Calculus

Problem 16801

Evaluate the integral 17x7dx=\int \frac{1}{7 x^{7}} d x=\square (Provide the exact answer.)

See Solution

Problem 16802

Test if the series converge: 1) n=1nnn!\sum_{n=1}^{\infty} \frac{n^{n}}{n !}, 2) n=1(2n+33n+2)n\sum_{n=1}^{\infty}\left(\frac{2 n+3}{3 n+2}\right)^{n}.

See Solution

Problem 16803

Evaluate the definite integral 03(7x2)dx\int_{0}^{3}(7-x^{2})dx using its definition.

See Solution

Problem 16804

Evaluate the integral from 0 to 3 of the function 7x27 - x^{2}: 03(7x2)dx\int_{0}^{3}\left(7-x^{2}\right) d x.

See Solution

Problem 16805

Determine convergence or divergence of the series and if convergent, classify as conditional or absolute: n=1nlnn(2)n\sum_{n=1}^{\infty} \frac{n \ln n}{(-2)^{n}}

See Solution

Problem 16806

Check if the series n=1nlnn(2)n\sum_{n=1}^{\infty} \frac{n \ln n}{(-2)^{n}} converges or diverges.

See Solution

Problem 16807

Find the indefinite integral: 481w2+81dw\int \frac{4}{81 w^{2}+81} d w and verify by differentiating your result.

See Solution

Problem 16808

Determine if these statements are true or false, and explain your reasoning: a) If F(x)F(x) is an antiderivative of f(x)f(x), then 1aF(ax)\frac{1}{a} F(a x) is an antiderivative of f(ax)f(a x). b) Each antiderivative of an nthn^{\text{th}} degree polynomial is an (n+1)st(n+1)^{\text{st}} degree polynomial. c) If ff and gg are continuous with f(x)g(x)0f(x) \geq g(x) \geq 0 for axba \leq x \leq b, then abf(x)dxabg(x)dx\int_{a}^{b} f(x) dx \geq \int_{a}^{b} g(x) dx.

See Solution

Problem 16809

Find the antiderivative FF of f(u)=7eu+13f(u)=7 e^{u}+13 with F(0)=4F(0)=-4. What is F(u)F(u)?

See Solution

Problem 16810

Find the indefinite integral and verify by differentiating: 881v2+81dv=\int \frac{8}{81 v^{2}+81} d v=\square

See Solution

Problem 16811

Determine convergence or divergence of the series. If it converges, classify as conditional or absolute: n=1n2n(n+1)!3nn!\sum_{n=1}^{\infty} \frac{n 2^{n}(n+1) !}{3^{n} n !}

See Solution

Problem 16812

Determine the position and velocity of an object with acceleration a(t)=34a(t)=-34, initial velocity v(0)=50v(0)=50, and initial position s(0)=10s(0)=10. Find v(t)=v(t)=\square.

See Solution

Problem 16813

Find the velocity function v(t)v(t) given a(t)=4t2+7a(t)=4 t^{2}+7 and v(0)=3v(0)=3.

See Solution

Problem 16814

Find the rate of change of the area AA of a circle with radius rr when r=4r=4 and drdt=5\frac{d r}{d t}=5.

See Solution

Problem 16815

Is the function f(x)=n=0xenx2f(x)=\sum_{n=0}^{\infty} x e^{-n x^{2}} continuous at x=0x=0? Justify your response.

See Solution

Problem 16816

Evaluate the integral: 112x6dx=(\int \frac{1}{12 x^{6}} d x=\square( Type an exact answer.)

See Solution

Problem 16817

Evaluate the integral: 15x5dx=\int \frac{1}{5 x^{5}} d x=\square (Type an exact answer.)

See Solution

Problem 16818

Find the first four nonzero terms of the Taylor series for f(x)=sin(4x)f(x)=\sin (-4 x) around x=3x=3.

See Solution

Problem 16819

Is it true or false that if nNan\sum_{n \in \mathbb{N}} a_{n} is conditionally convergent, then nNnkan\sum_{n \in \mathbb{N}} n^{k} a_{n} diverges for each k(1,+)k \in(1,+\infty)? Prove or provide a counterexample.

See Solution

Problem 16820

Find the particular solution of f(x)=8xf'(x)=-8x with the initial condition f(1)=2f(1)=-2. What is f(x)f(x)?

See Solution

Problem 16821

Prove that the function T(x)=n=2(1xnπ+1nπ)T(x)=\sum_{n=2}^{\infty}\left(\frac{1}{x-n \pi}+\frac{1}{n \pi}\right) is defined for x[0,π]x \in [0, \pi].

See Solution

Problem 16822

Find the rate of change of f(x)=x2+2xf(x)=x^{2}+2x from x=3x=3 to x=5x=5. The answer is 10. Explain this in context of the graph.

See Solution

Problem 16823

Considérez la fonction f(x)=xsin(2x)f(x)=x-\sin (2 x) sur [0,π2][0, \frac{\pi}{2}]. Trouvez f(x)f'(x), f(x)f''(x) et le tableau de variation.

See Solution

Problem 16824

Calculate the infinite series: n=1n2n(n+1)!3nn!\sum_{n=1}^{\infty} \frac{n 2^{n}(n+1) !}{3^{n} n !}.

See Solution

Problem 16825

Find F(x)F^{\prime}(x) using the Second Fundamental Theorem of Calculus for F(x)=0xt41+t5dtF(x)=\int_{0}^{x} t^{4} \sqrt{1+t^{5}} dt.

See Solution

Problem 16826

Find the average height change per foot for a 25 ft drop from 0 ft to -100 ft. Options: 4ft4 \mathrm{ft}, 14ft-\frac{1}{4} \mathrm{ft}, 4ft-4 \mathrm{ft}, 14ft\frac{1}{4} \mathrm{ft}.

See Solution

Problem 16827

Find the sum of the series ((1/2))((1/2))22((1/2))33-((1 / 2))-\frac{((1 / 2))^{2}}{2}-\frac{((1 / 2))^{3}}{3}-\cdots as a Taylor series.

See Solution

Problem 16828

Calculate the sum of the series: 6633!+655!677!+6 - \frac{6^3}{3!} + \frac{6^5}{5!} - \frac{6^7}{7!} + \cdots

See Solution

Problem 16829

Find the first few coefficients cnc_n of the power series for f(x)=ln(5x)=n=0cnxnf(x)=\ln(5-x)=\sum_{n=0}^{\infty} c_{n} x^{n}.

See Solution

Problem 16830

Find local maxima, minima, and saddle points of f(x,y)=x2+7xy+y2f(x, y)=x^{2}+7xy+y^{2}.

See Solution

Problem 16831

Find local maxima, minima, and saddle points of f(x,y)=x2+14x+y24y+3f(x, y)=x^{2}+14 x+y^{2}-4 y+3. Options include points like (7,2)(-7,2) and (7,2)(7,-2).

See Solution

Problem 16832

Find local maxima, minima, and saddle points of f(x,y)=10xy(x+y)+4f(x, y)=10xy(x+y)+4. Identify points from the options given.

See Solution

Problem 16833

Find local maxima, minima, and saddle points of f(x,y)=2x4y4f(x, y)=2-x^{4} y^{4}. Identify points from options A-G.

See Solution

Problem 16834

Find local maxima, minima, and saddle points for f(x,y)=x2+2x+y2+12y+3f(x, y)=x^{2}+2x+y^{2}+12y+3.

See Solution

Problem 16835

Find local maxima, minima, and saddle points of f(x,y)=x2+yx+y2f(x, y)=x^{2}+y x+y^{2}. Options: (A) (B) (C) (D) (E) (F) (G).

See Solution

Problem 16836

Find the degree 4 Taylor polynomial for f(x)=ln(x8)f(x)=\ln(x^{8}) at a=1a=1. Compute derivatives and evaluate them.

See Solution

Problem 16837

Find the absolute max and min of f(x,y)=6x+7yf(x, y)=6x+7y in the triangle with vertices (0,0),(1,0),(0,1)(0,0),(1,0),(0,1).

See Solution

Problem 16838

Find the absolute max and min of f(x,y)=x2+xy+y2f(x, y)=x^{2}+xy+y^{2} on 8x,y8-8 \leq x, y \leq 8.

See Solution

Problem 16839

limx0(1x1sinx)\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right) limitinin sonucu nedir? A) -1 B) 12-\frac{1}{2} C) 0 D) 12\frac{1}{2} E) 1

See Solution

Problem 16840

Find the concavity intervals for the function m(x)=x2+5x5m(x)=\frac{x^{2}+5}{x-5}.

See Solution

Problem 16841

Given f(t)=t2+t2f(t)=t^{2}+t-2, find: (a) average rate of change from t=1t=1 to t=2t=2; (b) instantaneous rate at t=1t=1.

See Solution

Problem 16842

An inverted pyramid with a square top (sides 2 cm2 \mathrm{~cm}) is filled with water at 50 cm3/s50 \mathrm{~cm}^3/\mathrm{s}. Find the water level rise rate when the level is 2 cm2 \mathrm{~cm}. cm/sec\mathrm{cm} / \mathrm{sec}

See Solution

Problem 16843

Find local maxima of the function hh from its graph with a peak at (-2,2). (a) Local maximum locations: \square (b) Local maximum values: \square

See Solution

Problem 16844

Find the extrema and inflection points of the function g(t)=t2(2t+5)g(t)=t^{2}(2t+5).

See Solution

Problem 16845

F(x) = { x^2 \cos(1/x) for x ≠ 0; 0 for x = 0. Bu fonksiyonun sürekli olduğunu gösterin.

See Solution

Problem 16846

Gegeben sind f(x)=x2+4f(x)=-x^{2}+4 und g(x)=x25x+6g(x)=x^{2}-5x+6. Bestimme ff', gg', Steigungsstelle, Extremstelle, Tangentengleichung und Schnittwinkel.

See Solution

Problem 16847

a<1|a|<1 için dizinin 1+a+a2++an1+a+a^{\wedge} 2+\ldots+a^{\wedge} n monoton artan ve sınırlı olduğunu gösterin.

See Solution

Problem 16848

Given f(x)=x(x+5)2f(x)=x(x+5)^{2}, find the intercepts, increasing/decreasing intervals, extremum points, concavity, and inflection points. Sketch the graph.

See Solution

Problem 16849

Aufgabe 4: Gegeben ist ft(x)=x332tx2f_{t}(x)=x^{3}-\frac{3}{2} t x^{2} mit t>0t>0.
a) Einfluss von tt auf den Graphen. b) Nullstellen in Abhängigkeit von tt berechnen. c) Lokale Extrempunkte und tt für Tiefpunkt 4 Längeneinheiten unter der x-Achse finden. d) Tangentengleichung am Punkt (12t,14t3)\left(\frac{1}{2} t, -\frac{1}{4} t^{3}\right) bestimmen.

See Solution

Problem 16850

Finden Sie die Stammfunktion für die folgenden Funktionen: a) f(x)=x4f(x)=x^{4}, b) f(x)=x3x2f(x)=x^{3}-x^{2}, c) f(x)=xnf(x)=x^{n}, d) f(x)=x2f(x)=x^{-2}, e) f(x)=15x4f(x)=\frac{1}{5} x^{-4}, f) f(x)=1xf(x)=\frac{1}{x}.

See Solution

Problem 16851

Calculate the integral: x(2x2+1)dx\int x(2x^{2}+1) \, dx

See Solution

Problem 16852

Evaluate the integral: (1233π2+x2)\int\left(\frac{12 \sqrt{3}}{3 \pi^{2}+x^{2}}\right).

See Solution

Problem 16853

Calculate the integral ln3xx(ln4x+5)dx\int \frac{\ln ^{3} x}{x\left(\ln ^{4} x+5\right)} d x.

See Solution

Problem 16854

Calculate the integral: (3x+1x)dx\int\left(3 \sqrt{x}+\frac{1}{\sqrt{x}}\right) d x.

See Solution

Problem 16855

Bestimme die Ableitungsfunktion für die folgenden Funktionen: a) f(x)=ax2+bx+cf(x)=a x^{2}+b x+c, b) f(x)=ax+cf(x)=a x+c, c) f(x)=xc+1f(x)=x^{c+1}, d) f(t)=t2+3tf(t)=t^{2}+3 t, e) f(x)=xtf(x)=x-t, f) f(t)=xtf(t)=x-t.

See Solution

Problem 16856

Gjeni integralet e mëposhtme: a) (2x+3x5)dx\int(2x + 3x^5) \, dx b) (x44x7)dx\int(x^{-4} - 4x^7) \, dx c) (3x+1x)dx\int(3\sqrt{x} + \frac{1}{\sqrt{x}}) \, dx

See Solution

Problem 16857

Untersuchen Sie das Verhalten der Funktion f(x)=12x32x2f(x)=\frac{1}{2} x^{3}-2 x^{2} für xx \rightarrow \infty und xx \rightarrow -\infty. Ändern Sie die Koeffizienten, damit gg folgende Grenzen hat: I: limxg(x)=\lim_{x \rightarrow -\infty} g(x)=\infty, II: limx±g(x)=\lim_{x \rightarrow \pm \infty} g(x)=-\infty, III: limx±g(x)=\lim_{x \rightarrow \pm \infty} g(x)=\infty.

See Solution

Problem 16858

Gjeni intervalet e xx ku y=x3+5x28x+4y=x^{3}+5 x^{2}-8 x+4 është monoton zbritës. Zgjidhni integralet: (2x+3x5)dx\int(2 x+3 x^{5}) dx, (x44x3)dx\int(x^{-4}-4 x^{3}) dx, (3x+1x)dx\int(3 \sqrt{x}+\frac{1}{\sqrt{x}}) dx.

See Solution

Problem 16859

Bestimmen Sie die Ableitung ff^{\prime} für die folgenden Funktionen: a) f(x)=x(5x)f(x)=x(5-x), b) f(x)=(x+x2)xf(x)=(x+x^{2})x, c) f(x)=x2(x+2)5f(x)=x^{2}(x+2)5, d) f(x)=(x+2)2f(x)=(x+2)^{2}, e) f(x)=2(x2)2f(x)=2(x-2)^{2}, f) f(x)=(x7)(x+7)f(x)=(x-7)(x+7).

See Solution

Problem 16860

Find the derivatives of these functions:
1. g(x)=x3g(x)=x^{-3}
2. g(x)=c+xg(x)=c+\sqrt{x}
3. g(x)=x0.2g(x)=\sqrt{x} \cdot 0.2
4. g(x)=x1.4x4g(x)=\sqrt{x}-1.4 \cdot x^{4}
5. g(x)=1.5cos(x)+x7g(x)=-1.5 \cdot \cos (x)+x^{7}
6. k(x)=x1k(x)=x^{1}
7. h(x)=6x3h(x)=6-x^{-3}
8. k(x)=sin(x)3k(x)=\sin (x)-3
9. h(x)=bcos(x)h(x)=-b \cdot \cos (x)
10. k(x)=7x3k(x)=7 \cdot x^{-3}
11. h(x)=7x32x2h(x)=7 \cdot x^{-3}-2 \cdot x^{2}
12. k(x)=sin(x)+2+ck(x)=\sin (x)+2+c
13. h(x)=0.1sin(x)0.5h(x)=0.1-\sin (x)-0.5
14. k(x)=2cos(x)+1.3k(x)=-2 \cdot \cos (x)+1.3
15. h(x)=0.1sin(x)0.5h(x)=0.1-\sin (x)-0.5

See Solution

Problem 16861

Find the limit of f(x)=x21x1f(x)=\frac{x^{2}-1}{x-1} as xx approaches 1. Options: 1, 2, Undefined, 0.

See Solution

Problem 16862

Calculate the derivative of the function f(x)=sin(2x)+cos(3x)f(x)=\sin (2 x)+\cos (3 x).

See Solution

Problem 16863

Find the derivative of f(x)=(x2+1)x3/2f(x)=(x^{2}+1)x^{3/2}. What is f(x)f'(x)?

See Solution

Problem 16864

Find the derivative of f(x)=e2x23x+4f(x)=e^{2 x^{2}-3 x+4}. What is f(x)f'(x)?

See Solution

Problem 16865

Find the derivative of f(x)=ln(2x35x+1)f(x)=\ln(2x^{3}-5x+1). What is f(x)f'(x)?

See Solution

Problem 16866

Find the volume VV using cylindrical shells for the region bounded by y=7xy=\frac{7}{x}, y=0y=0, x=1x=1, x=4x=4. V=V=\square

See Solution

Problem 16867

Find the average value of f(x)=2x3x3f(x)=-2 x^{3}-x-3 on [1,3][1,3]. Provide the exact answer as a fraction if necessary.

See Solution

Problem 16868

Determine if the series 1425+3647+58\frac{1}{4}-\frac{2}{5}+\frac{3}{6}-\frac{4}{7}+\frac{5}{8}-\ldots is convergent or divergent.

See Solution

Problem 16869

Find the derivative of f(x)=(2x+1)5(3x2)3f(x)=(2x+1)^{5}(3x-2)^{3}. What is f(x)f'(x)?

See Solution

Problem 16870

Find the volume VV of the solid formed by rotating the area between x=1+y2x=1+y^{2}, x=0x=0, y=1y=1, and y=3y=3 around the xx-axis using cylindrical shells. v=v=

See Solution

Problem 16871

Test the series for convergence or divergence: n=1(1)n7n13n+1\sum_{n=1}^{\infty}(-1)^{n} \frac{7 n-1}{3 n+1}. What is the limit as nn \to \infty?

See Solution

Problem 16872

Calculate the average value of f(x)=3x7f(x)=-\frac{3}{\sqrt[7]{x}} on the interval [0,2][0,2]. Use exact fractions/roots.

See Solution

Problem 16873

Find F(2)F(2) given F(0)=3F(0)=-3 and F(x)=2xF^{\prime}(x)=2x.

See Solution

Problem 16874

Prove the series converges and find how many terms are needed for an error less than 0.00005 in n=1(1)n+1n9\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{9}}.

See Solution

Problem 16875

Untersuchen Sie die Folgen auf Monotonie und Beschränktheit:
(a) an=n+32na_{n}=\frac{n+3}{2 n}, (b) an=ncos(π(n+1))a_{n}=n \cos (\pi(n+1)), (c) an=1+(34)na_{n}=1+\left(-\frac{3}{4}\right)^{n}, (d) an=cos(π6)sin(πn2)a_{n}=\cos \left(\frac{\pi}{6}\right) \sin \left(\frac{\pi n}{2}\right).

See Solution

Problem 16876

Approximate the series sum to four decimal places: n=1(1)n1n210n\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n^{2}}{10^{n}}.

See Solution

Problem 16877

Find integrals for the surface area of the curve y=x6y=x^{6} from 0x10 \leq x \leq 1 rotated about the xx-axis and yy-axis.

See Solution

Problem 16878

Determine the values of pp for which the series n=1(1)n1np+3\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{p+3}} converges.

See Solution

Problem 16879

Find the value of 72F(x)dx\int_{-7}^{-2} F'(x) \, dx for the points (-8,2),(-7,-4),(-3,3),(-2,4),(0,4),(8,2).

See Solution

Problem 16880

Find the total distance a particle travels from t=0t=0 to t=2t=2 seconds with velocity v(t)=2t22v(t)=2 t^{2}-2 m/s.

See Solution

Problem 16881

Find the area of the surface formed by rotating the curve 9x=y2+459x = y^2 + 45 for 5x95 \leq x \leq 9 about the xx-axis.

See Solution

Problem 16882

Find the area of the surface formed by rotating the curve 9x=y2+459x = y^2 + 45 from x=5x = 5 to x=9x = 9 around the xx-axis.

See Solution

Problem 16883

Find the total distance a particle travels from t=0t=0 to t=3t=3 given its velocity v(t)=4t6v(t)=4t-6 m/s. Enter an exact answer.

See Solution

Problem 16884

Find the total distance a particle travels from t=0t=0 to t=4t=4 seconds with velocity v(t)=t2+2t+3v(t)=-t^{2}+2t+3.

See Solution

Problem 16885

Find 33F(x)dx\int_{-3}^{3} F^{\prime}(x) \, dx for the linear function F(x)F(x) defined by the points (-8,-7),(-3,-4),...,(8,6).

See Solution

Problem 16886

Find the integral of csc3(3x)cot5(3x)dx\csc^{3}(3x) \cot^{5}(3x) \, dx.

See Solution

Problem 16887

Find the area of the surface formed by rotating the curve y=1+5xy=\sqrt{1+5x} from x=1x=1 to x=7x=7 about the xx-axis.

See Solution

Problem 16888

A spring needs 5 J to stretch from 32 cm to 50 cm.
(a) Find work (in J) to stretch from 34 cm to 42 cm.
(b) How far (in cm) will 45 N stretch it?

See Solution

Problem 16889

Find the value of F(1)F(1) given F(0)=1F(0)=-1 and the points of F(x)F'(x): (2,8),(1,4),(0,0),(1,4),(2,8)(-2,8),(-1,4),(0,0),(1,-4),(2,-8).

See Solution

Problem 16890

According to Hooke's Law, the force to stretch a spring xx m is f(x)=kxf(x)=k x. Given 3 J3 \mathrm{~J} to stretch from 26 cm26 \mathrm{~cm} to 39 cm39 \mathrm{~cm}, find kk in N/m\mathrm{N} / \mathrm{m}.
(a) Work to stretch from 30 cm30 \mathrm{~cm} to 34 cm34 \mathrm{~cm}? (Round to two decimals.)
(b) Distance for 30 N30 \mathrm{~N} force? (Round to one decimal.) cm\mathrm{cm}

See Solution

Problem 16891

Given f(x)=23x36x2+10f(x)=\frac{2}{3} x^{3}-6 x^{2}+10, find: a) yy-intercept, b) critical points, c) increasing/decreasing intervals, d) concavity, e) sketch the graph.

See Solution

Problem 16892

In 2012, a city's population was 5.71M with a growth rate of 2.12%2.12\%. Find the growth function, population in 2018, time to reach 9M, and doubling time.

See Solution

Problem 16893

Evaluate the integral tan2θsecθdθtanθsecθdθ\int \frac{\tan ^{2} \theta}{\sec \theta} d \theta - \int \frac{\tan \theta}{\sec \theta} d \theta.

See Solution

Problem 16894

Calculate the time for \$ 6,200 to double at a 3\% annual interest rate, compounded continuously. Round to 4 decimal places.

See Solution

Problem 16895

Hochbehälter: Gegeben ist h(t)=18t22t+8h(t)=\frac{1}{8} t^{2}-2 t+8. a) Graph zeichnen. b) Wann leer? c) Halb und 1/4 voll? d) Durchschnittliche Sinkgeschwindigkeit?

See Solution

Problem 16896

Evaluate the integral: (sec2θ1)cosθdθ\int\left(\sec ^{2} \theta-1\right) \cos \theta d \theta

See Solution

Problem 16897

A bacteria culture starts with 640 and grows proportionally. After 4 hours, there are 2560 bacteria.
(a) Find P(t)P(t) as a function of tt. P(t)= P(t)= (b) What is the population after 7 hours? bacteria (c) How long to reach 1790 bacteria? hours

See Solution

Problem 16898

Ein Gartenpool wird mit einem Schlauch gefüllt. Bestimme die Füllhöhe nach 10 Minuten mit v(t)=0,1t21t3+1+40v(t)=0,1 t^{2}-\frac{1}{t^{3}+1}+40.

See Solution

Problem 16899

Find the total mass of a 9 m rod with linear density ρ(x)=7x+6\rho(x)=7x+6 kg/m.

See Solution

Problem 16900

Find the population in 1998 if the rate of change is given by r(t)=363t2r(t)=36-3t^{2} and the population was 3000 in 1991.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord