Calculus

Problem 1001

Find the interval of convergence for the series n=1(x1)n3n\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{3^{n}}.

See Solution

Problem 1002

Identify the true statement about the function f(x)=(x3)(x7)2f(x)=(x-3)(x-7)^{2} from the options given.

See Solution

Problem 1003

Sketch the graph of the piecewise function and find the limits:
1. For f(x)={sinxx<0x20x<2xx2f(x) = \begin{cases} \sin x & x < 0 \\ x^2 & 0 \leq x < 2 \\ x & x \geq 2 \end{cases}, find: i. limx0f(x)\lim_{x \to 0} f(x) ii. limx2f(x)\lim_{x \to 2} f(x)
2. For f(x)={exx0x+10<x<1lnxx1f(x) = \begin{cases} e^x & x \leq 0 \\ |x| + 1 & 0 < x < 1 \\ \ln x & x \geq 1 \end{cases}, find: i. limx0f(x)\lim_{x \to 0} f(x) ii. limx1f(x)\lim_{x \to 1} f(x)

See Solution

Problem 1004

Find the slope of the tangent line to f1f^{-1} at the point (1,1)(1,-1) for f(x)=(x+2)2f(x)=(x+2)^{2} where x2x \geq-2. The slope is \square.

See Solution

Problem 1005

Find the limit: limx4x22x246x2+23x4\lim _{x \rightarrow-4} \frac{x^{2}-2 x-24}{6 x^{2}+23 x-4}.

See Solution

Problem 1006

Find the derivative f(90)f'(90^\circ) for the function f(x)=sinx3cosxf(x) = \sin x - 3 \cos x.

See Solution

Problem 1007

Find f(90)f'(90^{\circ}) for f(x)=sinx3cosxf(x) = \sin x - 3\cos x and evaluate 3limx0cos2x11cosx13 \lim_{x \rightarrow 0} \frac{\cos 2x - 11}{\cos x - 1}.

See Solution

Problem 1008

Find the limit: limx(x+423x)3\lim _{x \rightarrow \infty}\left(\frac{x+4}{2-3 x}\right)^{3}.

See Solution

Problem 1009

Find the limit as xx approaches infinity of (x+423x)3\left(\frac{x+4}{2-3 x}\right)^{3}.

See Solution

Problem 1010

Find the limit: lima1a3aa21\lim _{a \rightarrow 1} \frac{a^{3}-a}{a^{2}-1}.

See Solution

Problem 1011

Find the limit as xx approaches -3 for the expression x2+9x+18x+3\frac{x^{2}+9x+18}{x+3}.

See Solution

Problem 1012

Find the limit: limx03x3x+648\lim _{x \rightarrow 0} \frac{-3 x}{\sqrt{3 x+64}-8}.

See Solution

Problem 1013

Find the limit: limx3x294x+12\lim _{x \rightarrow-3} \frac{x^{2}-9}{4 x+12}.

See Solution

Problem 1014

수렴하는 수열을 고르세요: ᄀ. {12n+1}\left\{\frac{1}{2 n+1}\right\}, ㄴ. {(1)nn}\left\{\frac{(-1)^{n}}{n}\right\}, ᄃ. {(1)n+2}\left\{(-1)^{n}+2\right\}.

See Solution

Problem 1015

A conical water tank has a semi-vertical angle of tan134\tan^{-1} \frac{3}{4}. Water is added at 6 m³/hour. Find the rate of increase of the wet curved surface area (m²/hour) when the water depth is 4 m.

See Solution

Problem 1016

Find f(12)f^{\prime}(-12) if the tangent line at (12,9)(-12,-9) passes through (1,46)(-1,46). f(12)=f^{\prime}(-12)=

See Solution

Problem 1017

Find the average rate of change of f(x)=1x+2f(x)=\frac{1}{x+2} on [8,8+h][8,8+h]. Express your answer in terms of hh.

See Solution

Problem 1018

Find the derivative f(0)f^{\prime}(0) for the function f(x)=6+2x3x2f(x)=6+2x-3x^{2} using the definition of the derivative.

See Solution

Problem 1019

Find the slope of the tangent line to f(x)=3x2f(x)=3x^{2} at x=3x=3 using the limit definition of the derivative. Evaluate:
1. f(3+h)=f(3+h)=
2. f(3+h)f(3)=f(3+h)-f(3)=
3. f(3+h)f(3)h=\frac{f(3+h)-f(3)}{h}=
4. limh0f(3+h)f(3)h=\lim_{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=

Then, find f(3)=f^{\prime}(3)=

See Solution

Problem 1020

Find the average rate of change of f(x)=x36x+4f(x)=x^{3}-6 x+4 for the intervals: (a) -7 to -4, (b) -2 to 2, (c) 2 to 7.

See Solution

Problem 1021

Given F(x)=x4+2x2+224F(x)=-x^{4}+2 x^{2}+224, find if FF is even/odd, a second local max, and the area from x=4x=-4 to x=0x=0.

See Solution

Problem 1022

Find the instantaneous velocity of the object at t=2t=2 for the location function L(t)=3t25t3L(t)=-3 t^{2}-5 t-3. Compute L(2+h)L(2+h), average velocity, and then the limit as h0h \to 0.

See Solution

Problem 1023

Find the instantaneous velocity of the object at t=7t=7 for s(t)=12t5s(t)=\frac{1}{2t-5} using limits.

See Solution

Problem 1024

Find the instantaneous velocity of the object at t=5t=5 for s(t)=4t3s(t)=\sqrt{4t-3} using limits and exact values.

See Solution

Problem 1025

Find the instantaneous velocity of the object at t=4t=4 for s(t)=2t25t2s(t)=-2t^{2}-5t-2. Compute s(4+h)s(4+h) and average velocity.

See Solution

Problem 1026

Find the slope of the tangent line to f(x)=3x2f(x)=3 x^{2} at x=4x=4 using the limit definition of the derivative.

See Solution

Problem 1027

For the function F(x)=x4+4x2+192F(x)=-x^{4}+4 x^{2}+192, find if FF is even/odd, a second local max, and area from x=4x=-4 to x=0x=0.

See Solution

Problem 1028

A ball is dropped from a 94 ft building. Find the time to fall half the distance and to ground level: (a) t=t= sec, (b) t=t= sec.

See Solution

Problem 1029

A ball drops from a 94 ft building. (Round to 3 decimal places.) (a) Time to fall half distance? t=1.8 t=1.8 (b) Time to reach ground? t=2.4 t=2.4

See Solution

Problem 1030

Find all numbers xx in (1,2)(-1,2) where f(x)=3x2+4x1f'(x)=3x^2+4x-1 equals the average rate of change of f(x)=x3+2x2x+6f(x)=x^3+2x^2-x+6.

See Solution

Problem 1031

Show that if y=5+xxy=\frac{5+\sqrt{x}}{\sqrt{x}}, then 6dydx+4xd2ydx2=06 \frac{d y}{d x}+4 x \frac{d^{2} y}{d x^{2}}=0.

See Solution

Problem 1032

Differentiate the following functions:
1. Constants and powers: (a) ddx(7)\frac{d}{d x}(7) (b) ddx(ln3)\frac{d}{d x}(\ln 3) (c) ddx(x3)\frac{d}{d x}(x^{3}) (d) ddx(1x8)\frac{d}{d x}(\frac{1}{x^{8}}) (e) ddx(4x5)\frac{d}{d x}(4x^{5})

2. Find dydx\frac{d y}{d x} for: (a) y=(x+3)(2x2+4)y=(x+3)(2x^{2}+4) (b) y=3x27x4x3y=\frac{3x^{2}-7x-4}{x^{3}} (c) y=(4x1)2(x23)y=(4x-1)^{2}(x^{2}-3) (product rule) (d) y=x2x+4y=\frac{x-2}{x+4} (quotient rule) (e) y=e3xxy=\frac{e^{3x}}{x} (f) y=log2xy=\log_{2} x (g) y=ln(4+9x2)y=\ln(4+9x^{2})
3. For y=3x7y=\sqrt{3x-7}, find: (a) dydx\frac{d y}{d x} (b) d2ydx2\frac{d^{2} y}{d x^{2}}

See Solution

Problem 1033

Find the partial derivatives fx\frac{\partial f}{\partial x} and fy\frac{\partial f}{\partial y} for these functions: (a) f(x,y)=(x21)(y+2)f(x, y)=(x^{2}-1)(y+2) (b) f(x,y)=ex+y+1f(x, y)=e^{x+y+1} (c) f(x,y)=ln(x+y)f(x, y)=\ln (x+y)

See Solution

Problem 1034

Find the limit as xx approaches infinity for x22x\frac{x^{2}}{2^{x}}. Evaluate f(x)=x22xf(x)=\frac{x^{2}}{2^{x}} for x=0,1,,100x=0,1,\ldots,100.

See Solution

Problem 1035

Find the limit as xx approaches infinity for x2+6\sqrt{x^{2}+6}.

See Solution

Problem 1036

Find the horizontal asymptote of the Michaelis-Menten equation for chymotrypsin: v=0.17[ S]0.021+[S]v=\frac{0.17[\mathrm{~S}]}{0.021+[\mathrm{S}]}.

See Solution

Problem 1037

Find the limit: limx(25x2+x5x)\lim _{x \rightarrow \infty}\left(\sqrt{25 x^{2}+x}-5 x\right). If it doesn't exist, enter DNE.

See Solution

Problem 1038

Find the horizontal asymptote of the Michaelis-Menten equation for chymotrypsin: v=0.17[S]0.021+[S]v=\frac{0.17[S]}{0.021+[S]}. What does it indicate?

See Solution

Problem 1039

Find the horizontal asymptote of the Michaelis-Menten equation for chymotrypsin: v=0.17[ S]0.021+[S]v=\frac{0.17[\mathrm{~S}]}{0.021+[\mathrm{S}]}. What does it signify?

See Solution

Problem 1040

Bertalanffy growth function:
1. Find limtL(t)\lim_{t \rightarrow \infty} L(t) and interpret.
2. With L0=1 cmL_{0}=1 \mathrm{~cm}, LT=38 cmL_{T}=38 \mathrm{~cm}, graph L(t)L(t) for various kk.

See Solution

Problem 1041

Find limtB(t)\lim_{t \rightarrow \infty} B(t) for the biomass model B(t)=9×1071+3e0.72tB(t)=\frac{9 \times 10^{7}}{1+3 e^{-0.72 t}}. What does this limit mean?

See Solution

Problem 1042

Evaluate f(x)=x23xx2x6f(x)=\frac{x^{2}-3 x}{x^{2}-x-6} at x=3.5,3.1,...,2.999x=3.5,3.1,...,2.999 and find limx3f(x)0.600000\lim_{x \to 3} f(x) \approx 0.600000.

See Solution

Problem 1043

Evaluate f(x)=x28xx27x8f(x)=\frac{x^{2}-8 x}{x^{2}-7 x-8} at x=0,0.5,0.9,0.95,0.99,0.999,2,1.5,1.1,1.01,1.001x=0,-0.5,-0.9,-0.95,-0.99,-0.999,-2,-1.5,-1.1,-1.01,-1.001. Find limx1f(x)\lim_{x \to -1} f(x) to six decimal places.

See Solution

Problem 1044

Find the tangent line equation for the polar curve r=3cosθr=3 \cos \theta at θ=π3\theta=\frac{\pi}{3}.

See Solution

Problem 1045

Find the slope of the tangent line for r=3cosθr=3 \cos \theta at θ=π3\theta=\frac{\pi}{3}.

See Solution

Problem 1046

Find the average rate of change of f(x)=2x3+4x+7f(x)=-2 x^{3}+4 x+7 on [1,3][-1,3]. Is it even, odd, or neither?

See Solution

Problem 1047

Find aa so that limxax3+4x2x13x3+x29=5\lim_{{x \rightarrow \infty}} \frac{ax^{3}+4x^{2}-x-1}{3x^{3}+x^{2}-9} = -5.

See Solution

Problem 1048

An automobile accelerated from rest to 345.6 m/s345.6 \mathrm{~m/s} in 3.07 s3.07 \mathrm{~s}. What distance did it travel?

See Solution

Problem 1049

How long does it take for a football to fall 1719 m1719 \mathrm{~m} on Mars? (g=3.72 m/s2)(\mathrm{g}=3.72 \mathrm{~m}/\mathrm{s}^2)?

See Solution

Problem 1050

Find the integral of cos(t)sin2(t)\frac{\cos (t)}{\sin ^{2}(t)} with respect to tt.

See Solution

Problem 1051

Find the integral of sin(t)cos2(t)\frac{\sin (t)}{\cos ^{2}(t)} with respect to tt.

See Solution

Problem 1052

Evaluate the integral t5ln(t)dt\int t^{5} \ln (t) \, dt.

See Solution

Problem 1053

Find the limit: limx2[f(x)+5g(x)]\lim _{x \rightarrow 2}[f(x)+5 g(x)] given limx2f(x)=9\lim _{x \rightarrow 2} f(x)=9 and limx2g(x)=5\lim _{x \rightarrow 2} g(x)=-5.

See Solution

Problem 1054

Evaluate the limit: limx3x2+3xx25x24\lim _{x \rightarrow-3} \frac{x^{2}+3 x}{x^{2}-5 x-24} (Enter DNE if it doesn't exist.)

See Solution

Problem 1055

Evaluate the limit: limx2x2+6x+4x2\lim _{x \rightarrow 2} \frac{x^{2}+6 x+4}{x-2}. If it doesn't exist, enter DNE.

See Solution

Problem 1056

Find the limit: limu5u+5u3+125\lim _{u \rightarrow-5} \frac{u+5}{u^{3}+125}. Simplify and evaluate the limit, or state DNE.

See Solution

Problem 1057

Find the limit: limu5u+5u3+125\lim _{u \rightarrow-5} \frac{u+5}{u^{3}+125} and simplify the expression.

See Solution

Problem 1058

Find the limit: limx22xx+22\lim _{x \rightarrow 2} \frac{2-x}{\sqrt{x+2}-2}. Simplify and evaluate if possible.

See Solution

Problem 1059

Evaluate the limit: limh0(h4)216h\lim _{h \rightarrow 0} \frac{(h-4)^{2}-16}{h}. If it doesn't exist, write DNE.

See Solution

Problem 1060

Find the limit: limx22xx+22\lim _{x \rightarrow 2} \frac{2-x}{\sqrt{x+2}-2} and simplify the expression.

See Solution

Problem 1061

Find the limit: limx22xx+22\lim _{x \rightarrow 2} \frac{2-x}{\sqrt{x+2}-2} and simplify to limx2(x+2+2x)\lim _{x \rightarrow 2}(\sqrt{x+2}+2 x).

See Solution

Problem 1062

Evaluate the limits and value for the piecewise function g(x)g(x) at x=1x=1 and x=2x=2.

See Solution

Problem 1063

Find the limit as tt approaches 0 from the right of log(t)\log(t).

See Solution

Problem 1064

Find δ\delta such that if x4<δ|x-4|<\delta, then x2<0.4|\sqrt{x}-2|<0.4 for the function f(x)=xf(x)=\sqrt{x}.

See Solution

Problem 1065

Find the limit: limt0ln(t)\lim _{t \rightarrow 0^{-}} \ln (-t)

See Solution

Problem 1066

Calculate the limit: limt5+ln(t5)\lim _{t \rightarrow 5^{+}} \ln (t-5).

See Solution

Problem 1067

Find the largest δ\delta for ε=0.2\varepsilon=0.2 and ε=0.1\varepsilon=0.1 in the limit limx2(x35x+5)=3\lim _{x \rightarrow 2}(x^{3}-5 x+5)=3. Round to four decimal places.

See Solution

Problem 1068

Find δ\delta for ε=0.1\varepsilon=0.1 in the limit: limx63x4=22\lim _{x \rightarrow 6}-3 x-4=-22.

See Solution

Problem 1069

Prove that limx8(17x+6)=507\lim _{x \rightarrow 8}\left(\frac{1}{7} x+6\right)=\frac{50}{7} by finding δ\delta in terms of ε\varepsilon.

See Solution

Problem 1070

Find δ\delta for f(x)=x23f(x)=x^{\frac{2}{3}} as x1x \to 1 with ε=0.001\varepsilon=0.001 such that f(x)L<ε|f(x)-L|<\varepsilon.

See Solution

Problem 1071

Prove that limx6(17x9)=577\lim _{x \rightarrow 6}\left(\frac{1}{7} x-9\right)=-\frac{57}{7} by finding δ\delta for any ε>0\varepsilon>0.

See Solution

Problem 1072

Find the largest δ\delta for limx2(x35x+5)=3\lim _{x \rightarrow 2}\left(x^{3}-5 x+5\right)=3 with ε=0.2\varepsilon=0.2 and ε=0.1\varepsilon=0.1. Round to four decimal places.

See Solution

Problem 1073

Find the limit: limx2(9x63x210x+89x+244x29x+2)\lim _{x \rightarrow 2}\left(\frac{9 x-6}{3 x^{2}-10 x+8}-\frac{9 x+24}{4 x^{2}-9 x+2}\right).

See Solution

Problem 1074

Find the values of xx where f(x)=8x+5f(x)=8x+5 has a local maximum. Options: A. x=x= (integers), B. No local maximum.

See Solution

Problem 1075

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=6x+5f(x)=-6x+5, with h0h \neq 0. Simplify your answer.

See Solution

Problem 1076

Find the difference quotient of f(x)=1x+2f(x)=\frac{1}{x+2} and simplify.

See Solution

Problem 1077

Determine the marginal cost from the cost function C(x,y)=240,000+6,000x+4,000yC(x, y) = 240,000 + 6,000x + 4,000y.

See Solution

Problem 1078

Given the function f(x)={2x+18 if x<6x+42 if x>62 if x=6f(x)=\left\{\begin{array}{lll}2 x+18 & \text { if } & x<-6 \\ \sqrt{x+42} & \text { if } & x>-6 \\ 2 & \text { if } & x=-6\end{array}\right., determine the truth of the following statements about f(6)f(-6) and its limits.

See Solution

Problem 1079

Find h(5)h^{\prime}(-5) if h(x)=f(x)g(x)h(x)=f(x)-g(x), given f(5)=8,f(5)=2,g(5)=3,g(5)=5f(-5)=8, f'(-5)=-2, g(-5)=3, g'(-5)=5.

See Solution

Problem 1080

Find the integral of 1x2x+1\frac{1}{x^{2}-x+1} with respect to xx.

See Solution

Problem 1081

Find the limit of the fish length model L(t)=LT(LTL0)ektL(t)=L_{T}-\left(L_{T}-L_{0}\right) e^{-k t} as tt \to \infty.

See Solution

Problem 1082

Un cohete "Pioneer" alcanzó 125.000 km125.000 \mathrm{~km}. ¿Cuál es su velocidad al regresar a la atmósfera a 130 km130 \mathrm{~km}?

See Solution

Problem 1083

Demostrar que la serie n=1(sennx)/n2\sum_{n=1}^{\infty}(\operatorname{sen} n x) / n^{2} converge para todo xx, y que f(x)f(x) es continua en [0,π][0, \pi]. Luego, probar que 0πf(x)dx=2n=11(2n1)3\int_{0}^{\pi} f(x) d x=2 \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{3}}.

See Solution

Problem 1084

Find the limit as xx approaches 1 for the expression 23x2 - 3x.

See Solution

Problem 1085

Evaluate the limit: 107limx1(23x)=1107 \lim _{x \rightarrow 1}(2-3 x)=-1

See Solution

Problem 1086

Peter has 2000 yards of fencing. Find the rectangle dimensions that maximize the area and state the maximum area.

See Solution

Problem 1087

Calculate the horizontal distance a ball travels from a height of 7 feet before hitting the ground, rounding to the nearest tenth.

See Solution

Problem 1088

Find the value of kk for the function f(x)={x+33x1x2x2kx=2f(x)=\left\{\begin{array}{ll}\frac{\sqrt{x+3}-\sqrt{3 x-1}}{x-2} & x \neq 2 \\ k & x=2\end{array}\right. to be continuous.

See Solution

Problem 1089

Minimize marginal cost for C(x)=x2140x+7700C(x) = x^{2} - 140x + 7700. Find optimal xx and minimum cost.

See Solution

Problem 1090

Find limx0cos2x3\lim _{x \rightarrow 0} \frac{\cos 2 x}{3}. Choose from: A) 0 B) 13\frac{1}{3} C) 23\frac{2}{3} D) does not exist.

See Solution

Problem 1091

Find the limit: 271limx+4x12x+1271 \lim _{x \rightarrow+\infty} \frac{4 x-1}{2 x+1}. What is the result?

See Solution

Problem 1092

Find the limit as xx approaches infinity for 4x12x+1\frac{4x - 1}{2x + 1}.

See Solution

Problem 1093

Find the slope of the tangent line to y=x3y=x^{3} at the point (1,1).

See Solution

Problem 1094

Estimate the slope of the tangent line to y=x1/2y=x^{1/2} at the point (1,1)(1,1).

See Solution

Problem 1095

Find dydx\frac{d y}{d x} using implicit differentiation for xy=35xy=35 at the point (5,7)(-5,-7). What is the slope?

See Solution

Problem 1096

Calculate the integral 15(x+2x2)dx\int_{1}^{5}\left(x+\frac{2}{x^{2}}\right) d x using the trapezium rule at x=1,2,3,4,5x=1,2,3,4,5, rounded to two decimal places.

See Solution

Problem 1097

Find the limit as xx approaches -2 for x3+8x+2\frac{x^{3}+8}{x+2}.

See Solution

Problem 1098

Does Lagrange's mean value theorem apply to f(x)=x1/3f(x)=x^{1/3} on [1,1][-1, 1]? What can we conclude?

See Solution

Problem 1099

Calculate the limit: limx+2x3(x31)\lim _{x \rightarrow+\infty} \frac{2-x}{3}(x^{3}-1).

See Solution

Problem 1100

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=x27x+2f(x)=x^{2}-7x+2, where h0h \neq 0.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord