Calculus

Problem 23801

Find the surface area from revolving y=4x2y=4-x^{2} around the yy-axis.

See Solution

Problem 23802

Evaluate the integral (14x+5)7x2+5xdx\int(14 x+5) \sqrt{7 x^{2}+5 x} dx using the substitution u=7x2+5xu=7 x^{2}+5 x.

See Solution

Problem 23803

Find the horizontal asymptotes by calculating these limits:
1. limx13x14+2x=\lim _{x \rightarrow \infty} \frac{-13 x}{14+2 x}=\square
2. limx14x14x3+13x7=\lim _{x \rightarrow-\infty} \frac{14 x-14}{x^{3}+13 x-7}=
3. limxx24x354x2=\lim _{x \rightarrow \infty} \frac{x^{2}-4 x-3}{5-4 x^{2}}=\square
4. limxx2+12x83x=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+12 x}}{8-3 x}=\square
5. limxx2+12x83x=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+12 x}}{8-3 x}=\square

See Solution

Problem 23804

Find an antiderivative of e4x+7e^{4x+7} and verify by differentiating your result.

See Solution

Problem 23805

Calculate the average rate of change of f(x)=xf(x)=\sqrt{x} from x=2x=2 to x=9x=9.

See Solution

Problem 23806

Evaluate the integral 6x+2dx\int \sqrt{6 x+2} \, dx using the substitution u=ax+bu = ax + b.

See Solution

Problem 23807

Evaluate the integral using a change of variables: 2x(x23)101dx\int 2 x\left(x^{2}-3\right)^{101} d x.

See Solution

Problem 23808

Evaluate the integral: 2x378x4dx\int \frac{2 x^{3}}{\sqrt{7-8 x^{4}}} d x using a change of variables or a table.

See Solution

Problem 23809

Evaluate the integral: 115x3dx\int \frac{1}{15 x-3} d x using a change of variables.

See Solution

Problem 23810

Find the tangent line to f(x)=xf(x)=\sqrt{x} at (4,2)(4,2) and use it to approximate f(5)f(5). Give your answer as a decimal.

See Solution

Problem 23811

Find dydx\frac{d y}{d x} if y=ln(3x)cscxy=\ln (3 x) \csc x.

See Solution

Problem 23812

Evaluate the integral x2(x3+13)5dx\int x^{2}\left(x^{3}+13\right)^{5} d x using a change of variables or a table.

See Solution

Problem 23813

Find the average rate of change of f(x)=1x+2f(x)=\frac{1}{x+2} on [9,9+h][9, 9+h]. Express your answer in terms of hh.

See Solution

Problem 23814

Find the derivative dydx\frac{d y}{d x} if y=tan1(2x3)y=\tan^{-1}(2 x^{3}).

See Solution

Problem 23815

Evaluate the integral: 112x5dx\int \frac{1}{12 x-5} d x using a change of variables.

See Solution

Problem 23816

Find the average rate of change of f(x)=x2+3f(x)=x^{2}+3 from f(4)f(4) to f(10)f(10).

See Solution

Problem 23817

Find the acceleration of the particle at t=4t=4 seconds given its position s(t)=t332t2+3ts(t)=\frac{t^{3}}{3}-2 t^{2}+3 t.

See Solution

Problem 23818

Evaluate the integral using a change of variables: sec17wtan17wdw\int \sec 17 w \tan 17 w \, dw.

See Solution

Problem 23819

Find the average rate of change of f(x)=4x3+16f(x) = 4x^3 + 16 from f(6)f(6) to f(16)f(16).

See Solution

Problem 23820

Evaluate the integral: cosxcsc10xdx\int \cos x \csc^{10} x \, dx using a change of variables or a table.

See Solution

Problem 23821

Find the tangent line equation for f(x)=3xf(x)=\frac{3}{x} at the point (6,12)\left(-6,-\frac{1}{2}\right). The equation is y=y=\square.

See Solution

Problem 23822

Find the general solution of the differential equation dydx=x2+23y2\frac{d y}{d x}=\frac{x^{2}+2}{3 y^{2}}.

See Solution

Problem 23823

Is there an aa in [4,6)[-4, 6) such that the Mean Value Theorem gives a cc where f(c)=13f^{\prime}(c)=\frac{1}{3}? Justify.

See Solution

Problem 23824

Find the absolute extreme values of f(x)=5cscxf(x)=5 \csc x on the interval [5π6,π6]\left[-\frac{5 \pi}{6},-\frac{\pi}{6}\right].

See Solution

Problem 23825

Find the rate of change of f(x)=x3+x+1f(x)=x^{3}+x+1 from x=1x=1 to x=3x=3. Options: 14, 8, 20, 28.

See Solution

Problem 23826

Let f f be a twice differentiable function with f(2)=5 f(2) = 5 and f(5)=2 f(5) = 2 . Define g(x)=f(f(x)) g(x) = f(f(x)) .
(a) Show there exists c c such that 2<c<5 2 < c < 5 and f(c)=1 f'(c) = -1 . (b) Prove g(2)=g(5) g'(2) = g'(5) and find k k where 2<k<5 2 < k < 5 and g(k)=0 g''(k) = 0 . (c) Let h(x)=f(x)x h(x) = f(x) - x . Show there exists r r such that 2<r<5 2 < r < 5 and h(r)=0 h(r) = 0 .

See Solution

Problem 23827

Evaluate the integral: e2xe2x+3dx\int \frac{e^{2 x}}{e^{2 x}+3} d x using a change of variables or a table.

See Solution

Problem 23828

Solve dydt=34t\frac{d y}{d t}=-\frac{3}{4} \sqrt{t} with the initial condition (0,10)(0,10).

See Solution

Problem 23829

Evaluate the integral using the substitution u=x2+2u=x^{2}+2: 2x(x2+2)3dx=\int 2 x\left(x^{2}+2\right)^{-3} d x=\square

See Solution

Problem 23830

Find the values of t0t \geq 0 where the acceleration of the particle, given v(t)=(t5)(t2)2v(t)=(t-5)(t-2)^{2}, is 00.

See Solution

Problem 23831

Find the horizontal and vertical asymptotes of the function f(x)=x+3x+2f(x)=\frac{x+3}{x+2}.

See Solution

Problem 23832

Evaluate the integral 0π/15cos5xdx\int_{0}^{\pi / 15} \cos 5 x \, dx using a change of variables or a table.

See Solution

Problem 23833

Find the sign of f(x)f^{\prime}(x) for f(x)=sin2(x)+cos(x)f(x)=\sin^2(x)+\cos(x) in intervals around critical points: (π2,π3)\left(\frac{-\pi}{2}, \frac{-\pi}{3}\right), (π3,0)\left(\frac{-\pi}{3}, 0\right), (0,π3)\left(0, \frac{\pi}{3}\right), (π3,π2)\left(\frac{\pi}{3}, \frac{\pi}{2}\right).

See Solution

Problem 23834

Determine the concavity of f(x)f(x) where f(x)=x(x1)(x+1)ex(x1)f^{\prime \prime}(x)=x(x-1)(x+1)e^{x(x-1)} in the intervals (,1)(-\infty,-1), (1,0)(-1,0), (0,1)(0,1), (1,+)(1,+\infty).

See Solution

Problem 23835

Find the sign of f(x)f'(x) for f(x)=sin2(x)+cos(x)f(x)=\sin^2(x)+\cos(x) in the intervals around its critical points in (π2,π2)\left(-\frac{\pi}{2}, \frac{\pi}{2}\right).

See Solution

Problem 23836

Evaluate the integral using the substitution u=4xu=4x:
12csc(4x)cot(4x)dx=()du\int 12 \csc(4x) \cot(4x) dx = \int(\square) du

See Solution

Problem 23837

Find values of xx in 4<x<3-4 < x < 3 where ff is continuous but not differentiable, given vertical tangent at x=2x=-2.

See Solution

Problem 23838

Evaluate the integral using u=9x8u=9-x^{8}: x7(9x8)2dx=\int \frac{x^{7}}{\left(9-x^{8}\right)^{2}} d x=\square

See Solution

Problem 23839

A train's location is s(t)=110ts(t)=\frac{110}{t} for 3t93 \leq t \leq 9. Graph s(t)s(t) and find average velocity from t=3t=3 to t=9t=9.

See Solution

Problem 23840

Evaluate the integral: 12csc(4x)cot(4x)dx=\int 12 \csc (4 x) \cot (4 x) \, dx = \square

See Solution

Problem 23841

Evaluate the integral 056e2xdx\int_{0}^{5} 6 e^{2 x} d x using a change of variables or a table.

See Solution

Problem 23842

Find and simplify: a. f(x)f(a)xa\frac{f(x)-f(a)}{x-a}, b. f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=8x2f(x)=8x^{2}.

See Solution

Problem 23843

Evaluate the integral: csc(9x4)cot(9x4)dx\int -\csc(9x-4) \cot(9x-4) \, dx. Choose the correct variable change from xx to uu.

See Solution

Problem 23844

Evaluate the integral using a change of variables: 022x(x2+2)3dx\int_{0}^{2} \frac{2 x}{\left(x^{2}+2\right)^{3}} d x.

See Solution

Problem 23845

Find the limits: (i) limx4x3x+52+3x3\lim _{x \rightarrow \infty} \frac{4 x^{3}-x+5}{2+3 x^{3}}, (ii) limx3(x+5)(x4)(x3)(x+2)\lim _{x \rightarrow 3} \frac{(x+5)(x-4)}{(x-3)(x+2)} (show sign chart).

See Solution

Problem 23846

Rewrite the integral as uu substitution: csc(9x4)cot(9x4)dx=()du\int -\csc(9x-4) \cot(9x-4) dx = \int (\square) du

See Solution

Problem 23847

Evaluate the integral: csc(9x4)cot(9x4)dx=\int -\csc(9x-4) \cot(9x-4) \, dx = \square

See Solution

Problem 23848

Evaluate the integral: π2π2sin2xcosxdx\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x \cos x \, dx using a change of variables.

See Solution

Problem 23849

Use the product rule to find the derivative of (5 x^{7}+9 x^{6})(6 e^{\wedge} x-2). No need to expand.

See Solution

Problem 23850

Evaluate the integral r2(r312+1)3dr\int r^{2}\left(\frac{r^{3}}{12}+1\right)^{3} d r and find the correct substitution for uu. Options: A, B, C, D.

See Solution

Problem 23851

Evaluate the integral r2(r312+1)3dr\int r^{2}\left(\frac{r^{3}}{12}+1\right)^{3} d r and find the correct substitution for uu.

See Solution

Problem 23852

Evaluate the integral using geometry: 143x6dx\int_{1}^{4}|3 x-6| d x.

See Solution

Problem 23853

Evaluate the integral: r2(r312+1)3dr=\int r^{2}\left(\frac{r^{3}}{12}+1\right)^{3} d r=\square

See Solution

Problem 23854

Invest $20000\$ 20000 at 12%12\% continuous interest. Find the average balance over 2 years. Average balance == dollars.

See Solution

Problem 23855

If you invest \$20000 at 12% interest compounded continuously, what is the average balance over 2 years?

See Solution

Problem 23856

Evaluate the integral xx7dx\int \frac{x}{\sqrt{x-7}} d x and find the correct change of variables from xx to uu. Choose A, B, C, or D.

See Solution

Problem 23857

A circle's radius grows at 2 mm/s2 \mathrm{~mm/s}. Find the area change rate when the radius is 10 mm10 \mathrm{~mm}.

See Solution

Problem 23858

Determine the continuity of the function ff at x=1x=1 based on the given piecewise definition.

See Solution

Problem 23859

Rewrite the integral using the substitution u=x7u = \sqrt{x - 7}. Find xudu\int \frac{x}{u} du.

See Solution

Problem 23860

Find the area between y=14xy=14 x and y=x32xy=x^{3}-2 x from x=1x=1 to x=2x=2. Area =

See Solution

Problem 23861

Find the area between y=0y=0 and y=x249y=x^{2}-49 from x=0x=0 to x=7x=7.

See Solution

Problem 23862

Evaluate the integral: x24x8dx=\int \sqrt{\frac{x^{2}-4}{x^{8}}} d x = \square

See Solution

Problem 23863

Evaluate the integral using substitution: e(sinx)(cosx)dx=\int e^{(-\sin x)}(-\cos x) d x=\square

See Solution

Problem 23864

Evaluate the integral using geometry: 144x12dx\int_{1}^{4}|4 x-12| d x.

See Solution

Problem 23865

Find the area between y=x2y=x^{2} and y=5y=-5 from x=1x=-1 to x=1x=1. Calculate the area: Area= \text{Area} =

See Solution

Problem 23866

Evaluate the integral 4(4x5)ln(4x5)dx=\int \frac{4}{(4 x-5) \ln (4 x-5)} d x = \square

See Solution

Problem 23867

Differentiate x6+y4=eyx^{6}+y^{4}=e^{y} to find dydx\frac{d y}{d x}. Then find the slope mm at point P(1,0)P(-1,0).

See Solution

Problem 23868

Evaluate the integral 1/52/5dxx25x21\int_{1/5}^{\sqrt{2}/5} \frac{dx}{x \sqrt{25x^2 - 1}} using a change of variables.

See Solution

Problem 23869

Find the area between the curves y=exy=e^{x} and y=xy=x from x=0x=0 to x=2x=2. Area =

See Solution

Problem 23870

Evaluate the integral (arcsinx)2dx1x2\int \frac{(\arcsin x)^{2} d x}{\sqrt{1-x^{2}}}. What is the result?

See Solution

Problem 23871

A circle's radius grows at 3 mm/s3 \mathrm{~mm/s}. Find the area change rate when the radius is 13 mm13 \mathrm{~mm}. Area change: \mathfrak{\square} (Round to nearest thousandth.)

See Solution

Problem 23872

Evaluate the integral: (2r1)cos3(2r1)2+63(2r1)2+6dr=\int \frac{(2 r-1) \cos \sqrt{3(2 r-1)^{2}+6}}{\sqrt{3(2 r-1)^{2}+6}} d r=\square

See Solution

Problem 23873

Calculate the area between the curve f(x)=xsinx2f(x)=x \sin x^{2} and the xx-axis from x=0x=0 to x=πx=\sqrt{\pi}.

See Solution

Problem 23874

Find the integral of cotx=cosxsinx\cot x = \frac{\cos x}{\sin x}; what is the integral of cotx\cot x? Answer: \square.

See Solution

Problem 23875

Find f(1)f^{\prime}(-1) for f(x)=x9h(x)f(x)=x^{9} h(x), given h(1)=2h(-1)=2 and h(1)=5h^{\prime}(-1)=5.

See Solution

Problem 23876

Evaluate the integral using the Substitution Formula: ππ3cos2xsinxdx=\int_{-\pi}^{\pi}-3 \cos ^{2} x \sin x d x=\square

See Solution

Problem 23877

Express the limit of the Riemann sum Rn=3ni=1n(2+3in)ln(2+3in)R_{n}=\frac{3}{n} \sum_{i=1}^{n}\left(2+3 \frac{i}{n}\right) \ln\left(2+3 \frac{i}{n}\right) as a definite integral as nn \to \infty.

See Solution

Problem 23878

Evaluate the integrals using the Substitution Formula:
a. 01t25+24tdt\int_{0}^{1} t \sqrt{25+24 t} d t
b. 134t25+24tdt\int_{1}^{34} t \sqrt{25+24 t} d t

See Solution

Problem 23879

Evaluate the integrals using the Substitution Formula:
a. 01t25+24tdt=\int_{0}^{1} t \sqrt{25+24 t} d t=\square
b. 134t25+24tdt=\int_{1}^{34} t \sqrt{25+24 t} d t=\square

See Solution

Problem 23880

Consider the function f(x)={e2x,x1e3x,x<1f(x)=\left\{\begin{array}{ll} e^{2 x}, & x \geq 1 \\ e^{3-x}, & x<1 \end{array}\right.. Which statement is true?
1. ff is decreasing on both sides of x=1x=1.
2. x=1x=1 is not a critical point of ff.
3. f(1)f(1) is a local maximum of ff.
4. f(1)f(1) is a local minimum of ff.
5. ff is increasing on both sides of x=1x=1.

See Solution

Problem 23881

Which statements are true? A continuous function is differentiable; a continuous function may not be differentiable; a differentiable function is continuous; a differentiable function may not be continuous.

See Solution

Problem 23882

Find the integral using substitutions: dx2+5+x\int \frac{d x}{\sqrt{2+\sqrt{5+x}}} (Hint: Start with u=5+xu=\sqrt{5+x}).

See Solution

Problem 23883

Find the area between R(t)=90+20tR(t)=90+20t and C(t)=70+10tC(t)=70+10t from t=0t=0 to t=5t=5.

See Solution

Problem 23884

Evaluate the integral using substitution: 05π/4tanx5dx\int_{0}^{5 \pi / 4} \tan \frac{x}{5} \, dx.

See Solution

Problem 23885

A particle's position on the yy-axis is given by y(t)=6t2t3+10y(t)=6 t-2 t^{3}+10.
a. Find when the particle is highest for 0t20 \leq t \leq 2. b. Determine the maximum speed in the same interval.

See Solution

Problem 23886

Find the absolute max and min of g(x)=3x3exg(x)=3 x^{3} e^{-x} on [1,6][-1, 6]. Graph it and identify extrema points.

See Solution

Problem 23887

Calculate the area between the curves h(t)=30t2+250t+800h(t)=-30 t^{2}+250 t+800 and s(t)=33t2+250t+700s(t)=-33 t^{2}+250 t+700 for 2t62 \leq t \leq 6. What does this area signify?

See Solution

Problem 23888

Find the following limits, if they exist: (i) limx02sin(4x)cos3x+5\lim _{x \rightarrow 0} 2 \sin (4 x)-\cos 3 x+5 (ii) limx0tan(3x)x23x\lim _{x \rightarrow 0} \frac{\tan (3 x)}{x^{2}-3 x} (No L'Hospital's Rule) (iii) limx11x+lnx1+cosπx\lim _{x \rightarrow 1} \frac{1-x+\ln x}{1+\cos \pi x} (Check L'Hospital's Rule applicability first.)

See Solution

Problem 23889

Rewrite the integral using uu: 143(lnx)2xdx=0du\int_{1}^{4} \frac{3(\ln x)^{2}}{x} d x=\int_{0}^{\square} \square d u

See Solution

Problem 23890

Differentiate sin(x2y2)\sin(x^{2} y^{2}) and set it equal to the derivative of xx. What is the result?

See Solution

Problem 23891

Find the global minimum coordinates of f(x)=x36x+4f(x)=x^{3}-6x+4 on the interval [0,3][0,3].

See Solution

Problem 23892

Evaluate the integral using substitution: 01x+1dx\int_{0}^{1} \sqrt{x+1} \, dx.

See Solution

Problem 23893

Find the derivative of lnxx2+1\frac{\ln x}{x^{2}+1}.

See Solution

Problem 23894

Find the derivative of lnxx2+1\frac{\ln x}{x^{2}+1}.

See Solution

Problem 23895

Evaluate the integral: 0ln(3)exdx1+e2x\int_{0}^{\ln(\sqrt{3})} \frac{e^{x} d x}{1+e^{2 x}}

See Solution

Problem 23896

Use the Substitution Formula to evaluate 143(lnx)2xdx\int_{1}^{4} \frac{3(\ln x)^{2}}{x} dx. Choose uu from options A-D.

See Solution

Problem 23897

Find the volume of the solid formed by revolving the area under y=9x2y=\sqrt{9-x^{2}} in the first quadrant around the xx-axis.

See Solution

Problem 23898

Calculate the area between the curve y=32xy=3^{2-x} and the xx-axis from x=0x=0 to x=2x=2.

See Solution

Problem 23899

Find f(2)f'(2) for f(x)=(g(x)h(x))3f(x)=(g(x) \cdot h(x))^{3} given g(2)=2,g(2)=4,h(2)=4,h(2)=4g(2)=2, g'(2)=4, h(2)=4, h'(2)=4. Round to two decimal places.

See Solution

Problem 23900

Find f(1)f^{\prime}(1) given that f(x+h)f(x)=5hx22hx+5h2x+4h2h3f(x+h)-f(x)=-5 h x^{2}-2 h x+5 h^{2} x+4 h^{2}-h^{3}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord