219x+10\frac{9-\sqrt{x^{2}-19}}{x+10}.

See Solution

Problem 12142

Find the expression for ? to make the equation valid: ddxln(x3+8)=1x3+8?\frac{d}{d x} \ln \left(x^{3}+8\right)=\frac{1}{x^{3}+8} ? The missing expression is \square.

See Solution

Problem 12143

Find the missing expression in the equation: ddxex7+4=ex7+4?\frac{\mathrm{d}}{\mathrm{dx}} e^{\mathrm{x}^{7}+4}=e^{\mathrm{x}^{7}+4} ? The missing expression is \square.

See Solution

Problem 12144

Find the derivative f(x)f^{\prime}(x) of the function f(x)=(57x)15f(x)=(5-7 x)^{15}.

See Solution

Problem 12145

Find the rate of change of the volume VV of a ball with respect to its radius rr when r=10 mr=10 \mathrm{~m}. Use V=43πr3V=\frac{4}{3} \pi r^{3}. Provide the answer in terms of π\pi.

See Solution

Problem 12146

Find the derivative f(x)f^{\prime}(x) of the function f(x)=e14xf(x)=e^{14 x}. What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 12147

Find the derivative f(x)f^{\prime}(x) for the function f(x)=(x6+8)4f(x)=(x^{6}+8)^{-4}.

See Solution

Problem 12148

Find the marginal-cost function for c(q)=19q210q+5c(q)=19 q^{2}-10 q+5 and calculate it at q=2q=2, q=7q=7, and q=16q=16.

See Solution

Problem 12149

Find the derivative of the function f(x)=(4+lnx)7f(x)=(4+\ln x)^{7}. What is f(x)f^{\prime}(x)?

See Solution

Problem 12150

Find the rate of change of volume VV with respect to radius rr at r=2.5 mr=2.5 \mathrm{~m} for V=43πr3V=\frac{4}{3} \pi r^{3}.

See Solution

Problem 12151

Find the marginal-cost function for C(x)=0.05x3+0.4x2+40x+120C(x)=0.05 x^{3}+0.4 x^{2}+40 x+120 at x=1000x=1000. What is C(1000)C^{\prime}(1000)?

See Solution

Problem 12152

Find the derivative of f(x)=88x2+7f(x)=8 \sqrt{8 x^{2}+7}. What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 12153

Find the derivative of the function f(x)=6e2xf(x)=6 e^{-2 x}. What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 12154

Find the limit of f(x)=x+1x2+4f(x)=\frac{x+1}{x^{2}+4} as xx \rightarrow \infty.

See Solution

Problem 12155

Find the derivative of the function f(x)=8ln(1+8x2)f(x)=8 \ln(1+8 x^{2}). What is f(x)f^{\prime}(x)?

See Solution

Problem 12156

Find the marginal-revenue function for r=239q+35q22q3r=239q+35q^{2}-2q^{3} and evaluate it at q=10q=10, q=15q=15, q=20q=20.

See Solution

Problem 12157

Find f(x)f^{\prime}(x), the tangent line at x=2x=2 for f(x)=(12x8)1/2f(x)=(12 x-8)^{1/2}, and where the tangent is horizontal.

See Solution

Problem 12158

Find the average cost per appliance for the first 130 appliances using c(q)=1400+110q0.3q2c(q)=1400+110q-0.3q^{2} and the marginal cost at q=130q=130.

See Solution

Problem 12159

Find the slope of y=7xy=\sqrt{7 x} at (7,7) and the equation of the tangent line at that point.

See Solution

Problem 12160

Find f(x)f^{\prime}(x) and the tangent line equation at x=0x=0 for f(x)=7ex23x+7f(x)=7 e^{x^{2}-3 x+7}. Where is the tangent horizontal?

See Solution

Problem 12161

Find the second derivative of y=4t3+3t2y=4 t^{-3}+3 t^{2} at t=1t=1.

See Solution

Problem 12162

Find f(3)f^{\prime \prime \prime}(-3) for the function f(x)=4exx3f(x)=4 e^{x}-x^{3}.

See Solution

Problem 12163

Find the derivative of 6(t2+9t)36(t^{2}+9t)^{-3}. What is ddt6(t2+9t)3=\frac{d}{dt} 6(t^{2}+9t)^{-3} = \square?

See Solution

Problem 12164

Find the derivative yy^{\prime} if y=ln(x2+1)3/2y=\ln \left(x^{2}+1\right)^{3 / 2}. What is y=?y^{\prime}=?

See Solution

Problem 12165

Find the marginal-revenue function for the demand equation p=9q+44q+9p=\frac{9 q+4}{4 q+9}, where revenue =pq=p q.

See Solution

Problem 12166

Find the derivative of y=4(2x3+5)6y=\frac{-4}{(2 x^{3}+5)^{6}}. What is dydx=\frac{d y}{d x}=\square?

See Solution

Problem 12167

Find the derivative g(x)g^{\prime}(x) of the function g(x)=4xg(x)=\sqrt{4 x}.

See Solution

Problem 12168

Differentiate the function y=4x19x+8y=\frac{4x-1}{9x+8}.

See Solution

Problem 12169

Find the marginal-revenue function for the demand equation p=800.03qp=80-0.03 q, where revenue =pq=p q.

See Solution

Problem 12170

Find the limit: limx33x227x3\lim _{x \rightarrow 3} \frac{3 x^{2}-27}{x-3}.

See Solution

Problem 12171

Given the demand equation p=300q2+30p=300-\sqrt{q^{2}+30}, find: (a) dpdq\frac{dp}{dq}, (b) dp/dqp\frac{dp/dq}{p}, (c) drdq\frac{dr}{dq}.

See Solution

Problem 12172

Find the rate of change of income y=7x7/2+5800y=7x^{7/2}+5800 with respect to education years xx. Evaluate at x=11x=11.

See Solution

Problem 12173

Find the derivative using the quotient rule for y=x25x+3x2+9y=\frac{x^{2}-5 x+3}{x^{2}+9}. What is dydx=\frac{d y}{d x}=\square?

See Solution

Problem 12174

Find the slope of y=6xy=\sqrt{6x} at the point (6,6)(6,6) and the equation of the tangent line there.

See Solution

Problem 12175

Find the rate of change of c=0.9q2+3.8q+4c=0.9 q^{2}+3.8 q+4 at q=14q=14 and its percentage rate of change.

See Solution

Problem 12176

Find the derivative yy^{\prime} for the function y=ln(x8+3)3/2y=\ln \left(x^{8}+3\right)^{3 / 2}.

See Solution

Problem 12177

Find f(x)f^{\prime}(x) and the tangent line equation at x=2x=2 for f(x)=x(4x)3f(x)=x(4-x)^{3}.

See Solution

Problem 12178

Differentiate the function: y=(6x27)(3x28x+3)y=(6 x^{2}-7)(3 x^{2}-8 x+3)

See Solution

Problem 12179

Find the limit: limxx0x2x02xx0\lim _{x \rightarrow x_{0}} \frac{x^{2}-x_{0}^{2}}{x-x_{0}}.

See Solution

Problem 12180

Find the marginal-revenue function for the demand equation p=3q+44q+1p=\frac{3 q+4}{4 q+1}, where revenue =pq=p q.

See Solution

Problem 12181

Bestimme die Ableitung von f(x)=3ln(x+1)f(x)=-3 \cdot \sqrt{\ln (x+1)}. Was ist f(x)f^{\prime}(x)?

See Solution

Problem 12182

Find the derivative using the quotient rule for y=x22x+1x2+4y=\frac{x^{2}-2 x+1}{x^{2}+4}. What is dydx=\frac{d y}{d x}=\square?

See Solution

Problem 12183

Find the limit of the sequence {anbn+2cn}\left\{\frac{a_{n}}{b_{n}}+2 c_{n}\right\} given that limnan=6\lim _{n \rightarrow \infty}a_{n}=6, limnbn=1\lim _{n \rightarrow \infty}b_{n}=-1, and limncn=3\lim _{n \rightarrow \infty}c_{n}=3.

See Solution

Problem 12184

Find the surface area of the solid formed by rotating f(x)=ln(x)f(x)=\ln(x) for x[1,3]x \in [1,3] about the xx-axis.

See Solution

Problem 12185

1. A 67 kg snowboarder starts at a 22 m hill with an initial speed of 15 m/s. (a) Find mechanical energy at the top. (b) Find speed midway and at the bottom. (c) Explain the energy transformation down the hill.

See Solution

Problem 12186

Find the difference quotient and limit for f(x)=6x7f(x)=6x-7: a. f(a+h)f(a)h=\frac{f(a+h)-f(a)}{h}=\square, b. limh0f(a+h)f(a)h=\lim_{h \to 0} \frac{f(a+h)-f(a)}{h}=\square.

See Solution

Problem 12187

Find the limits: a) limx01x2\lim_{x \to 0} \frac{1}{x^2}, b) limx2x\lim_{x \to -\infty} 2^x, c) limx01x\lim_{x \to 0} \frac{1}{\sqrt{x}} for x>0x > 0.

See Solution

Problem 12188

Given the demand equation p=200q2+20p=200-\sqrt{q^{2}+20}, find: (a) the rate of change of pp with qq, (b) the relative rate of change, (c) the marginal-revenue function.

See Solution

Problem 12189

Find the tangent line equation for f(x)=x26f(x)=x^{2}-6 at the point (4,10)(-4,10).

See Solution

Problem 12190

Find the relative rate of change of yy for y=xx+6y=\frac{x}{x+6} at x=4x=4. The answer is \square.

See Solution

Problem 12191

Find the tangent line equation for f(x)=x27f(x)=x^{2}-7 at the point (4,9)(-4,9). y=y=\square

See Solution

Problem 12192

Find the cost function C(x)=5+2x+36C(x)=5+\sqrt{2x+36} for 0x500 \leq x \leq 50. Given C(32)=110C^{\prime}(32)=\frac{1}{10}, interpret the result. A or B?

See Solution

Problem 12193

Find the tangent line equation for f(x)=x23f(x)=x^{2}-3 at the point (4,13)(4,13). y=y=\square

See Solution

Problem 12194

Find the marginal-revenue function for the demand equation p=8q+56q+1p=\frac{8 q+5}{6 q+1}, where revenue =pq=p q.

See Solution

Problem 12195

Calculate the integral a(x)dx\int a(x) \, dx for a(x)=1a2x3+xa(x)=-\frac{1}{a^{2}} x^{3}+x.

See Solution

Problem 12196

Find the marginal-cost function from the total-cost function c=5q2q+2+7000c=\frac{5 q^{2}}{q+2}+7000. Choose A or B.

See Solution

Problem 12197

A 110 kg skier descends a frictionless trail from 210 m. Find the work done by gravity and the skier's speed at the bottom.

See Solution

Problem 12198

Differentiate the function y=(7x29)(3x28x+2)y=(7 x^{2}-9)(3 x^{2}-8 x+2). Find dydx=\frac{d y}{d x}=\square.

See Solution

Problem 12199

Find the derivative g(x)g^{\prime}(x) of the function g(x)=13xg(x)=\sqrt{13 x}.

See Solution

Problem 12200

Find the concentration rate after 1 hour and 5 hours for C(t)=3.75etC(t) = 3.75 e^{-t}, 0t50 \leq t \leq 5. Graph CC.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord