Calculus

Problem 7801

Find the critical points of f(x)=xx2+49f(x)=\frac{x}{x^{2}+49} and calculate its derivative f(x)f'(x).

See Solution

Problem 7802

Find the horizontal asymptote y=ay=a for the velocity v(t)=185(1et6)v(t)=-185(1-e^{-\frac{t}{6}}) feet/sec. What is aa?

See Solution

Problem 7803

Find the derivative of f(x)=15x(3x+4)4+(3x+4)5f(x) = 15x(3x+4)^{4} + (3x+4)^{5}.

See Solution

Problem 7804

Find the critical points of the function f(x)=x2x+18f(x)=x^{2} \sqrt{x+18}. A. x=x= (comma-separated) B. No critical points.

See Solution

Problem 7805

Calculate the average rate of change of g(x)=6xg(x) = 6 \sqrt{x} from x=1x = 1 to x=5x = 5.

See Solution

Problem 7806

Find the velocity v(5)v(5) and acceleration a(5)a(5) for the position function s(t)=t23ts(t)=t^{2}-3t.

See Solution

Problem 7807

Find the acceleration of a particle at t=πt=\pi given its position x(t)=5sin2t+2cos3tx(t)=5 \sin 2t + 2 \cos 3t.

See Solution

Problem 7808

Calculate the average rate of change of g(x)=14x3g(x) = -14 x^{3} from x=1x = -1 to x=1x = 1.

See Solution

Problem 7809

Calculate the average rate of change of k(x)=2x215k(x) = 2x^2 - 15 from x=4x = 4 to x=5x = 5.

See Solution

Problem 7810

Calculate the average rate of change of k(x)=15xk(x) = \frac{15}{x} from x=7x = 7 to x=17x = 17.

See Solution

Problem 7811

Calculate velocity and acceleration at t=5t=5 s for s(t)=t42ts(t)=t^{4}-2t. Find v(5)=?v(5)=?

See Solution

Problem 7812

Calculate the average rate of change of k(x)=18x18k(x) = \frac{18}{x-18} from x=6x=6 to x=8x=8.

See Solution

Problem 7813

Find the velocity and acceleration of the body at t=π4t=\frac{\pi}{4} sec for the position function s=11sint+14costs=11 \sin t+14 \cos t.

See Solution

Problem 7814

Show that f(0)>0f^{\prime \prime}(0)>0 for m=2m=2 in Hill's equation: f(P)=P2k2+P2f(P)=\frac{P^{2}}{k^{2}+P^{2}}. Simplify.

See Solution

Problem 7815

A 5 ft ladder leans against a wall. If it slides away at 12ft/s12 \mathrm{ft/s}, how fast is the top falling when the foot is 3 ft from the wall?

See Solution

Problem 7816

Calculate the average rate of change of g(x)=2x4g(x) = 2x^{4} from x=1x = -1 to x=1x = 1.

See Solution

Problem 7817

Calculate the average rate of change of g(x)=3x+12g(x) = -3 \sqrt{x} + 12 from x=5x = 5 to x=7x = 7.

See Solution

Problem 7818

Find the smaller critical point, t1t_1, of the function F(t)=13t35t2+16t+29F(t)=\frac{1}{3} t^{3}-5 t^{2}+16 t+29.

See Solution

Problem 7819

Calculate the average rate of change of g(x)=18x+10g(x) = \frac{18}{x+10} from x=4x=4 to x=9x=9.

See Solution

Problem 7820

Find the absolute extreme values of f(x)=8x34xf(x)=8 x^{\frac{3}{4}}-x on [0,4096][0,4096]. Where are the max values?

See Solution

Problem 7821

Calculate the average rate of change of f(x)=2x+2f(x) = 2 \sqrt{x} + 2 on the interval [18,20][18, 20].

See Solution

Problem 7822

Why can't we use Rolle's Theorem for f(x)=xf(x)=|x| on [a,a][-a, a] where a>0a>0? Choose: A, B, C, or D.

See Solution

Problem 7823

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=2x2+3x2f(x)=-2 x^{2}+3 x-2, simplify your answer.

See Solution

Problem 7824

Calculate the average rate of change of f(x)=7x+17f(x) = 7 \sqrt{x + 17} from x=16x = -16 to x=12x = -12.

See Solution

Problem 7825

Find dy/dtd y / d t at x=3x=3 for y=x23xy=x^{2}-3 x with dx/dt=3d x / d t=3.

See Solution

Problem 7826

A rock creates a ripple in a pond. If the radius grows at 2ft/sec2 \mathrm{ft} / \mathrm{sec}, how fast is the area increasing at 6 ft?

See Solution

Problem 7827

Find the rate of change of the area of a circle as its radius increases at 7ft/sec7 \mathrm{ft/sec}, in terms of circumference CC.

See Solution

Problem 7828

A point moves on the curve 5x3+6y3=xy5 x^{3}+6 y^{3}=x y. At P=(111,111)P=\left(\frac{1}{11}, \frac{1}{11}\right), yy increases at 6 units/sec. Find the speed and direction of xx.

See Solution

Problem 7829

Find the population change in 2013 using the model P(t)=400(1.065)tP(t)=400(1.065)^{t} (thousands) since 2000.

See Solution

Problem 7830

Find the derivative of f(x)=52x+5ex+5x2f(x)=5 \cdot 2^{x}+5 e^{x}+5 x^{2}. Which option is correct?

See Solution

Problem 7831

Find the derivative of the function y=e(x22)y=e^{\left(x^{2}-2\right)}: dy/dx\mathrm{dy} / \mathbf{d x}.

See Solution

Problem 7832

Find the limits of s(x)=3x35x2+x9s(x)=3 x^{3}-5 x^{2}+x-9 as x±x \to \pm \infty. What do they approach?

See Solution

Problem 7833

Find points cc where the Mean Value Theorem holds for f(x)=x3f(x)=x^{3} on [2,2][-2,2]. What is c=\mathrm{c}=?

See Solution

Problem 7834

Find the volume decrease rate of a snowball with diameter 3 inches if its radius shrinks at 1in/min1 \mathrm{in} / \mathrm{min}.

See Solution

Problem 7835

Determine if the Mean Value Theorem applies to f(x)=3x2f(x)=-3-x^{2} on [2,1][-2,1] and find any guaranteed points.

See Solution

Problem 7836

A 10 ft pole casts Joe's shadow as he walks away at 4 ft/s. Find the speed of the shadow's tip when Joe is 11 ft away.

See Solution

Problem 7837

Check if the Mean Value Theorem applies to f(x)=x5f(x)=|x-5| on [5,11][-5,11] and find guaranteed points if it does.

See Solution

Problem 7838

Two cyclists leave at the same time: one goes north at 24mph24 \mathrm{mph}, the other east at 10mph10 \mathrm{mph}. Find the rate of distance change after 2 hours.

See Solution

Problem 7839

Given x4+y4=82x^{4}+y^{4}=82, find dydx\frac{d y}{d x} and the tangent line at (3,1)(3,-1).

See Solution

Problem 7840

Graph f(x)=16xx2+9f(x)=\frac{-16 x}{x^{2}+9}. Identify intervals of increase, decrease, max/min values, domain, and range.

See Solution

Problem 7841

A 48 cm wire is cut into two pieces to form squares.
(a) Find A(x)A(x), the total area of the squares in terms of xx. (b) Determine the side length xx that minimizes the area. (c) What is the minimum area of the squares?

See Solution

Problem 7842

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=x2+3x2f(x)=-x^{2}+3x-2, where h0h \neq 0.

See Solution

Problem 7843

Calculate the average rate of change of f(x)=x32x2+3xf(x)=x^{3}-2 x^{2}+3 x between x=1x=1 and x=2x=2. Simplify your answer.

See Solution

Problem 7844

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=7x+7f(x)=-7 x+7, where h0h \neq 0.

See Solution

Problem 7845

Find the rate of change of the balance A=5000e0.08tA=5000 e^{0.08 t} at t=1t=1, t=10t=10, and t=50t=50 years. Round to two decimal places.

See Solution

Problem 7846

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=2x22x+8f(x)=2x^{2}-2x+8, where h0h \neq 0.

See Solution

Problem 7847

Find the slope mm of the tangent to y=4+5x22x3y=4+5x^{2}-2x^{3} at x=ax=a where m=1m=1. Also, find tangent line equations at specified points.

See Solution

Problem 7848

Solve the integral π/2π/3sin(4x)cos4(4x)dx\int_{-\pi / 2}^{\pi / 3} \sin (4 x) \cos ^{4}(4 x) d x using u=cos(4x)u=\cos(4x). Find uu values at x=π/2x=-\pi/2 and x=π/3x=\pi/3.

See Solution

Problem 7849

Berechne den Flächeninhalt unter f(x)=x3f(x)=x^{3} von 0 bis 1.

See Solution

Problem 7850

Berechnen Sie den Flächeninhalt unter f(x)=13x2+43x+53f(x)=-\frac{1}{3} x^{2}+\frac{4}{3} x+\frac{5}{3} im Intervall [1,6][-1,6].

See Solution

Problem 7851

Berechne den Flächeninhalt unter f(x)=x2+2x+3f(x)=-x^{2}+2 x+3 und über der x-Achse von x=0.5x=0.5 bis x=3x=3.

See Solution

Problem 7852

Berechnen Sie den Flächeninhalt unter der Funktion f(x)=x34x2+3xf(x)=x^{3}-4 x^{2}+3 x im Intervall [0,3].

See Solution

Problem 7853

Find the derivative of z=(tan2tcos2tsint+12csctsin2t)2z=\left(\frac{\tan^{2} t \cos^{2} t}{\sin t}+\frac{1}{2} \csc t \sin 2 t\right)^{2} w.r.t. tt.

See Solution

Problem 7854

Analysiere die Besucherzahlen eines Vergnügungsparks mit f(x)=100(x10)e0,05x+10000f(x)=100(x-10)e^{-0,05x}+10000. Beantworte a) bis e).

See Solution

Problem 7855

Modellierung der Besucherzahlen im Freizeitpark: f(x)=100(x10)e0,05x+10000f(x)=100(x-10)e^{-0,05 x}+10000. Analysiere Verlauf, Maximum, Abnahme, Zunahme und Rentabilität.

See Solution

Problem 7856

Modelliere die Besucherzahlen f(x)=100(x10)e0,05x+10000f(x)=100(x-10)e^{-0,05x}+10000. Beantworte Fragen zu Verlauf, Maximum, Abnahme und Rentabilität.

See Solution

Problem 7857

Bestimme die Ableitungen der Funktionen: e) j(x)=sin(x)3x2j(x)=\frac{\sin (x)}{\sqrt{3 x-2}}, f) k(x)=(2x+3)3xk(x)=(2 x+3)^{3} \cdot \sqrt{x}.

See Solution

Problem 7858

Ein Behälter hat zu Beginn 2 m³ Öl. Bestimmen Sie die Ölmenge g(t)g(t) für t>0t>0 und die Zeit bis 2,5 m³ erreicht sind.

See Solution

Problem 7859

A rock is thrown on Mars with H=11t1.86t2H=11t-1.86t^{2}. Find its velocity after 2s, at t=at=a, when it hits ground, and impact velocity.

See Solution

Problem 7860

Skizzieren und berechnen Sie die Integrale: a) 241,5dt\int_{2}^{4} 1,5 \mathrm{dt} b) 0314xdx\int_{0}^{3} \frac{1}{4} x d x

See Solution

Problem 7861

Bestimmen Sie die Wendepunkte und die Steigung der Tangenten für die Funktionen: a) fa(x)=x3ax2f_{a}(x)=x^{3}-a x^{2}, b) fa(x)=a3xx2f_{a}(x)=\frac{a^{3}}{x}-x^{2}, c) fa(x)=x42ax2+1f_{a}(x)=x^{4}-2 a x^{2}+1.

See Solution

Problem 7862

Find the local extrema of the function fa(x)=ax3+4axf a(x)=-a \cdot x^{3}+4 a x across its entire domain.

See Solution

Problem 7863

Find the second derivative of fa(x)=ax3+4axf_{a}(x)=-a \cdot x^{3}+4 a x.

See Solution

Problem 7864

Untersuchen Sie die Funktion A(t)=10085eλtA(t)=100-85 \cdot e^{-\lambda-t} auf den Grenzwert für tt \to \infty. Bestimmen Sie λ\lambda für A(2)=80%A(2)=80\% und die Zeit für A(t)=90%A(t)=90\%.

See Solution

Problem 7865

Find the value of \300investedat9300 invested at 9% interest compounded continuously after 3 years. Use A(t)=P \bullet e^{r t}$.

See Solution

Problem 7866

Find the derivative of the function y=2x35y=2 \sqrt[5]{x^{3}}, expressed in radical form without negative exponents.

See Solution

Problem 7867

Find the derivative of the function f(x)=32xf(x)=\frac{3}{2 \sqrt{x}} and express it in radical form.

See Solution

Problem 7868

A particle's position is given by s(t)=t33t+1s(t)=t^{3}-3t+1. Find velocity, acceleration, and describe motion at t=0t=0 and t=2t=2.

See Solution

Problem 7869

A ball's height is given by s(t)=12tt3+1s(t)=12t-t^{3}+1. Find its release height, max height, velocity at t=0,1,3t=0,1,3, and total distance before hitting ground. A stone's height is s(t)=15t5t2s(t)=15t-5t^{2}. Find its max height and time to reach it.

See Solution

Problem 7870

1. A ball's height is given by s(t)=12tt3+1s(t)=12t-t^{3}+1. Find the release height, max height, and velocity at t=0,1,3t=0, 1, 3. Calculate total distance before hitting ground.
2. A stone's height is s(t)=15t5t2s(t)=15t-5t^{2}. Find the time for max height and the max height.
3. A diver's height is s(t)=10+5tt2s(t)=10+5t-t^{2}. Find the board height, time to hit water, and velocity/acceleration at impact.
4. A rocket's height is h(t)=h0+v0t4.9t2h(t)=h_{0}+v_{0}t-4.9t^{2}. With v0=50v_{0}=50, find max height and time to hit ground.
5. Analyze a velocity graph for walking east: find when still, moving east/west, moving quickly, and speeding up/slowing down.

See Solution

Problem 7871

Maximize monthly profit P=14x0.1x2200P=14x-0.1x^{2}-200. Find production level and maximum profit in \$ for (a) and (b).

See Solution

Problem 7872

A stone's height is given by s(t)=15t5t2s(t)=15t-5t^{2}. Find when it reaches max height and the max height.
A diver's height is s(t)=10+5tt2s(t)=10+5t-t^{2}. Find: a) height of the board, b) time to hit water, c) velocity and acceleration on impact.

See Solution

Problem 7873

Find the limit as xx approaches 2 for 4tan(3x6)3ln(3x5)\frac{4 \tan (3 x-6)}{3 \ln (3 x-5)} in simplest form.

See Solution

Problem 7874

Bestimme die Steigung der Kurve y=x35x2+6xy=x^{3}-5 x^{2}+6 x an ihrem Schnittpunkt mit der yy-Achse.

See Solution

Problem 7875

Find the derivative of f(x)=(4x8+6)4(12x6+5)3f(x)=(4 x^{8}+6)^{4}(12 x^{6}+5)^{3}.

See Solution

Problem 7876

Find the time when a stone projected with s(t)=15t5t2s(t)=15t-5t^{2} reaches its maximum height and the height itself.

See Solution

Problem 7877

Find the intervals where the function f(x)=5x3120x2+9x1f(x)=-5 x^{3}-120 x^{2}+9 x-1 is concave up or down.

See Solution

Problem 7878

Bestimme den Anstieg der Kurve y=x35x2+6xy=x^{3}-5 x^{2}+6 x an den Schnittpunkten mit der xx-Achse.

See Solution

Problem 7879

Find points of inflection for the function f(x)=5x3120x2+9x1f(x)=-5 x^{3}-120 x^{2}+9 x-1. Provide answers as (x,y)(x, y)-pairs.

See Solution

Problem 7880

Bestimmen Sie die Ableitung von f(t)=2tf(t)=\sqrt{\frac{2}{t}}.

See Solution

Problem 7881

Find f(1)f^{\prime}(1) if f(x+h)f(x)=2xh+h2+2hf(x+h)-f(x)=2 x h+h^{2}+2 h.

See Solution

Problem 7882

Find the function ff and the number aa for these limits representing derivatives: (a) limh0(1+h)51h\lim _{h \rightarrow 0} \frac{(1+h)^{5}-1}{h}, (b) limx52x32x5\lim _{x \rightarrow 5} \frac{2^{x}-32}{x-5}.

See Solution

Problem 7883

Find the tangent equation to the curve y=x4+2exy=x^{4}+2 e^{x} at the point where x=0x=0.

See Solution

Problem 7884

Find the derivative of y=(x2+1x21)3y=\left(\frac{x^{2}+1}{x^{2}-1}\right)^{3}.

See Solution

Problem 7885

Bestimmen Sie die Ableitung von f(t)=2t12f(t)=\sqrt{2} \cdot t^{-\frac{1}{2}}.

See Solution

Problem 7886

Find the derivative of the function y=8x3+x4y=8 x^{3}+x-4 with respect to xx: dydx\frac{d y}{d x}.

See Solution

Problem 7887

Find the derivative of f(g(x))f(g(x)) where f(x)=2xf(x)=\frac{2}{x} and g(x)=2x2g(x)=2-x^{2}.

See Solution

Problem 7888

Find the derivative of these functions: (a) y=(x2+1x21)3y=\left(\frac{x^{2}+1}{x^{2}-1}\right)^{3}, (b) y=excosxy=e^{x \cos x}, (c) [e(2x)tan(x2+1)]1/3\left[e^{(2 x)} \tan \left(x^{2}+1\right)\right]^{1 / 3}.

See Solution

Problem 7889

Find the derivative of f(g(x))f(g(x)) where f(x)=x4f(x)=x^{4} and g(x)=3x9g(x)=3 x-9. Compute ddxf(g(x))=\frac{d}{d x} f(g(x))=

See Solution

Problem 7890

Find the derivative dydx\frac{d y}{d x} for y=x3x+1y=x^{3} \sqrt{x+1} and simplify it.

See Solution

Problem 7891

Find the percentage of doctors prescribing the medication after 2 months using P(t)=100(1e0.39t)P(t)=100(1-e^{-0.39 t}). Also, calculate P(2)P^{\prime}(2) and interpret it. Choose the correct interpretation from the options provided.

See Solution

Problem 7892

Given the formula P(t)=100(1e0.39t)P(t)=100\left(1-e^{-0.39 t}\right), find the percentage of doctors prescribing after 2 months and P(2)P^{\prime}(2). Interpret P(2)P^{\prime}(2).

See Solution

Problem 7893

Find h(1)h^{\prime}(1) if h(x)=4+3f(x)h(x)=\sqrt{4+3 f(x)}, given f(1)=7f(1)=7 and f(1)=4f^{\prime}(1)=4.

See Solution

Problem 7894

Bestimme die Ableitung von f(t)=1sin(t)f(t)=\frac{1}{\sin (t)}.

See Solution

Problem 7895

Find the average rate of change of f(x)f(x) from x=6x=-6 (15) to x=1x=-1 (0). What is it over the interval [6,1][-6, -1]?

See Solution

Problem 7896

Find f(1)f^{\prime \prime}(1), f(8)f^{\prime \prime}(-8), and f(9)f^{\prime \prime}(-9) for f(x)=3x34x28xf(x)=3x^{3}-4x^{2}-8x.

See Solution

Problem 7897

Find points of inflection for the function f(x)=5x3120x2+9x1f(x)=-5 x^{3}-120 x^{2}+9 x-1. Provide your answer as (x,y)(x, y)-pairs.

See Solution

Problem 7898

Finde die Stammfunktion von f(x)=3xf(x)=3^{x} im Intervall I=[2,0]I=[-2, 0].

See Solution

Problem 7899

Find the derivative of f(x)=8x35x24xf(x)=-8 x^{3}-5 x^{2}-4 x.

See Solution

Problem 7900

Find the second derivative of the function f(x)=6x2f(x)=\sqrt{6 x-2}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord