Calculus

Problem 19601

Gegeben ist die Funktion f(x)=0,1x2f(x)=0,1 x^{2}. Berechne die Ableitung an x0=3x_{0}=3, die allgemeine Ableitung und die Tangentengleichung an x0=5x_{0}=5.

See Solution

Problem 19602

A ball is thrown up at 30ft/s30 \mathrm{ft/s} from a 145ft145 \mathrm{ft} cliff. Find its speed after 3 seconds. Gravity is 32ft/s2-32 \mathrm{ft/s}^2.

See Solution

Problem 19603

Which one indicates an upward direction: yy \rightarrow \infty or yy \rightarrow -\infty?

See Solution

Problem 19604

Find the tangent line equation to y(x)=9x8y(x)=9^{x-8} at the point (8,1)(8,1).

See Solution

Problem 19605

Estimate the area under f(x)=2x+1f(x)=\frac{2}{x+1} from x=1x=1 to x=7x=7 using 2 rectangles (upper sum). Round to the nearest tenth.

See Solution

Problem 19606

Analyze the graph of f(x)f^{\prime}(x) on [0,6][0,6] to answer:
a) When is f(x)f(x) increasing or decreasing? b) Find local extrema xx-coordinates. c) When is ff concave up or down? d) Identify points of inflection xx-coordinates.

See Solution

Problem 19607

Given a function ff on [3,4][-3,4] with f(0)=3f(0)=3 and ff' as a line segment and semicircle:
a) When is f(x)f(x) increasing or decreasing? Justify.
b) Find xx-coordinates of relative maxima. Justify.
c) When is ff concave up or down? Identify points of inflection. Justify.
d) Find the tangent line equation at (0,3)(0,3).

See Solution

Problem 19608

Determine if the series n=1(n!)2mnen2\sum_{n=1}^{\infty} \frac{(n !)^{2} m^{n}}{e^{n^{2}}} converges.

See Solution

Problem 19609

Examine the convergence of these series:
1) n=1(n!)2mnen2\sum_{n=1}^{\infty} \frac{(n !)^{2} m^{n}}{e^{n^{2}}}
2) n=1(1)nnn+5m\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{n+5 m}
3) n=1(nmn)n\sum_{n=1}^{\infty}\left(\frac{n-m}{n}\right)^{n}

See Solution

Problem 19610

Find the derivative dydx\frac{d y}{d x} for the function y=exxy=\frac{e^{x}}{x}.

See Solution

Problem 19611

Find the expression for the slope of the tangent line to f(x)=2x3exf(x)=-2 x^{3} e^{x}. Choices include: -6x2x^{2}, -6x2x^{2}exx, 6x2x^{2}exx-6x3x^{3}exx, -6x2x^{2}exx-2x3x^{3}exx.

See Solution

Problem 19612

Find the expression for the slope of the tangent line to the graph of f(x)=2x3exf(x)=-2 x^{3} e^{x}.

See Solution

Problem 19613

Investigate the convergence of the series: n=1(nmn)n\sum_{n=1}^{\infty}\left(\frac{n-m}{n}\right)^{n}.

See Solution

Problem 19614

Find the volume of the solid formed by rotating the region QQ between u(y)=y12u(y)=y^{\frac{1}{2}} and v(y)=1yv(y)=\frac{1}{y} from y=1y=1 to y=4y=4 around the yy-axis.

See Solution

Problem 19615

Find the area between y=9x2y=9-x^{2} (from 00 to 55) and y=1xy=\frac{1}{x} (from 22 to 66), counting below xx-axis as negative.

See Solution

Problem 19616

Evaluate the definite integral 06(x22)dx\int_{0}^{6}\left(x^{2}-2\right) d x. What is the result?

See Solution

Problem 19617

Évaluez l'intégrale suivante: x1+4xdx\int x \sqrt{1+4 x} \, dx

See Solution

Problem 19618

Find the derivative dy/dx\mathrm{dy} / \mathrm{dx} using implicit differentiation for the equation 2xyy2=12xy - y^2 = 1.

See Solution

Problem 19619

A particle moves with z=krz=k r, r=r0eCθr=r_{0} e^{C \theta}. Find r(t)r(t) at t=0t=0, compute velocity/acceleration, and curvature.

See Solution

Problem 19620

Find dydx\frac{d y}{d x} for y=12xsin2(t)t3dty=\int_{-1}^{2 x} \sin ^{2}(t) \sqrt[3]{t} d t.

See Solution

Problem 19621

Find the velocity, acceleration magnitudes of point M, curvature in terms of zz, and polar equation of projection H.

See Solution

Problem 19622

Find the average velocity of an object moving at 30 m/s30 \mathrm{~m/s} from t1=10st_1=10s to t2=30st_2=30s.

See Solution

Problem 19623

Evaluate the integral of 2xcos(x2)dx2x \cos(x^2) \, dx.

See Solution

Problem 19624

An apple drops from a building. What is its speed after 5 seconds? Use g=9.8 m/s2g=9.8 \mathrm{~m} / \mathrm{s}^{2}. Options: a) 14.8 b) 49 c) 2.0 d) 9.8

See Solution

Problem 19625

Find dydx\frac{d y}{d x} for y=2sin(x)t2etdty=\int_{2}^{\sin (x)} t^{2} e^{t} d t.

See Solution

Problem 19626

Evaluate the integral sec2(θ)tan2(θ)dθ\int \sec^2(\theta) \tan^2(\theta) d\theta.

See Solution

Problem 19627

Berechne die Steigung der Funktionen an den angegebenen Stellen: a) f(x)=(62x)3f(x)=(6-2 x)^{3} bei a=5a=5 b) f(x)=3(0,5x21)5f(x)=3 \cdot(0,5 x^{2}-1)^{5} bei a=2a=-2 c) f(x)=5x2+3xf(x)=\frac{5}{x^{2}+3 x} bei a=1a=-1 d) f(x)=(x+2)3f(x)=(\sqrt{x}+2)^{3} bei a=4a=4

See Solution

Problem 19628

Evaluate the integral: 1+2x1+16x2dx\int \frac{1+2 x}{1+16 x^{2}} d x

See Solution

Problem 19629

Evaluate the integral 03ex1+e2xdx\int_{0}^{3} \frac{e^{x}}{1+e^{2 x}} d x.

See Solution

Problem 19630

Evaluate the integral: 4x2/3dx\int 4 x^{2 / 3} dx

See Solution

Problem 19631

Find the derivative dydx\frac{d y}{d x} for the equation xy2=4x y^{2}=4 at the point (4,1).

See Solution

Problem 19632

Find the cost function given that the marginal cost is C(x)=8x2C^{\prime}(x)=8x-2 and fixed cost is \$7.

See Solution

Problem 19633

Calculate the integral: 9z3z27dz\int 9 z \sqrt{3 z^{2}-7} \, dz

See Solution

Problem 19634

Find dydt\frac{dy}{dt} given x3=16y58x^{3}=16y^{5}-8, dxdt=8\frac{dx}{dt}=8, and y=1y=1.

See Solution

Problem 19635

Calculate the integral: 4(2x+5)3dx\int 4(2 x+5)^{3} \, dx

See Solution

Problem 19636

Evaluate the integral: 14e0.2xdx\int 14 e^{-0.2 x} d x

See Solution

Problem 19637

Evaluate the integral of the function: (2x57x3+8)dx\int(2 x^{5}-7 x^{3}+8) \, dx

See Solution

Problem 19638

Calculate the integral: 192+5ydy\int \frac{19}{2+5 y} d y

See Solution

Problem 19639

Find the limit L=limxcf(x)g(x)L = \lim _{x \rightarrow c} \frac{f(x)}{g(x)} if limxcf(x)=6\lim _{x \rightarrow c} f(x)=-6 and limxcg(x)=13\lim _{x \rightarrow c} g(x)=\frac{1}{3}.

See Solution

Problem 19640

Find the derivative dq/dpd q / d p for the demand equation 9p2+q2=1,4009 p^{2}+q^{2}=1,400.

See Solution

Problem 19641

Find the limit LL as tt approaches 1 for the piecewise function:
h(t)={t3+1if t<112(t+1)if t1 h(t) = \begin{cases} t^{3}+1 & \text{if } t<1 \\ \frac{1}{2}(t+1) & \text{if } t \geq 1 \end{cases}
Does the limit exist? Explain.

See Solution

Problem 19642

Find the derivative of F(t)=e6tsin(2t)F(t)=e^{6 t \sin (2 t)}. What is F(t)F^{\prime}(t)?

See Solution

Problem 19643

Evaluate the limit using L'Hospital's Rule: limx0+(1+3x)1/(2x)\lim _{x \rightarrow 0^{+}}(1+3 x)^{1 /(2 x)}. State the indeterminate form.

See Solution

Problem 19644

A 6-ft man walks away from a 22-ft lamppost at 5 ft/sec. Find the rate of change of his shadow length when 60 ft away.

See Solution

Problem 19645

Evaluate the integral: t5et6dt\int t^{5} e^{-t^{6}} d t (use CC for the constant of integration).

See Solution

Problem 19646

Check if f(x)=x38x5f(x)=x^{3}-8x-5 meets the Mean Value Theorem on [1,4][1,4] and find guaranteed point(s).

See Solution

Problem 19647

Find the volume change rate of a cylinder (radius 4 cm, height 10 cm) when height increases at 2 cm/min.

See Solution

Problem 19648

Find the derivative of y=(x2+4)3y=(x^2+4)^3.

See Solution

Problem 19649

Find the derivative of f(x)=2x26x3f(x)=2 x^{2}-6 x-3. Which option is correct: a) 2x262 x^{2}-6, b) 4x264 x^{2}-6, c) 4x64 x-6, d) 2x62 x-6?

See Solution

Problem 19650

Find the average rate of change for f(x)=x32x2+x+1f(x)=x^{3}-2 x^{2}+x+1 over [0,2][0,2] and [2,4][2,4].

See Solution

Problem 19651

Find the slope of the graph y=2x2+1y=\sqrt{2x^{2}+1} at the point (2,3)(2,3). Options: a. 14\frac{1}{4} b. 43\frac{4}{3} c. 12 d. 32\frac{3}{2} e. None.

See Solution

Problem 19652

Find the slope of the graph y=2x2+1y = \sqrt{2x^{2}+1} at the point (2,3)(2,3). Choose the correct answer: a. 14\frac{1}{4} b. 43\frac{4}{3} c. 12 d. 32\frac{3}{2} e. None of these.

See Solution

Problem 19653

Find the xx-values where f(x)=(x8)2/5f(x)=(x-8)^{2/5} is differentiable. Use interval notation for your answer.

See Solution

Problem 19654

Find the second derivative of the function f(x)=4x46x2+5f(x)=4 x^{4}-6 x^{2}+5.

See Solution

Problem 19655

Determine if the series n=21n1\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1} converges or diverges using the Comparison Test.

See Solution

Problem 19656

Given f(x)=(x1)23+2f(x)=(x-1)^{\frac{2}{3}}+2, find critical points, apply the First Derivative Test, and determine extremes on [0,9][0,9].

See Solution

Problem 19657

Find h(9)h(9) and h(9)h^{\prime}(9) given f(9)=8f(9)=8, f(9)=3f^{\prime}(9)=3, g(9)=3g(9)=3, g(9)=7g^{\prime}(9)=7, and h(x)=2f(x)+3g(x)h(x)=2 f(x)+3 g(x).

See Solution

Problem 19658

Find the marginal revenue from the function R(x)=x2/3+2x1/2+6x+2R(x)=x^{2/3}+2x^{1/2}+6x+2 at x=10x=10. Choose the correct option.

See Solution

Problem 19659

A ball is thrown from a 700-ft building with initial velocity -30 ft/s.
(a) Find s(t)s(t) and v(t)v(t). (b) Average velocity on [1,3][1,3]. (c) Instantaneous velocities at t=1t=1 and t=3t=3. (d) Time to reach ground level (to 3 decimals). (e) Impact velocity (to 1 decimal).

See Solution

Problem 19660

Find the derivative dVdr\frac{d V}{d r} of the volume formula V=43πr3V=\frac{4}{3} \pi r^{3} at r=2r=2.

See Solution

Problem 19661

Find the average rate of change for f(x)=2x2+5x2f(x)=-2x^{2}+5x-2 on the interval [1,1][-1,1].

See Solution

Problem 19662

If \$5000 is invested at 4% annual interest compounded continuously, find the amount in the account after 8 years.

See Solution

Problem 19663

Find the tangent line equation for y=35x+2y=\frac{-3}{5 x+2} at x=3x=3.

See Solution

Problem 19664

Find the tangent line equation for f(x)=x+6x1f(x)=\frac{x+6}{x-1} at the point (12,13)\left(\frac{1}{2},-13\right). y=y=\square

See Solution

Problem 19665

Differentiate y=(sec2(x2))7y=\left(\sec ^{2}\left(x^{2}\right)\right)^{7}.

See Solution

Problem 19666

Differentiate y=csc(4x)y=\csc (-4 x).

See Solution

Problem 19667

Find the derivative of y=32xy=3^{2x}.

See Solution

Problem 19668

Determine if the series n=1n2+n+1n4+n2\sum_{n=1}^{\infty} \frac{n^{2}+n+1}{n^{4}+n^{2}} converges or diverges using the Limit Comparison Test.

See Solution

Problem 19669

Analyze the graph of f(x)f(x): True/False for asymptotes, intercepts, symmetry, and behavior of ff', ff''. Create a sign chart.

See Solution

Problem 19670

Find the limit as xx approaches 0 from the left for the expression 1x\frac{1}{x}.

See Solution

Problem 19671

Calculate the population after 10 years using p(t)=3430e0.007tp(t)=3430 e^{0.007 t}. Options: A) 11,036 B) 3679 C) 7357 D) 3945

See Solution

Problem 19672

Check if the Mean Value Theorem applies to f(x)=x2/3f(x)=x^{2/3} on [1,27][1,27]. Options: Yes, No (continuity), No (differentiability), NA.

See Solution

Problem 19673

Estimate f(801)f(801), f(800.5)f(800.5), and f(799.75)f(799.75) given f(800)=6000f(800)=6000 and f(800)=10f'(800)=10.

See Solution

Problem 19674

Determine if the sequence an=ln(n+5)ln(n)a_{n}=\ln(n+5)-\ln(n) converges or diverges. Find the limit if it converges.

See Solution

Problem 19675

Determine if the series n=124n(n+3)\sum_{n=1}^{\infty} \frac{24}{n(n+3)} converges or diverges. If convergent, find the sum.

See Solution

Problem 19676

Determine if the series n=13n+nn+5n\sum_{n=1}^{\infty} \frac{3^{n}+n}{n+5^{n}} converges or diverges using the Comparison Test.

See Solution

Problem 19677

Cut a 60-inch wire into two pieces for a circle and a square. Find xx to maximize their combined area.
a) Find the radius rr of the circle in terms of xx.
b) Write the objective function and its domain.
c) Differentiate the function, find critical points, and provide exact and approximate values (rounded to two decimals).

See Solution

Problem 19678

Cut a 60-inch wire into two pieces to form a circle and a square. Maximize the total area.
a) Find the radius rr of the circle in terms of xx.
b) Write the objective function to maximize and its domain.
c) Differentiate the function and find critical points (exact and approximate).
d) Evaluate the function at endpoints and critical points to find min/max values. Round to two decimals with units.

See Solution

Problem 19679

Is the series n=35n6n22n\sum_{n=3}^{\infty} \frac{5 n-6}{n^{2}-2 n} convergent or divergent?

See Solution

Problem 19680

Find the values of pp for which the series n=1n4(1+n5)p\sum_{n=1}^{\infty} n^{4}(1+n^{5})^{p} converges (as an inequality).

See Solution

Problem 19681

Determine the values of pp for which the series n=1n3(1+n4)p\sum_{n=1}^{\infty} n^{3}(1+n^{4})^{p} converges.

See Solution

Problem 19682

Determine the values of pp for which the series n=1n9(1+n10)p\sum_{n=1}^{\infty} n^{9}(1+n^{10})^{p} converges.

See Solution

Problem 19683

Find the derivative of f(x)=(3x+4)3f(x)=(3 x+4)^{3} and evaluate f(3)f^{\prime}(3).

See Solution

Problem 19684

Find the derivative of the function y=x7x+4y=x^{7x+4}.

See Solution

Problem 19685

A cube's edges expand at 8 cm/s. Find volume change rate at edges 4 cm and 15 cm: cm3/sec\mathrm{cm}^{3} / \mathrm{sec}.

See Solution

Problem 19686

Is the series 106+3.62.16+10 - 6 + 3.6 - 2.16 + \cdots convergent or divergent? If convergent, find the sum.

See Solution

Problem 19687

Find the position function for an object with acceleration a(t)=5cost+2sinta(t)=5 \cos t+2 \sin t, initial velocity v(0)=4v(0)=4, and position s(0)=3s(0)=3.

See Solution

Problem 19688

Determine if the sequence an=ln(n+4)ln(n)a_{n}=\ln (n+4)-\ln (n) converges or diverges. If it converges, find the limit.

See Solution

Problem 19689

Find the general solution for the differential equation y(4)+12y+36y=0y^{(4)}+12 y^{\prime \prime}+36 y=0. What is y(x)=y(x)=\square?

See Solution

Problem 19690

Find the derivative of f(x)=9x1f(x)=9^{x-1}. What is f(x)f'(x)?

See Solution

Problem 19691

Calculate the indefinite integral and use CC for the constant of integration: e4xe2x+1exdx\int \frac{e^{4 x}-e^{2 x}+1}{e^{x}} d x

See Solution

Problem 19692

Determine the values of pp that make the series n=1n9(1+n10)p\sum_{n=1}^{\infty} n^{9}(1+n^{10})^{p} convergent.

See Solution

Problem 19693

Find xx in [0,2][0,2] where the instantaneous rate of change of f(x)=x3exf(x)=x^{3}-e^{x} equals the average rate of change.

See Solution

Problem 19694

Check if the series n=16n(n+3)\sum_{n=1}^{\infty} \frac{6}{n(n+3)} converges or diverges and find the sum if it converges.

See Solution

Problem 19695

Find intervals where the function ff is increasing given f(x)=(x2)3xf^{\prime}(x)=\frac{(x-2)^{3}}{x}. Choose: (A) (,0)(-\infty, 0) and (2,)(2, \infty) (B) (,0)(-\infty, 0) only (C) (,0)(-\infty, 0) and (0,2)(0,2) (D) (0,2)(0,2) and (2,)(2, \infty)

See Solution

Problem 19696

Find the tangent line equation for h(x)=xe9xh(x)=-x e^{9-x} at the point (9,9)(9,-9). y=y=

See Solution

Problem 19697

Calculate the sum: n=121n(n+3)\sum_{n=1}^{\infty} \frac{21}{n(n+3)}.

See Solution

Problem 19698

Zeichne den Graphen von f(x)=x+1f(x)=x+1 und finde die Fläche zwischen Graph und xx-Achse für I=[a;b]I=[a;b] mit: a) a=0,b=2a=0, b=2, b) a=0,b=4a=0, b=4, c) a=0,b=8a=0, b=8, d) a=0,ba=0, b (variabel).

See Solution

Problem 19699

Is the series n=35n4n22n\sum_{n=3}^{\infty} \frac{5 n-4}{n^{2}-2 n} convergent or divergent?

See Solution

Problem 19700

Find the function f(x)f(x) and number cc such that limΔx042(1+Δx)24Δx=f(c)\lim _{\Delta x \rightarrow 0} \frac{\frac{4}{2-(-1+\Delta x)^{2}}-4}{\Delta x} = f^{\prime}(c). Options: (A) f(x)=2x2,c=1f(x)=2-x^{2}, c=-1; (B) f(x)=42x2,c=1f(x)=\frac{4}{2-x^{2}}, c=-1; (C) f(x)=42x2,c=4f(x)=\frac{4}{2-x^{2}}, c=4; (D) f(x)=2x2,c=4f(x)=2-x^{2}, c=4.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord