Calculus

Problem 23301

Find the average rate of change of g(x)=2x3+5x2g(x)=-2 x^{3}+5 x^{2} between x=1x=1 and x=2x=2. Simplify your answer.

See Solution

Problem 23302

Find xx where the derivative f(x)=2\mathrm{f}^{\prime}(x)=2 for the function f(x)=2x23x+1\mathrm{f}(x)=2 x^{2}-3 x+1.

See Solution

Problem 23303

Untersuchen Sie die Funktionen auf Monotonie: a) f(x)=0,25x2+4f(x)=-0,25 x^{2}+4, b) f(x)=x33xf(x)=x^{3}-3 x, c) f(x)=2ex1f(x)=2 e^{x}-1, d) f(x)=2cos(x)f(x)=2 \cos (x) für 0x2π0 \leq x \leq 2 \pi.

See Solution

Problem 23304

Find the derivative of the function 203t5\frac{20}{3 \sqrt[5]{t}} with respect to tt.

See Solution

Problem 23305

Find the limits of these sequences: an=n2+nna_n=\sqrt{n^2+n}-n, bn=n2+n+1n2+nsinn+1b_n=\frac{n^2+n+1}{n^2+n \sin n+1}, cn=n!(n+5)+2n(n+1)!+3nc_n=\frac{n!(n+5)+2^n}{(n+1)!+3^n}, dn=3n+4nnd_n=\sqrt[n]{3^n+4^n}, en=n33n+77n+1e_n=\frac{n^3-3n+7}{7n+1}, tn=n3n2+1nt_n=\sqrt{n^3-n^2+1}-n for nNn \in \mathbb{N}.

See Solution

Problem 23306

Find the derivative of a(t)=t1ew+w2dwa(t)=\int_{t}^{-1} e^{w+w^{2}} d w using the Fundamental Theorem of Calculus.

See Solution

Problem 23307

Bestimmen Sie die Grenzwerte: a) limxln(x)x2\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{2}} b) limx0((x2+2x)ln(x))\lim _{x \rightarrow 0}\left((x^{2}+2 x) \cdot \ln (x)\right) c) limxln(x)3x22x4\lim _{x \rightarrow \infty} \frac{\ln (x)}{3 x^{2}-2 x-4}

See Solution

Problem 23308

Evaluate the integral: 03π/4cosxdx\int_{0}^{3 \pi / 4}|\cos x| d x [8 points]

See Solution

Problem 23309

Find the area of one petal of the rose r=cos2θ r = \cos 2\theta using A=12αβr2dθ A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 \, d\theta . Determine α \alpha and β \beta for one petal.

See Solution

Problem 23310

Find the area of one loop of the lemniscate given by r2=4cos2θr^{2}=4 \cos 2 \theta. Use A=12π4π4(r(θ))2dθA = \frac{1}{2}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (r(\theta))^2 d\theta.

See Solution

Problem 23311

Find the xx-coordinate of point P\mathrm{P} on the curve y=2x3y=2-x^{3} where the normal has a gradient of 3.

See Solution

Problem 23312

A cow's eye level is 4 ft. A billboard is 9 ft high, 12 ft above ground. Find θ(x)\theta(x) and x0x_{0} to maximize θ\theta.

See Solution

Problem 23313

Berechne den Gesamtinhalt der Fläche zwischen f(x)=12x252x+2f(x)=\frac{1}{2} x^{2}-\frac{5}{2} x+2 und der xx-Achse im Intervall [0;3][0 ; 3].

See Solution

Problem 23314

Find the area of the inner loop of the limaçon with the polar equation r=2sinθ1r = 2 \sin \theta - 1.

See Solution

Problem 23315

f. Bestimme, wann das U-Boot mit maximaler Geschwindigkeit auftaucht, gegeben h(x)=x3+7,9x215,47x0,043h(x)=-x^{3}+7,9 x^{2}-15,47 x-0,043 für 0x50 \leq x \leq 5. g. a) Finde die Strecke des Flugzeugs nach 60 Sekunden mit y=2xy=2x. b) Finde die Strecke nach xx Sekunden.

See Solution

Problem 23316

e. Finde die Tangentengleichung an x=2x=2 für die Funktion x32x23x+5x^{3}-2 x^{2}-3 x+5. f. Bestimme, wann das U-Boot mit der Funktion h(x)=x3+7,9x215,47x0,043h(x)=-x^{3}+7,9 x^{2}-15,47 x-0,043 maximale Geschwindigkeit hat (in Minuten). g. a) Wie weit fliegt ein Flugzeug nach einer Minute mit y=2xy=2 x? b) Wie weit nach xx Sekunden? h. Zeige, dass (xa)3(x-a)^{3} bei x=ax=a eine Wendestelle hat. i. Bestimme die Intervallgrenzen für die Blumenwiese und das Gemüsebeet zwischen f(x)=x+1f(x)=x+1 und g(x)=x24x+5g(x)=x^{2}-4 x+5, und berechne die Flächeninhalte.

See Solution

Problem 23317

Find the half-life of a radioactive substance with a decay rate of 9.7%9.7\% per day using the exponential decay model.

See Solution

Problem 23318

Find the interest rate for \$2000 invested continuously, growing to \$2449 in 5 years. Round to the nearest hundredth.

See Solution

Problem 23319

Find the hourly growth rate for a bacteria population that grows from 1500 to 1836 in 6 hours. Express as a percentage.

See Solution

Problem 23320

Calculate ΔG\Delta G using ΔG\Delta G^\circ and Q=[CO2][H2]2[CH4][O2]Q = \frac{[\text{CO}_2][\text{H}_2]^2}{[\text{CH}_4][\text{O}_2]}.

See Solution

Problem 23321

Find limx0xcos(1x)\lim _{x \rightarrow 0} x \cos \left(\frac{1}{x}\right) given xxcos(1x)x-x \leq x \cos \left(\frac{1}{x}\right) \leq x for x>0x>0.

See Solution

Problem 23322

Find the local minimum and maximum points of the curve y=2x3+3x212x10y=2x^{3}+3x^{2}-12x-10.

See Solution

Problem 23323

Use the Intermediate Value Theorem to show f(x)=3x3+3x24x5f(x)=3x^{3}+3x^{2}-4x-5 has a zero between x=1x=1 and x=2x=2.

See Solution

Problem 23324

A differentiable function ff on [2,7][-2, 7] has f(c)=0f'(c)=0 for 2<c<7-2<c<7 and f(c)<f(7)f(c)<f(7). Which statement is true?

See Solution

Problem 23325

Find cc such that the instantaneous rate of change of f(x)=2xf(x)=2\sqrt{x} equals the average rate of change from 11 to 44.

See Solution

Problem 23326

Calculate the limit: limx0cos4xtan4x6x\lim _{x \rightarrow 0} \frac{\cos 4 x \tan 4 x}{6 x}.

See Solution

Problem 23327

Find the equation of the tangent line to f(x)=4x35x+3f(x)=4 x^{3}-5 x+3 at x=1x=-1.

See Solution

Problem 23328

Find the average rate of change of f(x)=1x2f(x)=1-x^{2} from x=2x=-2 to x=1x=-1. Choices: A. 3 B. 0 C. -3 D. undefined

See Solution

Problem 23329

Find the limit: limx02x2+11x2\lim _{x \rightarrow 0} \frac{2 x^{2}+1 - 1}{x^{2}} for the function f(x)=2x2+1f(x)=2 x^{2}+1.

See Solution

Problem 23330

Find the radius that maximizes the volume of a cylinder with height + circumference = 30 cm, where V=πr2hV=\pi r^{2} h.

See Solution

Problem 23331

Find limxax2a2x4a4\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x^{4}-a^{4}} for xax \neq a.

See Solution

Problem 23332

Find the coordinates of the point on the curve y=xy = \sqrt{x} where the gradient equals 22.

See Solution

Problem 23333

Find the limit as xx approaches infinity for the expression: x25x+10x33x2+13\frac{x^{2}-5 x+10}{x^{3}-3 x^{2}+13}. Show your work.

See Solution

Problem 23334

Find the limit: limx7x28x+94x2+7x+15\lim _{x \rightarrow-\infty} \frac{-7 x^{2}-8 x+9}{-4 x^{2}+7 x+15}. Show your work.

See Solution

Problem 23335

A 0.270 kg block compresses a spring (k = 4.13 x 10^3 N/m) by 0.0900 m. How high does it rise after release? Answer in m.

See Solution

Problem 23336

Evaluate the function g(x)=x+cosxx+3g(x)=\frac{x+\cos x}{x+3} and determine which statements about limits and asymptotes are true.

See Solution

Problem 23337

Find the slope of the tangent line for f(x)=3x23+2xf(x)=3 \sqrt[3]{x^{2}}+2 x at x=8x=-8.

See Solution

Problem 23338

Find the slope of the normal line to h(x)=3xx3h(x)=\frac{3 x}{\sqrt[3]{x}} at x=8x=-8.

See Solution

Problem 23339

Find the limit: limx21x+2\lim _{x \rightarrow-2} \frac{1}{x+2}. Show your work.

See Solution

Problem 23340

Find the limit: limx(π/2)+tanx\lim _{x \rightarrow(\pi / 2)^{+}} \tan x. Show your work.

See Solution

Problem 23341

Find the limit as xx approaches infinity: limx4x23+25x2\lim _{x \rightarrow \infty} \sqrt{\frac{4 x^{2}}{3+25 x^{2}}}. Show your work.

See Solution

Problem 23342

Determine if the function f(x)=x3+3x2f(x)=x^{3}+3x^{2} is increasing or decreasing at x=3x=-3 and x=0x=0.

See Solution

Problem 23343

A 0.20 kg ball is thrown up from a 30.0 m building at 22.0 m/s. Find its total energy, max height, and impact velocity.

See Solution

Problem 23344

Calculate the sum of the series: n=0(1)n49n\sum_{n=0}^{\infty}(-1)^{n} \frac{4}{9^{n}}.

See Solution

Problem 23345

Medikamenten-Konzentration im Blut
Gegeben ist die Funktion c(t)=t317t2+63t+81c(t)=t^{3}-17 t^{2}+63 t+81 für 0t90 \leq t \leq 9.
a) Skizzieren Sie cc, finden Sie die Anfangskonzentration, den Abbauzeitpunkt, und Zeitintervalle für Anstieg/Abfall. b) Bestimmen Sie Zeit für Maximalkonzentration. c) Erklären Sie cc' im Kontext. d) Finden Sie den Zeitraum, in dem c>100mg/lc > 100 \mathrm{mg} / \mathrm{l}.

See Solution

Problem 23346

Modellieren Sie das Wachstum einer Rattenpopulation, die bei 3500 Tieren beginnt und mit 200 Tieren/Tag wächst. Wie lange bis >50000?

See Solution

Problem 23347

Check if the series n=17n(n+3)\sum_{n=1}^{\infty} \frac{7}{n(n+3)} converges or diverges, and find the sum if it converges.

See Solution

Problem 23348

How much water is left in a 1000-liter tank after 1 hour if pumped out at 33e0.15t3 - 3 e^{-0.15 t} L/min?

See Solution

Problem 23349

What is the value of the definite integral 132xdx\int_{1}^{3} 2 x \, dx? (a) 1 (b) 2 (c) 4 (d) 8 (e) 10

See Solution

Problem 23350

Calculate the area under the curve of f(x)=x2+7f(x)=x^{2}+7 from x=0x=0 to x=6x=6.

See Solution

Problem 23351

Determine if the series n=15nn2+2\sum_{n=1}^{\infty} \frac{5 n}{n^{2}+2} converges or diverges.

See Solution

Problem 23352

Determine if the series n=13+7cosnn3\sum_{n=1}^{\infty} \frac{3+7 \cos n}{n^{3}} converges or diverges.

See Solution

Problem 23353

A radioactive substance decays from 9.30 mg to 7.40 mg in 11.7 years. Find its half-life rounded to 2 significant digits.

See Solution

Problem 23354

Determine if the series converges or diverges: n=14n8n3/2+7n8\sum_{n=1}^{\infty} \frac{4 \sqrt{n}}{8 n^{3 / 2}+7 n-8}

See Solution

Problem 23355

Determine if the series converges or diverges: n=14(nl)2(2n)!\sum_{n=1}^{\infty} \frac{4(n l)^{2}}{(2 n) !}

See Solution

Problem 23356

Estimate the area between f(x)f(x) and the xx-axis from 00 to 2020 using left and right sums. Round to one decimal place. Area \approx

See Solution

Problem 23357

A coffee cup starts at 135F135^{\circ} \mathrm{F} in a freezer at 0F0^{\circ} \mathrm{F}. After 10 min it's 60F60^{\circ} \mathrm{F}. Find temp after 15 min.

See Solution

Problem 23358

Determine if the series converges or diverges: n=1(10nlnn+9n+9)n\sum_{n=1}^{\infty}\left(\frac{10 n}{\ln n+9 n+9}\right)^{n}

See Solution

Problem 23359

Find the function ff given f(x)=x2+1f^{\prime \prime}(x)=x^{2}+1, f(0)=4f^{\prime}(0)=4, and f(0)=2f(0)=2. Which is f(x)f(x)?

See Solution

Problem 23360

After substituting u=2ex3u=2 e^{x}-3, what does the integral 6ex2ex3dx\int 6 e^{x} \sqrt{2 e^{x}-3} d x become?

See Solution

Problem 23361

Find the indefinite integral sin(x)ecos(x)dx\int \sin (x) e^{\cos (x)} d x. Which option is correct? (a) (b) (c) (d) (e)

See Solution

Problem 23362

Calculate the series sum: S=n=464(15)n1S = \sum_{n=4}^{\infty} 64\left(\frac{1}{5}\right)^{n-1}. Choose the correct answer.

See Solution

Problem 23363

Find the average rate of change of p(x)=15xp(x) = \sqrt{15x} over the interval [0.01,1.01][0.01, 1.01].

See Solution

Problem 23364

Determine if the series n=1(6)n\sum_{n=1}^{\infty}(-6)^{-n} converges absolutely, conditionally, or diverges.

See Solution

Problem 23365

Find the difference quotient, f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}, for the function f(x)=6x4f(x)=6x-4.

See Solution

Problem 23366

En jeger skyter horisontalt mot en blink 98.1 m unna, 180 cm180 \mathrm{~cm} over bakken. Hvor langt under blinken treffer kulen? 28.428.4 cm\mathrm{cm}

See Solution

Problem 23367

Determine if the series converges absolutely, conditionally, or diverges: n=1(1)n3n1/2+8\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3 n^{1 / 2}+8}

See Solution

Problem 23368

Sketch the graph of ff with given properties: asymptotes, local extrema, and inflection points. Key points include:
- Continuous on (,3)(-\infty, 3) and (3,)(3, \infty) - f(1)=5f(-1)=5 - limx3f(x)=\lim_{x \rightarrow 3^{-}} f(x)=-\infty - limx3+f(x)=\lim_{x \rightarrow 3^{+}} f(x)=-\infty - limxf(x)=2\lim_{x \rightarrow -\infty} f(x)=-2 - limx+f(x)=4\lim_{x \rightarrow +\infty} f(x)=4 - f(x)<0f^{\prime}(x)<0 on (1,3)(-1,3) - f(x)>0f^{\prime}(x)>0 on (,1)(3,)(-\infty,-1) \cup (3, \infty) - f(x)<0f^{\prime \prime}(x)<0 on (3,3)(3,)(-3,3) \cup (3, \infty) - f(x)>0f^{\prime \prime}(x)>0 on (,3)(-\infty,-3)

See Solution

Problem 23369

Find the value of the integral 13f(x)dx\int_{1}^{3} f^{\prime}(x) dx given f(0)=2f(0)=-2, f(1)=2f(1)=2, f(2)=3f(2)=-3, f(3)=4f(3)=4. Choices: (a) 1 (b) 2 (c) 3 (d) 6 (e) 9.

See Solution

Problem 23370

Sketch the graph of ff with these properties: continuous on (,3)(-\infty, 3) and (3,)(3, \infty), f(1)=5f(-1)=5, limx3f(x)=\lim_{x \to 3^{-}} f(x)=-\infty, limx3+f(x)=\lim_{x \to 3^{+}} f(x)=-\infty, limxf(x)=2\lim_{x \to -\infty} f(x)=-2, limx+f(x)=4\lim_{x \to +\infty} f(x)=4, f(x)<0f'(x)<0 on (1,3)(-1,3), f(x)>0f'(x)>0 on (,1)(3,)(-\infty,-1) \cup (3, \infty), f(x)<0f''(x)<0 on (3,3)(3,)(-3,3) \cup (3, \infty), f(x)>0f''(x)>0 on (,3)(-\infty,-3).

See Solution

Problem 23371

Ein Radfahrer legt die Strecke s(t)s(t) in km zurück.
a) Mittlere Änderungsrate von ss in [2;5][2; 5] ist 15. Was bedeutet das und wie weit ist der Radfahrer gefahren? b) Momentane Änderungsrate s(2)s'(2) ist 18. Was bedeutet das und wie lange für die nächsten 1,5 km1,5 \mathrm{~km} bei konstanter Rate?

See Solution

Problem 23372

Determine the truth of these statements about function gg: I. a<0a < 0 for normal lines on (,2)(-\infty, -2); II. g(x)>0g'(x) > 0 on (2,2)(-2, 2) and (3,)(3, \infty); III. gg' is undefined at x=2x = -2 and x=2x = 2.

See Solution

Problem 23373

Ein Taucher ist nach 10 Minuten in 24 m Tiefe.
a) Die mittlere Änderungsrate von ff im Intervall [10;12][10 ; 12] ist 3. Berechne f(12)f(12). b) Die momentane Änderungsrate nach 10 Minuten ist 2,8. Welche Aussagen sind richtig oder falsch? f(10)=2,8 f^{\prime}(10)=2,8 f(11)=26,8 f(11)=26,8

See Solution

Problem 23374

Find total revenue for 100 units using R(q)=15012qR^{\prime}(q)=150-12 \sqrt{q} and marginal revenue at 100 units.

See Solution

Problem 23375

Find the total cost for producing 20 units given C(q)=q217q+70C^{\prime}(q)=q^{2}-17q+70, with C(0)=550C(0)=550. What are fixed and variable costs?

See Solution

Problem 23376

The marginal cost C(q)C^{\prime}(q) for qq units is given. If fixed cost is \$17,000, find total cost for 400 units and the increase for 401 units.

See Solution

Problem 23377

Evaluate the integral 21x2+xdx\int_{-2}^{-1} x \sqrt{2+x} d x using u=2+xu=2+x. Which option is correct?

See Solution

Problem 23378

Find the Maclaurin series for the function e8xe^{8x}.

See Solution

Problem 23379

Find the value of the definite integral 03f(x)dx\int_{0}^{3} f(x) dx for the piecewise function f(x)f(x). Options: (a) 4, (b) 6, (c) 8, (d) 10, (e) 11.

See Solution

Problem 23380

Find the Taylor series at x=0x=0 for f(x)=x10sinxf(x)=x^{10} \sin x using power series operations.

See Solution

Problem 23381

Determine the horizontal asymptotes of the function f(x)=10x276x+9615x224xf(x)=\frac{10 x^{2}-76 x+96}{15 x^{2}-24 x}.

See Solution

Problem 23382

Given g(x)<0g(x)<0 for all xx and f(x)=(x24)g(x)f'(x)=(x^{2}-4)g(x), which statement about ff is true? Options: a, b, c, d, e.

See Solution

Problem 23383

How much to deposit now to have \$800,000 in 30 years at 6% interest compounded continuously?

See Solution

Problem 23384

Find the indefinite integral 10x(x2+5)4dx\int 10 x\left(x^{2}+5\right)^{4} d x. Which option is correct?

See Solution

Problem 23385

Estimate the area between f(x)f(x) and the xx-axis from 00 to 2020 using left and right sums. Round to one decimal place.

See Solution

Problem 23386

Find the Laplace transform of the function t5t^{5}.

See Solution

Problem 23387

Find the inverse Laplace transform of s1s2s2\frac{s-1}{s^{2}-s-2}.

See Solution

Problem 23388

A satellite orbits Earth at 252 km252 \mathrm{~km}. Find its orbital radius, speed, and period (in seconds and hours).

See Solution

Problem 23389

Identify the error in the equation: 0πsec2xdx=tan(π)tan(0)\int_{0}^{\pi} \sec ^{2} x \, dx = \tan (\pi) - \tan (0).

See Solution

Problem 23390

Calculate the average rate of change of g(x)=2x3+3x2g(x)=-2 x^{3}+3 x^{2} between x=1x=1 and x=3x=3. Simplify your result.

See Solution

Problem 23391

Find the tangent line equation for y=x2+1y=x^{2}+1 at point (3,10)(3,10) using the limit definition of slope. Show work.

See Solution

Problem 23392

Find two positive numbers xx and yy such that x2+y=75x^2 + y = 75 and maximize the product P=xyP = xy.

See Solution

Problem 23393

A ski jumper leaps with a horizontal speed of 25.9 m/s25.9 \mathrm{~m/s} and lands after 5.7 seconds. Find her takeoff height.

See Solution

Problem 23394

Fungus size is L(t)=3.3t+1.2cos(2πt24)L(t)=3.3t+1.2\cos\left(\frac{2\pi t}{24}\right). Find dLdt\frac{\mathrm{dL}}{\mathrm{dt}} and its max/min values.

See Solution

Problem 23395

Calculate the Left Riemann Sum L8L_8 for f(x)=x22x+1f(x) = x^{2}-2x+1 on the interval [0,2][0,2].

See Solution

Problem 23396

Find the limit: limxπ/4tanx1xπ/4\lim _{x \rightarrow \pi / 4} \frac{\tan x-1}{x-\pi / 4}.

See Solution

Problem 23397

Gegeben ist die Funktion fa(x)=x3+a2x,a>0f_{a}(x)=-x^{3}+a^{2} \cdot x, a>0. Finde Nullstellen, Extremstellen und Wendestellen.

See Solution

Problem 23398

Estimate the distance a car traveled in 30 seconds using a trapezium with speeds of 3 and 25 units. Is it an underestimate or overestimate?

See Solution

Problem 23399

Show that f(0)>0f^{\prime \prime}(0)>0 for m=2m=2 in Hill's equation f(P)=Pmkm+Pmf(P)=\frac{P^{m}}{k^{m}+P^{m}}. Find f(P)f(P) for m=2m=2.

See Solution

Problem 23400

Find velocity and acceleration at t=1 st=1 \mathrm{~s} for s(t)=t23ts(t)=t^{2}-3t and s(t)=t2+3s(t)=\sqrt{t^{2}+3}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord