Calculus

Problem 26901

Given the biomass change B(t)B(t) with ddtB(t)=2t+1\frac{d}{dt} B(t)=2t+1 for t[0,6]t \in [0,6] and B(0)=10B(0)=10, find: a. cumulative change, b. solution, c. average biomass.

See Solution

Problem 26902

Compute the average value of f(x)=cos(πx)+3xf(x)=\cos (\pi x)+3^{x} over the interval [2,4][2,4].

See Solution

Problem 26903

Find the limit: limx0x+42x\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}.

See Solution

Problem 26904

Find the limit: limx04x+1025x\lim _{x \rightarrow 0} \frac{\frac{4}{x+10}-\frac{2}{5}}{x}.

See Solution

Problem 26905

Find the limit as xx approaches 2 for the expression 5x2+15x5x2+12x+4\frac{5 x^{2}+15 x}{5 x^{2}+12 x+4}.

See Solution

Problem 26906

Die Funktion p(t)=0,2te0,0625t+5p(t)=0,2 t e^{-0,0625 t}+5 beschreibt Plastikmüll in Mio. Tonnen. Analysieren Sie p(0)p(0), p(10)p(5)p(10)-p(5) und p(16)p^{\prime}(16).

See Solution

Problem 26907

Aufgabe:
a) Bestimme den Grenzwert von h(x)h(x) für große xx. b) Ab welcher Stückzahl ist das Kunststoffleitwerk günstiger als das Metallleitwerk?

See Solution

Problem 26908

Find the integral of (x6)3(\sqrt[6]{x})^{3} with respect to xx: (x6)3dx=+C\int(\sqrt[6]{x})^{3} d x=\square +C.

See Solution

Problem 26909

Calculate the integral of (x6)3(\sqrt[6]{x})^{3} with respect to xx: (x6)3dx\int(\sqrt[6]{x})^{3} d x.

See Solution

Problem 26910

Find the average rate of change of f(x)=tan(2x)f(x)=\tan(2x) from 0 to π6\frac{\pi}{6}.

See Solution

Problem 26911

Analyze the function f(x)f(x) and its derivative f(x)f'(x) given their behavior on specified intervals.

See Solution

Problem 26912

Discuss these questions: 1. What does a derivative represent? 2. Using product rule vs. quotient rule? 3. Using product rule vs. chain rule? 4. Types of discontinuities? 5. Requirements for function continuity?

See Solution

Problem 26913

If a 1000 mg drug dose loses 25% every 4 hours, will it ever be fully eliminated from your system?

See Solution

Problem 26914

Find the height h\mathrm{h} (1000 < h\mathrm{h} < 20000) that minimizes the operating cost C=4000+h/15+15000000/hC=4000+\mathrm{h}/15+15000000/\mathrm{h} and calculate CC at this height.

See Solution

Problem 26915

Find when the velocity of the particle given by s(t)=3t340.5t2+162ts(t)=3 t^{3}-40.5 t^{2}+162 t is increasing, decreasing, or constant, and find acceleration at t=6t=6 s.

See Solution

Problem 26916

Find the derivative of the function y=x2xsinxy=x^{2}-x \sin x, expressed as dydx\frac{d y}{d x}.

See Solution

Problem 26917

How many years will it take for Brianna's investment to double with a continuous return of 34%34\% per year? t=t=

See Solution

Problem 26918

A 70m building, a l-kg ball thrown down at 10m/s, hits ground at 30m/s. Find energy lost to friction: a) 150 J b) 300 J c) 700 J d) 400 J e) 0 J.

See Solution

Problem 26919

Find the derivative of the function y=x22xcosxy=x^{2}-2 x \cos x, i.e., compute dydx\frac{d y}{d x}.

See Solution

Problem 26920

Find the tangent line equation for the curve defined by x=sec2(t)1x = \sec^2(t) - 1, y=tan(t)y = \tan(t) at t=π4t = -\frac{\pi}{4} and compute d2ydx2\frac{d^2y}{dx^2}.

See Solution

Problem 26921

Calcula (UV)T\left(\frac{\partial U}{\partial V}\right)_{T} y el coeficiente de Joule μJ\mu_{J} para un gas de Van der Waals.

See Solution

Problem 26922

Determine if the function f(x)=x5esinh(x)cos(x)f(x)=x^{5} e^{\sinh (x)} \cos (x) has a local min, max, or neither at x=0x=0.

See Solution

Problem 26923

Solve for dd in the equation dxd9=1d3\frac{d^{x}}{d^{9}} = \frac{1}{d^{3}}.

See Solution

Problem 26924

Find the derivative of the function sin(x+8)-\sin(-x + 8).

See Solution

Problem 26925

Find the tangent line equation for y=4sin2(x)y=4 \sin ^{2}(x) at x=π6x=\frac{\pi}{6}.

See Solution

Problem 26926

Find dydx\frac{d y}{d x} in terms of xx and yy given the equation 3xy23y+2x3=03 x y^{2}-3 y+2 x^{3}=0.

See Solution

Problem 26927

What is true about the function ff on the interval 3<x<43<x<4 if its rate of change is positive and decreasing?

See Solution

Problem 26928

Determine if the particle is speeding up or slowing down at t=2t=2 given its velocity v(t)=2t2v(t)=-2t-2.

See Solution

Problem 26929

Find the equations of all tangent lines to the curve defined by xy+y4=2-x y + y^{4} = -2.

See Solution

Problem 26930

Find dydx\frac{dy}{dx} for y=cos(f(x3))y = \cos(f(x^3)) at x=2x = 2, where ff is a differentiable function.

See Solution

Problem 26931

Boats A and B leave together; A goes north at 12 km/hr, B east at 18 km/hr. After 2.5 hrs, find distance increase rate in km/hr.

See Solution

Problem 26932

Solve the IVP dxdt=x(1x)\frac{d x}{d t}=x(1-x) with x(0)=x0x(0)=x_{0}. Find x(t)x(t) for x0>0x_{0}>0, x01x_{0} \neq 1. Also, find solutions for x0=0x_{0}=0 or x0=1x_{0}=1. Compute limtx(t)\lim_{t \to \infty} x(t).

See Solution

Problem 26933

Find the line perpendicular to g(x)g'(x) at x=2x=-2 for g(x)=(5x3+4x)dxg(x)=\int(5x^{3}+4x)dx.

See Solution

Problem 26934

Gegeben ist die Funktion f(x)=(x2)exf(x)=(-x-2) \cdot e^{-x}. Finde den Tiefpunkt, Wendepunkt und die Tangentengleichung an der x-Achse.

See Solution

Problem 26935

Approximate the volume change of a sphere when the radius goes from 10 cm to 10.02 cm. Choices: A) 4213973 B) 1261.669 C) -1256.637 D) 25.233 E) 25.1

See Solution

Problem 26936

Find pp values for which the integrals converge: (a) 12dxx(lnx)p\int_{1}^{2} \frac{dx}{x(\ln x)^{p}}, (b) 2dxx(lnx)p\int_{2}^{\infty} \frac{dx}{x(\ln x)^{p}}.

See Solution

Problem 26937

Bestimme die zweite Ableitung der Funktion f(x)=2tx332t2x2f(x) = 2tx^3 - \frac{3}{2}t^2x^2 und erkläre den Prozess.

See Solution

Problem 26938

Find the relative max and min of f(x)=x3+12x2+2f(x)=x^{3}+12x^{2}+2 using the first-derivative test. What is f(x)f^{\prime}(x)?

See Solution

Problem 26939

Find the relative maximum and minimum points of the function f(x)=x3+12x2+45x+1f(x)=x^{3}+12 x^{2}+45 x+1 using the first derivative test.

See Solution

Problem 26940

Find the relative max and min of the function f(x)=x3+12x2+2f(x)=x^{3}+12x^{2}+2 using the first-derivative test. First, find f(x)f^{\prime}(x).

See Solution

Problem 26941

Find where f(x)f(x) is increasing if f(x)=x32x2+xf'(x)=x^3-2x^2+x. Options: A. (0,1)(0,1) B. (0,)(0, \infty) C. (,0)(-\infty, 0) D. (13,1)\left(\frac{1}{3}, 1\right) E. (,13),(1,)\left(-\infty, \frac{1}{3}\right),(1, \infty).

See Solution

Problem 26942

Bestimme die Ableitung gg von f(x)=(2x1)cos(x)f(x)=(2x-1)\cdot\cos(x).

See Solution

Problem 26943

Find the relative maximum and minimum points of the function f(x)=x3+6x2+4f(x)=x^{3}+6x^{2}+4 using the first-derivative test.

See Solution

Problem 26944

Solve the differential equation: dydx=4y+2x+32y+x+5\frac{d y}{d x}=\frac{4 y+2 x+3}{2 y+x+5}.

See Solution

Problem 26945

Which statements about limits of lnx\ln x are true? I. limxlnx=\lim _{x \rightarrow \infty} \ln x=\infty, II. limx1lnx=0\lim _{x \rightarrow 1} \ln x=0, III. limx0+lnx=0\lim _{x \rightarrow 0^{+}} \ln x=0. Choose A-E.

See Solution

Problem 26946

A balloon rises at 8ft/sec8 \mathrm{ft/sec} from 150ft150 \mathrm{ft} away. How fast is the distance to the balloon increasing at 50ft50 \mathrm{ft}?

See Solution

Problem 26947

Find the limit: limxx2ex=\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}= (A) 0 (B) 1 (C) -e (D) e (E) Does not exist.

See Solution

Problem 26948

A quantity starts at 180 and decays at 70%70\% per minute. Find its value after 333 seconds, rounded to the nearest hundredth.

See Solution

Problem 26949

A stone creates ripples in a pond. If the radius grows at 1.5ft/sec1.5 \mathrm{ft} / \mathrm{sec}, find the area increase rate when radius is 3 ft.

See Solution

Problem 26950

A 6 ft tall man is 10 ft from an 18 ft light pole, walking at 1 ft/sec. Find the rates of his shadow's length and tip movement.

See Solution

Problem 26951

A quantity starts at 2300 and grows at 45%45\% per minute. Find its value after 0.2 hours, rounded to two decimal places.

See Solution

Problem 26952

Untersuche die Stetigkeit der Funktion f(x)={cos1x,x<0x2+1,x0.f(x)=\left\{\begin{array}{cc}\cos \frac{1}{x}, & x<0 \\ x^{2}+1, & x \geq 0.\end{array}\right. an x0=0x_{0}=0. Was ist korrekt an der Argumentation? Was muss allgemein gezeigt werden? Ist das Ergebnis korrekt?

See Solution

Problem 26953

Ben launches a potato to 17 m. What is its velocity when it hits the ground? Use g=9.8ms2g = 9.8 \frac{\mathrm{m}}{\mathrm{s}^{2}}.

See Solution

Problem 26954

Gegeben die Funktionenschar fa(a>0)f_{a}(a>0), finde die Ableitung und die Steigung bei x=0x=0. Wann ist die Steigung 11?

See Solution

Problem 26955

Bestimme die Asymptotengleichung für den Graphen von f(x)=x2e3x+5f(x)=x^{2} \cdot e^{-3 x}+5.

See Solution

Problem 26956

Find the derivative P(t)P^{\prime}(t) of the function P(t)=50000(0.98)tP(t) = 50000(0.98)^{t}.

See Solution

Problem 26957

Find the derivative of the function ex/2e^{x / 2} with respect to xx.

See Solution

Problem 26958

Graph the car's velocity v(t)=120(10.85t)v(t)=120(1-0.85^{t}) and describe its acceleration.

See Solution

Problem 26959

Find the max effectiveness E(t)=0.5[10+te15]E(t)=0.5\left[10+t e^{-\frac{1}{5}}\right] for studying up to 30 hours.

See Solution

Problem 26960

Find the horizontal asymptote of f(x)=5x2+34x25f(x)=\frac{5 x^{2}+3}{4 x^{2}-5}. Choose A, B, or C and fill in the boxes if needed.

See Solution

Problem 26961

Find the value of bb for which limx2bx2+15x+15+bx2+x2\lim _{x \rightarrow-2} \frac{b x^{2}+15 x+15+b}{x^{2}+x-2} exists, and determine the limit.

See Solution

Problem 26962

Evaluate the integral: 022y2+y20dy=02dy\int_{0}^{2} \frac{2}{y^{2}+y-20} dy = \int_{0}^{2} \square dy.

See Solution

Problem 26963

Berechne die Ableitung von f(x)=1x2+1f(x)=\frac{1}{x^{2}+1} und vereinfache das Ergebnis.

See Solution

Problem 26964

Evaluate the integral using trigonometric substitution: dxx2256,x>16\int \frac{d x}{\sqrt{x^{2}-256}}, x>16.

See Solution

Problem 26965

Find the value of tt for the function y=3cos(tπ)+2y=3 \cos (t-\pi)+2 where the rate of change is 0. Options: a. 0, b. π2\frac{\pi}{2}, c. π3\frac{\pi}{3}, d. π4\frac{\pi}{4}.

See Solution

Problem 26966

Find how many terms of the series k=1(1)kk6\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{6}} are needed for the remainder to be < 10310^{-3}.

See Solution

Problem 26967

Untersuchen Sie das Verhalten der Funktionen für x+x \rightarrow+\infty und xx \rightarrow-\infty für die folgenden Fälle: a) f(x)=xexf(x)=x \cdot e^{x} b) f(x)=x3exf(x)=x^{3} \cdot e^{-x} c) f(x)=ex+4f(x)=e^{x}+4 d) f(x)=3xexf(x)=3-x \cdot e^{x} e) f(x)=1000e0,1x4f(x)=1000 \cdot e^{-0,1 x}-4 f) f(x)=xe2x+1f(x)=x \cdot e^{2 x+1}

See Solution

Problem 26968

Finde die erste Ableitung von f(x)=2x1f(x)=\sqrt{2x-1} und vereinfache das Ergebnis.

See Solution

Problem 26969

Ein Patient nimmt 6mg6 \mathrm{mg} eines Medikaments. a. Formuliere den exponentiellen Abbau. b. Nach wie vielen Tagen sind noch 3mg3 \mathrm{mg}?

See Solution

Problem 26970

Berechne die erste Ableitung von f(x)=2cos(x2)f(x) = 2 \cos(x^{2}) und vereinfache das Ergebnis.

See Solution

Problem 26971

Bestimme die Länge eines Tigerpythons mit l(t)=3,53,1e0,02tl(t)=3,5-3,1 \cdot e^{-0,02 t}. Beantworte Fragen a) bis e).

See Solution

Problem 26972

Bestimmen Sie die Ableitungen der Funktionen: a) f(x)=(5x+0,5x3)4f(x)=(5x+0,5x^{3})^{4}, b) f(x)=e3xx+1f(x)=\frac{e^{3x}}{x+1}, c) f(x)=ex2xf(x)=e^{x^{2}} \cdot \sqrt{x}.

See Solution

Problem 26973

Graph the car's velocity v(t)=120(10.85t)v(t)=120(1-0.85^{t}) and describe its acceleration.

See Solution

Problem 26974

Find the limits:
1. limx(8x)\lim_{x \to \infty} \left(-\frac{8}{x}\right)
2. limx(8x)\lim_{x \to -\infty} \left(-\frac{8}{x}\right)

See Solution

Problem 26975

What is the effect on f(x)=(x1)2+1f(x)=(x-1)^{2}+1 when it becomes f(x)=12((x1)2+1)f^{\prime}(x)=\frac{1}{2}\left((x-1)^{2}+1\right)?

See Solution

Problem 26976

Find the limit: limx0ex1x\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}.

See Solution

Problem 26977

A cylindrical tank with radius A meters fills with water at 3 m³/min. Find the height increase rate and leak amount in 5 min.

See Solution

Problem 26978

Evaluate the limit: limx0(1+3sinx)1/x\lim _{x \rightarrow 0}(1+3 \sin x)^{1 / x}.

See Solution

Problem 26979

Evaluate the limit: limx0(1+3sinx)1/x\lim _{x \rightarrow 0}(1+3 \sin x)^{1 / x}.

See Solution

Problem 26980

Calculate how many mL of ice-water you need to consume to expend 150 calories from a 1 oz bag of chips. Is 700 mL enough?

See Solution

Problem 26981

Find the interval of convergence for the series n=1cos(πn)nn2+1(x+2)n\sum_{n=1}^{\infty} \cos (\pi n) \frac{n}{n^{2}+1}(x+2)^{n}.

See Solution

Problem 26982

Bestimme die Steigung der Funktion f(x)=12x23xf(x)=\frac{1}{2} x^{2}-3 x an der Stelle x=4x=4.

See Solution

Problem 26983

Find the derivative of f(x)=x32+eexf(x)=\frac{x}{3}-2+e \cdot e^{x}.

See Solution

Problem 26984

Approximate 4.64 4.6^4 using the tangent line of f(x)=x6 f(x) = x^6 at x=5 x=5 with m=3125 m=3125 . Find b b .

See Solution

Problem 26985

Rotate the area between y=xy=x, x2+y2=1x^{2}+y^{2}=1, and the xx-axis in the first quadrant about the yy-axis.
(a) Set up the volume integral with respect to yy. (b) Find the probability that a point's yy-coordinate is greater than 12\frac{1}{2}. (c) What is the probability that the yy-coordinate is exactly 12\frac{1}{2}?

See Solution

Problem 26986

Find the horizontal asymptote of the function x2+10x+20x\sqrt{x^{2}+10x+20}-x. What is y=y=?

See Solution

Problem 26987

Bestimme kk für 5900 Füchse, finde den Zeitpunkt für 5000 Füchse, langfristige Anzahl und interpretiere p(20)p(25)p(20)-p(25).

See Solution

Problem 26988

Bewerten Sie 10 Aussagen als "wahr" oder "unwahr" und notieren Sie Punkte: 2 für richtig, -2 für falsch, 0 für keine Antwort.

See Solution

Problem 26989

Bestimme die Ableitungen der Funktionen: a) f(x)=5e7x2+4xf(x)=5 e^{7 x^{2}+4 x}, b) g(x)=(2x47x)(x3+x)g(x)=(2 x^{4}-7 x)(x^{3}+x), c) h(x)=3(2x4+7)13h(x)=3(2 x^{4}+7)^{13}, d) j(x)=e5x(2x3+2)4j(x)=e^{5 x}(2 x^{3}+2)^{4}.

See Solution

Problem 26990

Find the average slope of f(x)=2x39x260x+1f(x)=2 x^{3}-9 x^{2}-60 x+1 on (5,7)(-5,7) and list values cc where f(c)=0f'(c)=0.

See Solution

Problem 26991

Find the horizontal asymptote of the function x2+9x+12x\sqrt{x^{2}+9 x+12}-x. What is y=y=?

See Solution

Problem 26992

Find the average slope of f(x)=2x39x260x+1f(x)=2 x^{3}-9 x^{2}-60 x+1 on (5,7)(-5,7) and list all cc where f(c)=0f^{\prime}(c)=0.

See Solution

Problem 26993

Entscheide, ob die Aussagen wahr oder unwahr sind. Punkte: richtig: 2, falsch: -2, keine: 0. Aussagen: a) Wendestellen und Ableitungen, b) Wendestellen zwischen Extremstellen, c) Funktion 8. Grades max. 6 Wendestellen, d) n-te Ableitung ist 0, e) Ableitung gibt Geschwindigkeit, f) Sekante durch 3 Punkte, g) Ableitung f(x)=axnf(x)=a \cdot x^{n} ist f(x)=anxn1f^{\prime}(x)=\frac{a}{n} \cdot x^{n-1}, h) Tangente schneidet Graph, i) zweite Ableitung gibt Steigung der ersten an, j) Sattelpunkte haben Steigung 0, Vorzeichen ändert sich nicht.

See Solution

Problem 26994

Find the derivative of the function f(x)=2x3f(x) = 2 \cdot x^{-3}.

See Solution

Problem 26995

i) Die zweite Ableitung zeigt die Steigung der ersten Ableitung. \square wahr \square unwahr
j) An Sattelpunkten ist die Steigung Null, ändert sich aber nicht. \square wahr \square unwahr

See Solution

Problem 26996

Find the height hh (1000 < h < 20000) that minimizes the operating cost C=4000+h15+15000000hC = 4000 + \frac{h}{15} + \frac{15000000}{h}. What is the minimum cost?

See Solution

Problem 26997

Zeichnen Sie die Ableitungen der Funktionen f(x)=3xf(x) = 3^{x}, f(x)=2xf(x) = 2^{x} und f(x)=exf(x) = e^{x} in einem Koordinatensystem.

See Solution

Problem 26998

Find the electric potential at point PP above a charged ring with r=1.0mr=1.0 \, \mathrm{m} and d=75cmd=75 \, \mathrm{cm}. Choices: a) 25V-25 \, \mathrm{V}, b) 9.0V9.0 \, \mathrm{V}, c) 11V11 \, \mathrm{V}, d) 15V15 \, \mathrm{V}, e) 34V34 \, \mathrm{V}.

See Solution

Problem 26999

Is g(x)=2x310xg(x)=2 x^{3}-10 x decreasing at x=1x=1? Use calculus to explain your answer.

See Solution

Problem 27000

Finde die Ableitung von f(t)=t2e12t+5f(t) = t^{2} \cdot e^{\frac{1}{2} t} + 5.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord