Calculus

Problem 11001

Find the derivative of the function P(x)=13x3cos5xP(x)=\frac{1}{3} x^{3} \cos 5 x. What is P(x)P^{\prime}(x)?

See Solution

Problem 11002

Match functions with their derivatives:
1. y=sin(x)tan(x)y=\sin (x) \tan (x)
2. y=cos3(x)y=\cos ^{3}(x)
3. y=tan(x)y=\tan (x)
4. y=cos(tan(x))y=\cos (\tan (x)) A. y=3cos3(x)tan(x)y^{\prime}=-3 \cos ^{3}(x) \tan (x) B. y=1+tan2(x)y^{\prime}=1+\tan ^{2}(x) C. y=sin(tan(x))/cos2(x)y^{\prime}=-\sin (\tan (x)) / \cos ^{2}(x) D. y=sin(x)+tan(x)sec(x)y^{\prime}=\sin (x)+\tan (x) \sec (x)

See Solution

Problem 11003

Find the slope of the tangent line to the curve 2(x2+y2)2=25(x2y2)2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right) at (3,1)(3,-1).

See Solution

Problem 11004

Find the derivative yy', where y=5+sinxcosxy=\frac{5+\sin x}{\cos x}.

See Solution

Problem 11005

Find the intervals where f(x)=x4exf(x)=x^{4} e^{-x} is increasing, decreasing, concave up, and concave down.

See Solution

Problem 11006

Find dydx\frac{d y}{d x} in terms of xx and yy for the equation ax4by4=c4a x^{4}-b y^{4}=c^{4}, where a,b,ca, b, c are constants.

See Solution

Problem 11007

Find points (x,y)(x, y) on f(x)=3x24xf(x)=3 x^{2}-4 x where the tangent is parallel to y=8x+5y=8 x+5. Also, find the tangent line equations.

See Solution

Problem 11008

Tentukan titik stasioner dan nilai stasioner dari F(x)=cosxsinxF(x)=\cos x-\sin x dalam interval 0x2π0 \leq x \leq 2\pi.

See Solution

Problem 11009

Find the derivative of the inverse function at 2 for f(x)=x+xf(x)=x+\sqrt{x}: compute (f1)(2)\left(f^{-1}\right)^{\prime}(2).

See Solution

Problem 11010

Find the monthly cost C(x)C(x) and profit P(x)P(x) functions for a gaming website. Determine the optimal log-on fee xx for max profit.

See Solution

Problem 11011

Given g(x)g(x) with g(π)=2g(\pi)=-2, g(π)=0g^{\prime}(\pi)=0, g(π)=3g^{\prime \prime}(\pi)=-3, determine the nature of f(π)=2cos(x)+g(x)f(\pi)=2 \cos (x)+g(x).

See Solution

Problem 11012

Find points (x,y)(x, y) on g(x)=13x332x2+1g(x)=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+1 where the tangent is parallel to 8x2y=18 x-2 y=1 and find the tangent line equations.

See Solution

Problem 11013

A book drops from a height of 75.4 m75.4 \mathrm{~m}. Find the time it takes to reach the ground.

See Solution

Problem 11014

Compute the derivatives of these functions without using quotient or chain rules: (a) f(x)=12x414x2+5x+2f(x)=12 x^{4}-14 x^{2}+5 x+2 (b) g(t)=t3t5g(t)=\sqrt{t^{3}}-\sqrt{t^{5}} (c) h(s)=5s+52sh(s)=\frac{5 s+5}{2 \sqrt{s}} (d) r(x)=1+x4xxr(x)=\frac{1+x-4 \sqrt{x}}{x} (e) p(t)=(t22t+5)(t21)p(t)=(t^{2}-2 t+5)(t^{2}-1)

See Solution

Problem 11015

Determine the local extrema of the function f(x)=ecx+3f(x)=e^{c|x|+3}, treating it as a piecewise function.

See Solution

Problem 11016

Given a twice differentiable function g(x)g(x), which statement about f(x)=g(x)x3f(x)=g(x)-x^{3} is TRUE?

See Solution

Problem 11017

Anthony kicks a ball upwards at 24.3ms24.3 \frac{\mathrm{m}}{\mathrm{s}}. Find: time to max height, total time, max height, and impact velocity.

See Solution

Problem 11018

Calculate the average rate of change of f(x)=3x2+2f(x)=3 x^{2}+2 for these intervals: (-1,1), (-2,0), (1,4).

See Solution

Problem 11019

Given u(0)=5u(0)=5, u(0)=3u'(0)=-3, v(0)=1v(0)=-1, v(0)=2v'(0)=2, find derivatives at x=0x=0 for: (a) ddx(uv)\frac{d}{dx}(u-v) (b) ddx(uv)\frac{d}{dx}(uv) (c) ddx(sin(x)+3u+5v)\frac{d}{dx}(\sin(x)+3u+5v) (d) ddx(uvucos(x))\frac{d}{dx}(uv-u-\cos(x))

See Solution

Problem 11020

A stream with insecticide concentration 9 g/m39 \mathrm{~g} / \mathrm{m}^{3} flows into a pond at 25 m325 \mathrm{~m}^{3}/day. The pond has volume 2000 m32000 \mathrm{~m}^{3} and initial concentration 2.5 g/m32.5 \mathrm{~g} / \mathrm{m}^{3}.
(a) Find and solve the differential equation for y(t)y(t), the insecticide amount in grams. (b) What happens to the insecticide concentration over time? (c) How many days until concentration reaches 7 g/m37 \mathrm{~g} / \mathrm{m}^{3}?

See Solution

Problem 11021

Given the ideal gas law pV=nRTp V=n R T, find dpdV\frac{d p}{d V} in terms of p,V,n,R,Tp, V, n, R, T and simplify it. What happens to pressure if volume increases?

See Solution

Problem 11022

Identify which limits cannot be solved using I'Hopital's Rule:
1. limx0x2+2sinx\lim _{x \rightarrow 0} \frac{x^{2}+2}{\sin x}
2. limxexsinx\lim _{x \rightarrow \infty} \frac{e^{x}}{\sin x}
3. limxex5x\lim _{x \rightarrow \infty} \frac{e^{x}}{5 x}
4. limx01cosxx\lim _{x \rightarrow 0} \frac{1-\cos x}{x}
5. limx0sinxx\lim _{x \rightarrow 0} \frac{\sin x}{x}
6. limx1x21x2+2\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}+2}

See Solution

Problem 11023

Evaluate the limit: limx0(cscxcotx)\lim _{x \rightarrow 0}(\csc x-\cot x). Which option matches its value? A: limx0cosxsinx\lim _{x \rightarrow 0} \frac{\cos x}{\sin x} B: limx01cosxsinx\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x} C: limx01sinxcosx\lim _{x \rightarrow 0} \frac{1-\sin x}{\cos x}

See Solution

Problem 11024

True or false: L'Hopital's Rule statements about limits and derivatives. Evaluate I-V.

See Solution

Problem 11025

Find the derivative of y=tan2xy=\tan^{2}x with respect to xx.

See Solution

Problem 11026

Find the derivative of y=x+3x+2y=\frac{x+3}{\sqrt{x}+2} using the chain rule.

See Solution

Problem 11027

Find the derivative of y=sinxcosxy=\sin x \cos x with respect to xx.

See Solution

Problem 11028

Find intervals where f(x)=cos2(x)2sin(x)f(x)=\cos^{2}(x)-2\sin(x) is increasing, decreasing, concave up, and concave down on [0,2π][0,2\pi].

See Solution

Problem 11029

Calculate the average rate of change of f(x)=2x2+5f(x)=-2 x^{2}+5 for these intervals: (a) 4 to 6, (b) -2 to 0, (c) 0 to 3.

See Solution

Problem 11030

Find the derivative f(π2)f^{\prime}\left(\frac{\pi}{2}\right) for f(x)=x3+2cos(x)3sin(x)f(x)=\frac{x^{3}+2 \cos (x)}{3 \sin (x)}.

See Solution

Problem 11031

Find the derivative of f(x)=6x39x+4f(x)=6 x^{3}-9 x+4 and state the derivative rule(s) used.

See Solution

Problem 11032

Find the derivative of the function f(x)=3arcsin(x)arccos(x)3arctan(x)f(x)=3 \arcsin (x) \arccos (x)-3 \arctan (x) at x=0x=0.

See Solution

Problem 11033

Find the derivatives of these functions: (a) f(x)=(2cos2x+3)5/2f(x)=(2 \cos ^{2} x+3)^{5/2}, (b) g(t)=tan(t22e4t)g(t)=\tan(t^{2}-2 e^{-4t}), (c) x2cosy+sin(3x4y)=3x^{2} \cos y+\sin(3x-4y)=3, (d) h(x)=cos1(x5/3)h(x)=\cos^{-1}(x^{5/3}).

See Solution

Problem 11034

A right triangle has base xx m and height hh m. How does dθdt\frac{d \theta}{d t} relate to dxdt\frac{d x}{d t}?

See Solution

Problem 11035

Find the derivative of f(x)=(6x+1)ln(2x+6)f(x)=(6 x+1)^{\ln (2 x+6)} and evaluate it at x=0x=0.

See Solution

Problem 11036

Find the derivative of yy with respect to xx from the equation y5ln(y)x4ln(x)=5y^{5} \ln (y)-x^{4} \ln (x)=5.

See Solution

Problem 11037

Find the exact integrals: (a) 0π/4cos(2x)esin(2x)dx\int_{0}^{\pi / 4} \cos (2 x) e^{\sin (2 x)} d x and (b) 3x(1+x4)1dx\int 3 x(1+x^{4})^{-1} d x.

See Solution

Problem 11038

Solve the initial value problem: dydx=x2+1+1x2+1\frac{d y}{d x}=x^{2}+1+\frac{1}{x^{2}+1}, with y=9y=9 when x=0x=0.

See Solution

Problem 11039

Hourly internet usage f(t)f(t) is sinusoidal with max 5 TB5 \mathrm{~TB} & min 1 TB1 \mathrm{~TB}. Find period, formula, min times, & f(3)f^{\prime}(3).

See Solution

Problem 11040

Find 41f(x)dx\int_{4}^{1} f(x) \mathrm{d} x given areas: [4,3]=73[-4,-3] = \frac{7}{3}, [3,1]=323[-3,1] = \frac{32}{3}, [1,2]=73[1,2] = \frac{7}{3}.

See Solution

Problem 11041

Find the integral 41f(x)dx\int_{4}^{1} f(x) dx given areas on intervals [4,3][-4,-3], [3,1][-3,1], and [1,2][1,2].

See Solution

Problem 11042

Given the revenue function R(x)=1.33xR(x)=1.33 x, find the slope, marginal revenue, and interpret it. Choices for interpretation: A, B, C, D.

See Solution

Problem 11043

Find the derivative of y=sinxcosxy=\sin x \cos x using the product rule.

See Solution

Problem 11044

Given R(x)=1.79xR(x)=1.79 x, find the slope, marginal revenue, and interpret it. Options for interpretation: A, B, C, D.

See Solution

Problem 11045

Sketch the area between y=6x3y=6 x^{3}, y=6y=6, and x=0x=0. Find the volume when this area is rotated around the xx-axis.

See Solution

Problem 11046

Find the intervals where the function f(x)=x55x4f(x)=x^{5}-5 x^{4} is decreasing and concave up. Provide your answer as intervals.

See Solution

Problem 11047

Calculate the area between the xx-axis and y=7sin(x)y=7 \sin (x), y=7cos(x)y=7 \cos (x) for x[0,π3]x \in [0, \frac{\pi}{3}].

See Solution

Problem 11048

Find the intervals where the function f(x)=x55x4f(x)=x^{5}-5 x^{4} is decreasing and concave up. Provide your intervals.  interval (s)=\text { interval }(\mathrm{s})=

See Solution

Problem 11049

Find the absolute maximum of f(x)=3sin(2x)+6cos(x)f(x)=3 \sin (2 x)+6 \cos (x) on [0,π2][0, \frac{\pi}{2}].

See Solution

Problem 11050

Given the function A(x)=xx+5A(x)=x \sqrt{x+5}, determine the intervals where AA is increasing and decreasing, and find local maxima and minima.

See Solution

Problem 11051

Find values of cc for f(x)=x2+2x+3f(x)=x^{2}+2x+3 in [3,1][-3,1] that meet Rolle's Theorem: a. 2,0-2,0 b. -2 c. 1,0-1,0 d. -1

See Solution

Problem 11052

Find if the limit limxx2e3x\lim _{x \rightarrow-\infty} x^{2} e^{3 x} exists and calculate its value if it does.

See Solution

Problem 11053

Find where the function f(x)=4+7x1/3f(x)=4+7 x^{1/3} is concave up/down and identify its inflection points.

See Solution

Problem 11054

Given f(x)=2x33x236x9f(x)=2 x^{3}-3 x^{2}-36 x-9, find where ff is increasing/decreasing and its relative maxima/minima.

See Solution

Problem 11055

Find the relative extrema of f(x)=x+36xf(x)=x+\frac{36}{x} using the Second Derivative Test.

See Solution

Problem 11056

Find the population of Rhodobacter sphaeroides after 7 hours, starting with 23 and increasing at 3.4657e0.1386t3.4657 e^{0.1386 t}.

See Solution

Problem 11057

Find the derivative of the function f(x)=x2+xf(x)=x^{2}+x using the limit definition.

See Solution

Problem 11058

Find where the function f(u)=2uu249f(u)=\frac{2 u}{u^{2}-49} is concave up/down and identify its inflection points.

See Solution

Problem 11059

Find the population of Rhodobacter sphaeroides after 7 hours, starting with 23 and increasing at 3.4657e0.1386t3.4657 e^{0.1386 t}.

See Solution

Problem 11060

Find points on the graph of y2=x33x+1y^{2}=x^{3}-3 x+1 where the tangent line is horizontal.

See Solution

Problem 11061

Find the function ff given f(θ)=sinθ+cosθf^{\prime \prime}(\theta)=\sin \theta+\cos \theta, f(0)=4f(0)=4, f(0)=3f^{\prime}(0)=3.

See Solution

Problem 11062

Find points on the graph of 3x2+4y2+3xy=243 x^{2}+4 y^{2}+3 x y=24 where the tangent line is horizontal.

See Solution

Problem 11063

Find points on the graph of 3x2+4y2+3xy=243 x^{2}+4 y^{2}+3 x y=24 where the tangent line is horizontal.

See Solution

Problem 11064

Evaluate the limit: limx(lnx)56x4\lim _{x \rightarrow \infty} \frac{(\ln x)^{5}}{6 x^{4}} using l'Hôpital's Rule.

See Solution

Problem 11065

Find if the limit exists: limx0+(1+5x)13x\lim _{x \rightarrow 0+}(1+5 x)^{\frac{1}{3 x}} and determine its value if it does.

See Solution

Problem 11066

Find g(2)g'(2) for g(x)=3f(x)+x5f(x)g(x)=3f(x)+x^5f(x) and h(2)h'(2) for h(x)=(9x+8)f(x)h(x)=(9x+8)f(x), given f(2)=5f(2)=5 and f(2)=2f'(2)=-2.

See Solution

Problem 11067

Find the value of ddx(f(x)+5x45x2+4)5\frac{d}{d x}\left(f(x)+5 x^{4}-5 x^{2}+4\right)^{5} at x=3x=3 given f(3)=5f(3)=5 and f(3)=9f^{\prime}(3)=-9.

See Solution

Problem 11068

Evaluate the limit: limx0(sinx)21secx\lim _{x \rightarrow 0} \frac{(\sin x)^{2}}{1-\sec x} using l'Hôpital's Rule.

See Solution

Problem 11069

Gegeben ist die Funktion f(x)=35x452x3+2xf(x)=\frac{3}{5} x^{4}-\frac{5}{2} x^{3}+2 x. Finde Nullstellen, Extrema, Wendepunkte, Krümmung, Steigung -1 und f(x)=0,5f(x)=0,5.

See Solution

Problem 11070

Finde den höchsten Punkt der Funktion f(x)=5x326x2+21x+36f(x)=5x^{3}-26x^{2}+21x+36 im Bereich [0,8;3][-0,8; 3] und bestimme die Höhe über Normalnull.

See Solution

Problem 11071

Approximate 9.04\sqrt{9.04} using the linear approximation of f(x)=9xf(x)=\sqrt{9-x} at a=0a=0.

See Solution

Problem 11072

Evaluate the limit: limx01cosxx4+x3\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{4}+x^{3}}

See Solution

Problem 11073

Estimate the paint needed for a 0.0015 m0.0015 \mathrm{~m} thick coat on a hemispherical dome with a diameter of 50 m50 \mathrm{~m}.

See Solution

Problem 11074

Bestimme die Stammfunktion von ff: a) f(x)=4x3+2x21f(x)=4 x^{3}+2 x^{2}-1; b) f(x)=x54x3f(x)=x^{5}-4 x^{3}.

See Solution

Problem 11075

Finde eine Stammfunktion für die Funktion f(x)=x54x3f(x)=x^{5}-4 x^{3}.

See Solution

Problem 11076

Finde eine Stammfunktion von f(x)=x32x+7f(x)=-x^{3}-2x+7.

See Solution

Problem 11077

Finde eine Stammfunktion von f(x)=4x3+2x21f(x)=4x^3+2x^2-1.

See Solution

Problem 11078

Estimate the relative error in the volume of a cube with edge 20 cm20 \mathrm{~cm} and measurement error 0.2 cm0.2 \mathrm{~cm}.

See Solution

Problem 11079

Identify the interval where the function is increasing given its low point at -2. Choose A or B for your answer.

See Solution

Problem 11080

Untersuchen Sie die Integrale 21x3dx\int_{2}^{\infty} \frac{1}{x^{3}} d x und 011x3dx\int_{0}^{1} \frac{1}{x^{3}} d x auf Existenz und Wert.

See Solution

Problem 11081

Bewerten Sie die Rechnung 111x2dx=[1x]11=2\int_{-1}^{1} \frac{1}{x^{2}} d x=\left[-\frac{1}{x}\right]_{-1}^{1}=-2 und die Anmerkung dazu.

See Solution

Problem 11082

Find the interval where the function is increasing, given it has a lowest point of -2.
A. Increasing on interval(s): __________ B. No increasing interval.

See Solution

Problem 11083

Gegeben sind zwei Kurven K1K_{1} und K2K_{2}. Skizzieren Sie sie und berechnen Sie die Volumina V1V_{1}, V2V_{2} und VV der Schale.

See Solution

Problem 11084

Gjeni shpejtësitë e ndryshimit të funksioneve: a f(x)=x2+10xf(x)=x^{2}+10xx=4x=4 b g(x)=x3+2x2+x+1g(x)=x^{3}+2x^{2}+x+1x=1x=-1 c h(x)=5x+6h(x)=5x+6x=1x=1 d k(x)=x+1xk(x)=x+\frac{1}{x}x=3x=3.

See Solution

Problem 11085

Njehsoni shpejtësitë e ndryshimit të funksioneve në pikat e dhëna: a) f(x)=x2+10xf(x)=x^{2}+10xx=4x=4, b) g(x)=x3+2x2+x+1g(x)=x^{3}+2x^{2}+x+1x=1x=-1, c) h(x)=5x+6h(x)=5x+6x=1x=1, d) k(x)=x+1xk(x)=x+\frac{1}{x}x=3x=3, e) m(x)=9x2+6x+lnem(x)=9x^{2}+6x+\ln ex=1x=1, f) n(x)=x1+x2n(x)=x^{-1}+x^{-2}x=2x=-2, g) p(x)=1xp(x)=\frac{1}{\sqrt{x}}x=19x=\frac{1}{9}, h) q(x)=x32+lneq(x)=x^{\frac{3}{2}}+\ln ex=36x=36, i) r(x)=x48x2r(x)=x^{4}-8x^{2}x=2x=-2, j) s(x)=xxs(x)=\sqrt{x}-xx=4x=4.

See Solution

Problem 11086

Rotiert die Fläche zwischen f(x)=150(x2)2+0,4f(x)=\frac{1}{50}(x-2)^{2}+0,4 und g(x)=14x1g(x)=\frac{1}{4}\sqrt{x-1} von [0;6][0;6] um die xx-Achse, a) zeichnen Sie die Graphen, b) wie viel Flüssigkeit passt in den Pokal? c) Masse bei Dichte 3,4 g/cm33,4 \mathrm{~g/cm^{3}}? d) Neue Funktion gg^{*} nach Verschiebung um 5 cm5 \mathrm{~cm} und mögliche Probleme erläutern.

See Solution

Problem 11087

Gjeni shpejtësitë e ndryshimit të funksioneve: a f(x)=x2+10xf(x)=x^{2}+10xx=4x=4 b g(x)=x3+2x2+x+1g(x)=x^{3}+2x^{2}+x+1x=1x=-1 c h(x)=5x+6h(x)=5x+6x=1x=1 d k(x)=x+1xk(x)=x+\frac{1}{x}x=3x=3 e m(x)=9x2+6x+1m(x)=9x^{2}+6x+1x=1x=1 f n(x)=x1+x2n(x)=x^{-1}+x^{-2}x=2x=-2

See Solution

Problem 11088

Gjeni shpejtësinë e ndryshimit të funksioneve m(x)=9x2+6x+1m(x)=9x^2+6x+1x=1x=1, n(x)=x1+x2n(x)=x^{-1}+x^{-2} për x<2x<-2, p(x)=1xp(x)=\frac{1}{\sqrt{x}}x=19x=\frac{1}{9}, dhe g(x)=x3/2+1g(x)=x^{3/2}+1 në $x=36.

See Solution

Problem 11089

Bestimme den Wert von xx, der das Volumen einer offenen Box aus einem 16 cm×10 cm16 \mathrm{~cm} \times 10 \mathrm{~cm} Rechteck maximiert.

See Solution

Problem 11090

Zeigen Sie, dass F(x)=12x2lnxF(x)=\frac{1}{2} x^{2} \cdot \ln x eine Stammfunktion von f(x)=x(12+lnx)f(x)=x \cdot\left(\frac{1}{2}+\ln x\right) ist.

See Solution

Problem 11091

Check if the Mean Value Theorem applies to f(x)=x2+xf(x)=x^{2}+x on [2,2][-2,2] and find values of cc or state why it doesn't.

See Solution

Problem 11092

Bestimmen Sie die Stammfunktion FF von f(x)=2x33x2f(x)=2 \cdot x^{3}-3 \cdot x^{2}, die durch P(0/2)P(0/2) verläuft.

See Solution

Problem 11093

Determine true statements about a polynomial gg with an inflection point at x=3x=3.

See Solution

Problem 11094

Bestimme die Intervallgrenze uu für verschiedene Funktionen ff, sodass der Flächeninhalt AA über das Intervall II erreicht wird.

See Solution

Problem 11095

Design a rectangular container with a square base and volume 3888ft33888 \mathrm{ft}^{3}. Minimize cost with top at \$2/ft², sides at \$9/ft², and bottom at \$10/ft². Find dimensions.

See Solution

Problem 11096

Given the function r(x)=x24x2x2r(x)=\frac{x^{2}-4}{x^{2}-x-2}, which statement about limx2\lim_{x \to 2} is true?

See Solution

Problem 11097

Skizzieren Sie den Graphen von ff und berechnen Sie die Fläche zwischen ff und der xx-Achse für die Intervalle I: a) I=[1;6]I=[-1 ; 6], b) I=[2;3]I=[-2 ; 3], c) I=[1;2]I=[-1 ; 2], d) I=[1;5]I=[1 ; 5], e) I=[0,5;2]I=[0,5 ; 2], f) I=[1;2,5]I=[-1 ; 2,5].

See Solution

Problem 11098

Bestimme die Tangentengleichung an f(x)=2e12xf(x)=2 \cdot e^{-\frac{1}{2} x} im Schnittpunkt mit der yy-Achse.

See Solution

Problem 11099

Find local maxima of f(x)f(x) with critical points at x=0.64,0.46,1.54,2.64x=-0.64, 0.46, 1.54, 2.64 and f(x)=20x360x2+30x+10f^{\prime \prime}(x)=20 x^{3}-60 x^{2}+30 x+10.

See Solution

Problem 11100

Bestimme die Tangentengleichung von f(x)=2e12xf(x) = 2e^{-\frac{1}{2}x} an der yy-Achse und finde den Flächeninhalt von 1,5.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord