Calculus

Problem 26801

A student designs a chess piece by rotating a region around the yy-axis. Find values of aa and bb for C1C_{1} and the volume for C2C_{2}.

See Solution

Problem 26802

Find the smallest value cc that meets the mean value theorem for f(x)=5xsin(6x)110x3f(x)=5 x \sin (6 x)-\frac{1}{10} x^{3} on [0,3][0, 3].

See Solution

Problem 26803

Find the indefinite integral e7x+5dx\int e^{7x+5} dx using the substitution u=7x+5u=7x+5, du=7dxdu=7 dx.

See Solution

Problem 26804

Find dh/dt\mathrm{dh} / \mathrm{dt} when h=3h=3 if the area under y=f(x)y=f(x) from 00 to hh increases at 2 sq. units/sec. f(x)=1x4+1f(x)=\frac{1}{x^{4}+1}

See Solution

Problem 26805

Find intercepts and asymptotes for h(x)=x6x23x28h(x)=\frac{x-6}{x^{2}-3x-28}. Analyze limits at vertical asymptotes.

See Solution

Problem 26806

Calculate the integral: xe4x2dx=\int x e^{-4 x^{2}} d x=\square

See Solution

Problem 26807

A student designs a chess piece by rotating curves C1C_1 and C2C_2 around the yy-axis. Find aa and bb in x=ay+bx=\frac{a}{y+b}, then calculate the volume.

See Solution

Problem 26808

Find the degree 14 Taylor series at x=0x=0 for f(x)=ddx0x3cos(t2)dtf(x)=\frac{d}{d x} \int_{0}^{x^{3}} \cos(t^{2}) dt.

See Solution

Problem 26809

Find the unique value of xx where the tangent lines to 60.8x=(0.8ln6)y6^{0.8 x}=(0.8 \ln 6) y and 0=(0.1ln17)y170.1x+0.50=(0.1 \ln 17) y-17^{0.1 x+0.5} are parallel.

See Solution

Problem 26810

Find the volume of the solid formed by rotating the region between y=e3xy=\mathrm{e}^{3 x}, y=(2x1)4y=(2 x-1)^{4}, and x=12x=\frac{1}{2} about the xx-axis.

See Solution

Problem 26811

Evaluate the integral: 3dxxln(4x)\int \frac{3 d x}{x \ln (4 x)}

See Solution

Problem 26812

Determine if the polynomial f(x)=2x5+10x3+7x2+9f(x)=2 x^{5}+10 x^{3}+7 x^{2}+9 has a zero between -2 and -1 using the Intermediate Value Theorem.

See Solution

Problem 26813

Find the volume of the solid formed by revolving the region RR (bounded by yy-axis, y=2y=2, and y=2x3y=2 \sqrt[3]{x}) around the yy-axis.

See Solution

Problem 26814

Find xf(x)dx\int x f(x) \, dx if f(x)=f(x)f^{\prime}(x) = -f(x).

See Solution

Problem 26815

Find the value of the series: n=1(1)n1n\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}.

See Solution

Problem 26816

Find the solution to the differential equation y=ln(2x3+5)y^{\prime}=\ln(2x^{3}+5).

See Solution

Problem 26817

Evaluate the series: n=11n(n+1)\sum_{n=1}^{\infty} \frac{1}{n(n+1)}

See Solution

Problem 26818

Find the sum of the series n=0xnn!\sum_{n=0}^{\infty} \frac{x^{n}}{n !}.

See Solution

Problem 26819

Calculate the integral 01xf(x)dx\int_{0}^{1} x f^{\prime \prime}(x) \, dx.

See Solution

Problem 26820

Quel est l'intervalle de convergence de la série n=0xnn!\sum_{n=0}^{\infty} \frac{x^{n}}{n !} ?

See Solution

Problem 26821

Find the limit: limx0cot(5x)\lim _{x \rightarrow 0} \cot(5x).

See Solution

Problem 26822

Calculate the limit: limx3(xx+318x29)\lim _{x \rightarrow-3}\left(\frac{x}{x+3}-\frac{18}{x^{2}-9}\right).

See Solution

Problem 26823

Find the limit: limx0cot4x5x\lim _{x \rightarrow 0} \frac{\cot 4 x}{5 x}.

See Solution

Problem 26824

Find the limit: limx0+(x+1)1/x\lim _{x \rightarrow 0^{+}}(x+1)^{1 / x}.

See Solution

Problem 26825

Find the limit: limx0+(x2ln(4x2))\lim _{x \rightarrow 0^{+}}\left(x^{2} \ln \left(4 x^{2}\right)\right).

See Solution

Problem 26826

Find the rate of change of a sphere's volume when its radius decreases at 3 ft/min and volume is 108 ft³. Round to three decimals.

See Solution

Problem 26827

Find the value of d2dx2(f(x))\frac{d^{2}}{d x^{2}}(\sqrt{f(x)}) at x=2x=2 using the table values for f,f,ff, f', f''. Options: A) 38\frac{3}{8} B) 54\frac{5}{4} C) 132-\frac{1}{32} D) 58\frac{5}{8}.

See Solution

Problem 26828

Determine the radius RR and interval II of convergence for the series n=1xn+8n\sum_{n=1}^{\infty} \frac{x^{n+8}}{\sqrt{n}}.

See Solution

Problem 26829

Determine the radius RR and interval II of convergence for the series n=2(1)nxn+6n+7\sum_{n=2}^{\infty} \frac{(-1)^{n} x^{n+6}}{n+7}.

See Solution

Problem 26830

A right triangle has legs of 36 in and 48 in. The short leg increases by 8in/sec8 \mathrm{in/sec}, and the long leg decreases by 8in/sec8 \mathrm{in/sec}. Find the rate of change of the area.

See Solution

Problem 26831

A right triangle has legs 27 in and 36 in. If one leg grows at 10in/sec10 \mathrm{in/sec} and the other shrinks at 9in/sec9 \mathrm{in/sec}, find the area change rate.

See Solution

Problem 26832

Determine the radius RR and interval II of convergence for the series n=1xn+44n!\sum_{n=1}^{\infty} \frac{x^{n+4}}{4 n !}.

See Solution

Problem 26833

A circle's radius decreases at 7 cm/min. When the radius is 3 cm, find the area change rate. Round to three decimals.

See Solution

Problem 26834

A circle's area increases by 55 sq ft/min. When the radius is 2 ft, find the radius's rate of change. Round to three decimals.

See Solution

Problem 26835

Find the radius and interval of convergence for the series n=3(1)nn2xn5n\sum_{n=3}^{\infty}(-1)^{n} \frac{n^{2} x^{n}}{5^{n}}. R=R=\square ? \vee

See Solution

Problem 26836

A circle's area increases at 178 sq ft/sec. When the radius is 4 ft, find the radius's rate of change. Round to 3 decimal places.

See Solution

Problem 26837

Find the radius change rate when the area increases at 205 in²/min and the radius is 6 in. Round to three decimals.

See Solution

Problem 26838

Find the radius and interval of convergence for the series: n=3(1)nn2xn5n\sum_{n=3}^{\infty}(-1)^{n} \frac{n^{2} x^{n}}{5^{n}}. R = \square, I = ? \vee \square.

See Solution

Problem 26839

Find the radius and interval of convergence for the series n=1xn11nn3\sum_{n=1}^{\infty} \frac{x^{n}}{11^{n} n^{3}}.

See Solution

Problem 26840

Find the radius and interval of convergence for the series n=15nxnn4\sum_{n=1}^{\infty} \frac{5^{n} x^{n}}{n^{4}}. R=R=\square, I=?I=? \vee

See Solution

Problem 26841

Find the derivative of f(x)=3x2+2x14f(x)=3 x^{2}+2 x-14 using first principles and confirm with shortcuts.

See Solution

Problem 26842

Find the power series for f(x)=15+xf(x)=\frac{1}{5+x} centered at x=0x=0 and its interval of convergence.

See Solution

Problem 26843

Find the tangent line equation to f(x)=3x2+2x14f(x)=3 x^{2}+2 x-14 with a slope of 4.

See Solution

Problem 26844

Find the radius and interval of convergence for the series n=15nxnn4\sum_{n=1}^{\infty} \frac{5^{n} x^{n}}{n^{4}}.

See Solution

Problem 26845

Find the power series for f(x)=41x3f(x)=\frac{4}{1-x^{3}} and its interval of convergence.

See Solution

Problem 26846

Find the power series for f(x)=43xf(x)=\frac{4}{3-x} centered at x=0x=0 and its interval of convergence.

See Solution

Problem 26847

A water tank is an inverted pyramid with height 20 m20 \mathrm{~m} and base 15 m15 \mathrm{~m}. Water is pumped out at 70m3 h70 \frac{\mathrm{m}^{3}}{\mathrm{~h}}. Find the rate of depth change when water is 4 m4 \mathrm{~m} deep. Round to the nearest hundredth. Is depth increasing, decreasing, or constant?

See Solution

Problem 26848

Evaluate the integral 0.350.85x(1x2+1)dx\int_{0.35}^{0.85} x(\sqrt{1-x^{2}}+1) \, dx.

See Solution

Problem 26849

Find limx22x4f(3x)1\lim _{x \rightarrow 2} \frac{2 x-4}{f(3 x)-1} using the values of ff and ff' from the table provided.

See Solution

Problem 26850

Evaluate the integral: exe2x+3ex+2dx\int \frac{e^{x}}{e^{2 x}+3 e^{x}+2} d x

See Solution

Problem 26851

Find the power series for f(x)=x10x2+1f(x)=\frac{x}{10 x^{2}+1} centered at x=0x=0 and its interval of convergence.

See Solution

Problem 26852

Find the power series for f(x)=417+xf(x)=\frac{4}{17+x} and its interval of convergence.

See Solution

Problem 26853

Find limx2f(3x)242x\lim _{x \rightarrow 2} \frac{f(3 x)-2}{4-2 x} using the given values of ff and ff'.

See Solution

Problem 26854

Calculate the beam deflection given: I=5.4 in4I = 5.4 \text{ in}^4, E=2.75×106 psiE = 2.75 \times 10^{6} \text{ psi}, L=10 ftL = 10 \text{ ft}, P=550 lbP = 550 \text{ lb}.

See Solution

Problem 26855

Find the limit: limx7f(x)1x27x\lim _{x \rightarrow 7} \frac{f(x)-1}{x^{2}-7 x}.

See Solution

Problem 26856

Find the power series for f(x)=2+x1xf(x)=\frac{2+x}{1-x} centered at x=0x=0 and its interval of convergence.

See Solution

Problem 26857

Find the interval of convergence for the series:
n=1[(1)n+1110n+1]xn\sum_{n=1}^{\infty}\left[(-1)^{n+1}-\frac{1}{10^{n+1}}\right] x^{n}

See Solution

Problem 26858

Analyze the function f(x)f(x) and its second derivative f(x)f^{\prime \prime}(x) based on the behavior of f(x)f^{\prime}(x) given.

See Solution

Problem 26859

Find the power series for f(x)=ln(9x)f(x)=\ln(9-x) and determine the radius of convergence, RR.

See Solution

Problem 26860

Evaluate the integral n=0t1t5dt\int \sum_{n=0}^{\infty} \frac{t}{1-t^{5}} dt and find R=+CR=\square+C.

See Solution

Problem 26861

Find the limit: limx7f(x)1x27x\lim _{x \rightarrow 7} \frac{f(x)-1}{x^{2}-7 x} given that f(x) f(x) approaches 1 as x x approaches 7.

See Solution

Problem 26862

Find the Taylor series for ff at 5 with f(n)(5)=(1)nn!4n(n+3)f^{(n)}(5)=\frac{(-1)^{n} n !}{4^{n}(n+3)}. What is the radius of convergence, RR?

See Solution

Problem 26863

Find the Maclaurin series for f(x)=(1x)2f(x)=(1-x)^{-2} and its radius of convergence RR.

See Solution

Problem 26864

Find the Maclaurin series for f(x)=ln(1+5x)f(x) = \ln(1 + 5x) and its radius of convergence, RR.

See Solution

Problem 26865

Find the Maclaurin series for f(x) f(x) given n=0f(x)=cos5x8 \sum_{n=0}^{\infty} f(x)=\frac{\cos 5 x}{8} .

See Solution

Problem 26866

Find the Maclaurin series for f(x)=xe10xf(x) = x e^{10x} and determine the radius of convergence, RR.

See Solution

Problem 26867

Find the Maclaurin series for f(x)=3e2xf(x) = 3 e^{2x} and its radius of convergence RR.

See Solution

Problem 26868

Find the Taylor series for f(x)=4xf(x) = \frac{4}{x} centered at a=4a = -4: n=0\sum_{n=0}^{\infty} \square

See Solution

Problem 26869

Find the Taylor series for f(x)=2cosxf(x) = 2 \cos x at a=7πa = 7\pi. No need to show that R(x)0R(x) \rightarrow 0.

See Solution

Problem 26870

Given the equations x=6+t2x=6+t^{2} and y=t2+t3y=t^{2}+t^{3}, find dydx\frac{dy}{dx} and d2ydx2\frac{d^{2}y}{dx^{2}}. Also, determine when the curve is concave upward.

See Solution

Problem 26871

Problem 4: Given the series J0(x)=n=0(1)nx2n22n(n!)2J_{0}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n !)^{2}}, find the interval of convergence, compute J0(x)J_{0}^{\prime}(x) and J0(x)J_{0}^{\prime \prime}(x), and explain why x2J0(x)+xJ0(x)+x2J0(x)=0x^{2} J_{0}^{\prime \prime}(x)+x J_{0}^{\prime}(x)+x^{2} J_{0}(x)=0.

See Solution

Problem 26872

Find the area between the x-axis and the curve defined by x=4+etx=4+e^{t} and y=tt2y=t-t^{2}.

See Solution

Problem 26873

Find the length of the curve defined by x=6+6t2x=6+6t^{2} and y=1+4t3y=1+4t^{3} for 0t30 \leq t \leq 3.

See Solution

Problem 26874

Find the length of the polar curves: r=2sin(θ)r=2 \sin(\theta) for 0θπ30 \leq \theta \leq \frac{\pi}{3} and r=e7θr=e^{7\theta} for 0θπ0 \leq \theta \leq \pi.

See Solution

Problem 26875

A cylinder's radius decreases at 2 in/sec and height increases at 5 in/sec. Find volume change rate when r=4r=4, h=6h=6. V=πr2hV=\pi r^{2} h

See Solution

Problem 26876

Find the length of the polar curve r=2sin(θ)r=2 \sin (\theta) for 0θπ30 \leq \theta \leq \frac{\pi}{3}.

See Solution

Problem 26877

Find the limit: limx0ex1xx2\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}

See Solution

Problem 26878

Find the limits and derivatives:
1. limx1x1x28x+7\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-8 x+7}
2. ddxtanxx3\frac{d}{d x} \frac{\tan x}{x^{3}}
3. limx07ex77x1cosx\lim _{x \rightarrow 0} \frac{7 e^{x}-7-7 x}{1-\cos x}
4. limx0ex1xx2\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}

For the tangent line y=4x+7y=4x+7 at x=3x=-3, which statements are true? I. f(0)=7f(0)=7 II. f(3)=5f(-3)=-5 III. f(3)=4f^{\prime}(-3)=4 (A) I only (B) II only (C) III only (D) I and III only (E) II and III only

See Solution

Problem 26879

Find the limit: limx0ex1xx2\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}.

See Solution

Problem 26880

Find the vertical speed of an ant on the curve x2+xy+y2=19x^{2}+x y+y^{2}=19 at (2,3)(2,3) moving right at 3 cm/sec3 \mathrm{~cm/sec}.

See Solution

Problem 26881

Find the true statements about the function ff given the tangent line y=4x+7y=4x+7 at x=3x=-3. Also, how fast is the area of ripples growing when radius is 3 ft?

See Solution

Problem 26882

A stone creates ripples in a pond. If the radius grows at 0.5ft/sec0.5 \mathrm{ft}/\mathrm{sec}, find the area growth rate at r=3r=3 ft. Area: A=πr2A=\pi r^{2}.

See Solution

Problem 26883

Untersuche den Abbau eines Kontrastmittels:
a) Finde die Funktionsgleichung. b) Wie viel bleibt nach 60 Minuten? c) Wie lange bis 95 % abgebaut sind? d) Ist nach 24 Stunden kaum noch Kontrastmittel vorhanden?

See Solution

Problem 26884

Find the tangent line to y=f(x)y=f(x) where f(x)=x5f(x)=x^{5} at x=2x=2 with a slope of 80. Equation: \square.

See Solution

Problem 26885

A 7.5 MeV proton hits 37Li{ }_{3}^{7} \mathrm{Li}. Find the scattered proton energy at θ=90\theta=90^{\circ} for: a) no excitation, b) excitation at 0.477 MeV.

See Solution

Problem 26886

Find the average revenue change from 1,000 to 1,050 car seats for R(x)=24x0.010x2R(x)=24x-0.010x^{2}, 0x24000 \leq x \leq 2400.

See Solution

Problem 26887

Bestimmen Sie die Punkte, wo der Graph von ff die Steigung mm hat, und geben Sie die Tangentengleichungen an für: a) f(x)=13x38x;m=1f(x)=\frac{1}{3} x^{3}-8 x ; m=1 b) f(x)=(2x+1)2;m=8f(x)=(2 x+1)^{2} ; m=8 c) f(x)=x33x2+6;m=0f(x)=x^{3}-3 x^{2}+6 ; m=0 d) f(x)=4x;m=1f(x)=-\frac{4}{x} ; m=1 e) f(x)=1x2+2x;m=94f(x)=\frac{1}{x^{2}}+2 x ; m=\frac{9}{4} f) f(x)=x5+5x3+3;m=4f(x)=x^{5}+5 x^{3}+3 ; m=4

See Solution

Problem 26888

Bestimmen Sie die Nullstellen der Tangente an den Graphen von f(x)=12x3+12x+2f(x)=-\frac{1}{2} x^{3}+\frac{1}{2} x+2 und f(x)=4xf(x)=4 \sqrt{x} im Punkt B(1|f(1)).

See Solution

Problem 26889

Zbadaj jednostajną ciągłość i lipschitzowskość funkcji: a. x\sqrt{x} dla x0x \geqslant 0; b. x2x^{2} dla xRx \in \mathbb{R}.

See Solution

Problem 26890

Berechne: limx3x+2x\lim _{x \rightarrow \infty} \frac{3 x+2}{x} mit Testeinsetzung.

See Solution

Problem 26891

Differentiate these using Leibniz's Rule: a. f(x)=1x3x2+tdtf(x)=\int_{1}^{x^{3}-x} \sqrt{2+t} dt b. f(x)=2ln(x)e2tdt,x>0f(x)=\int_{2}^{\ln (x)} e^{-2 t} dt, \quad x>0 c. f(x)=e3x2arctan(x)sin(t)dtf(x)=\int_{e^{3 x^{2}}}^{\arctan (x)} \sin (t) dt

See Solution

Problem 26892

Calculate these indefinite integrals: a. (x14+13x14)dx\int\left(x^{\frac{1}{4}}+\frac{1}{3 x^{\frac{1}{4}}}\right) d x b. (x6+6x)dx\int\left(x^{-6}+6^{-x}\right) d x c. (7x+2x)dx\int\left(\frac{7 x+2}{x}\right) d x d. (1x+ex)dx\int\left(\frac{1}{\sqrt{x}}+\sqrt{e^{x}}\right) d x

See Solution

Problem 26893

Berechnen Sie für f(x)=x43x24f(x)=x^{4}-3x^{2}-4: a) Liegt Q(2,516,125)Q(2,5 \mid 16,125) auf ff? b) Achsenschnittpunkte.

See Solution

Problem 26894

Berechne die mittlere Änderungsrate (Differenzenquotient) für: a) Punkte P(2,2.5)P(-2, 2.5) und Q(1.5,13)Q(1.5, 13), b) im Intervall [2,3][-2, 3] für g(x)=x3g(x)=x^{3}.

See Solution

Problem 26895

Berechnen Sie die mittlere Änderungsrate zwischen den Punkten P(2,2,5)P(-2, 2,5) und Q(1,5,13)Q(1,5, 13) sowie im Intervall [2,3][-2, 3] für g(x)=x3g(x)=x^{3}.

See Solution

Problem 26896

Evaluate these definite integrals: a. 01/2sin(π(x+1))dx\int_{0}^{1 / 2} \sin (\pi(x+1)) d x b. 49(1+xx)dx\int_{4}^{9}\left(\frac{1+x}{\sqrt{x}}\right) d x c. 14(35x1)dx\int_{1}^{4}\left(\frac{3}{5 x-1}\right) d x d. 12(1x+ex)dx\int_{1}^{2}\left(\frac{1}{\sqrt{x}}+\sqrt{e^{x}}\right) d x

See Solution

Problem 26897

Find the horizontal asymptote of f(x)=1x3f(x)=\frac{1}{x-3}. Options: a) b) y=2y=2 c) y=3y=3 d) y=0y=0

See Solution

Problem 26898

If 814f(x)dx=10\int_{8}^{14} f(x) d x=10, find 24f(3x+2)dx\int_{2}^{4} f(3 x+2) d x. Options: A) 30 B) 103\frac{10}{3} C) 53\frac{5}{3} D) 203\frac{20}{3}

See Solution

Problem 26899

Calculate 15f(x)dx\int_{-1}^{5} f(x) \, dx for f(x)={3x2,x01,x>0f(x)=\begin{cases} 3x^{2}, & x \leq 0 \\ -1, & x > 0 \end{cases}.

See Solution

Problem 26900

Find limx2+f(x)\lim _{x \rightarrow-2^{+}} f(x) for the piecewise function f(x)f(x) defined as: 3x33x-3, x210x^{2}-10, 22x-2-2x.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord