Calculus

Problem 29801

Analyze the graph of f(x)=exf(x)=e^{x} to solve: a. Find limxex\lim _{x \rightarrow-\infty} e^{x}. b. Identify the horizontal asymptote.

See Solution

Problem 29802

Find limx4f(x)g(x)\lim _{x \rightarrow 4} \frac{f(x)}{g(x)} given limx4f(x)=4\lim _{x \rightarrow 4} f(x)=4 and limx4g(x)=20\lim _{x \rightarrow 4} g(x)=20. Answer: \square

See Solution

Problem 29803

Find the limits for f(x)=x29x+8x+8f(x)=\frac{x^{2}-9 x+8}{x+8} as x8x \to -8^{-}, x8+x \to -8^{+}, and x8x \to -8.

See Solution

Problem 29804

Find the limit: limx3f(x)+g(x)2g(x)\lim _{x \rightarrow 3} \frac{f(x)+g(x)}{2 g(x)} given limx3f(x)=7\lim _{x \rightarrow 3} f(x)=7 and limx3g(x)=5\lim _{x \rightarrow 3} g(x)=5.

See Solution

Problem 29805

Determine if the limit exists: limx4x2+2x5x22x+1\lim _{x \rightarrow \infty} \frac{4 x^{2}+2 x}{5 x^{2}-2 x+1} and find its value.

See Solution

Problem 29806

Find the limit: limx23f(x)\lim _{x \rightarrow 2} 3^{f(x)} given that limf(x)=5\lim f(x)=5. Simplify your answer.

See Solution

Problem 29807

Find the limit: limx121x11x121\lim _{x \rightarrow 121} \frac{\sqrt{x}-11}{x-121}. Choose A or B for the answer.

See Solution

Problem 29808

Find and interpret limsP(s)\lim_{s \rightarrow \infty} P(s) where P(s)=70ss+6P(s)=\frac{70 s}{s+6}. What does the limit indicate?

See Solution

Problem 29809

Supply function: q=8p+6q=8^{p}+6. Find inverse function p=h(q)p=h(q), sketch graph, and evaluate limq6+h(q)\lim _{q \rightarrow 6^{+}} h(q).

See Solution

Problem 29810

Supply function: q=8P+6q=8^{P}+6 a) Find the inverse supply function. b) Graph the inverse function p=h(q)p=h(q). c) Explain limq0+h(q)\lim _{q \rightarrow 0^{+}} h(q).

See Solution

Problem 29811

Estimate limx6f(x)\lim _{x \rightarrow 6} f(x) using values: f(5.9)=8.9f(5.9)=8.9, f(6)=9f(6)=9, f(6.1)=9.1f(6.1)=9.1. Choices: A. limx6f(x)=\lim _{x \rightarrow 6} f(x)= or B. limit does not exist.

See Solution

Problem 29812

Calculate F=19,620×0b[11y12y32]dyF=19,620 \times \int_{0}^{b}\left[11 y^{\frac{1}{2}}-y^{\frac{3}{2}}\right] d y.

See Solution

Problem 29813

Determine if the limit exists: limx2x35x43x23x4\lim _{x \rightarrow \infty} \frac{2 x^{3}-5 x-4}{3 x^{2}-3 x-4}. If yes, find its value.

See Solution

Problem 29814

Given the piecewise function f(x)f(x), find the limits as xx approaches 2 and 8. Choose the correct options for each limit.

See Solution

Problem 29815

Calculate F=19,620×06[11y12y32]dyF=19,620 \times \int_{0}^{6}\left[11 y^{\frac{1}{2}}-y^{\frac{3}{2}}\right] dy.

See Solution

Problem 29816

Evaluate the function and limit for f(x)=7x414x218x5+9f(x)=\frac{7 x^{4}-14 x^{2}}{18 x^{5}+9}: (A) f(6)f(-6), (B) f(12)f(-12), (C) limxf(x)\lim_{x \to -\infty} f(x).

See Solution

Problem 29817

Determine if the limit exists:
limx3x29x+3\lim _{x \rightarrow-3} \frac{x^{2}-9}{x+3}
A. Find the limit value. B. The limit does not exist.

See Solution

Problem 29818

Find horizontal and vertical asymptotes for f(x)=3x+54x6+3f(x)=\frac{3 x+5}{4 x^{6}+3}.

See Solution

Problem 29819

Find the limit: limx64x8x64=\lim _{x \rightarrow 64} \frac{\sqrt{x}-8}{x-64}=\square (Type an integer or simplified fraction.)

See Solution

Problem 29820

Determine if the limit exists: limh049+h49h\lim _{h \rightarrow 0} \frac{\frac{4}{9+h}-\frac{4}{9}}{h}. If so, find its value.

See Solution

Problem 29821

Find limx27x21(x2)2\lim _{x \rightarrow 2} \frac{7 x^{2}-1}{(x-2)^{2}} using a graph. Options: Does not exist, -\infty, 7, \infty.

See Solution

Problem 29822

Find the limit: limx64x8x64\lim _{x \rightarrow 64} \frac{\sqrt{x}-8}{x-64}. Choose A (value) or B (does not exist).

See Solution

Problem 29823

Find horizontal and vertical asymptotes for f(x)=3x+54x6+3f(x)=\frac{3 x+5}{4 x^{6}+3}.

See Solution

Problem 29824

Find the gradient of these functions using differentiation rules: a) y=5x23x4+2y=5 x^{2}-3 \sqrt[4]{x}+2 b) y=(x28)3y=\left(x^{2}-8\right)^{3} c) y=(2x2+6x+3)(9x3+8x5)y=\left(2 x^{2}+6 x+3\right)\left(9-x^{3}+8 x^{5}\right) d) y=x242+xy=\frac{x^{2}-4}{2+x} and verify part (d) with chain and product rules.

See Solution

Problem 29825

Find the limits and value of f(x)=x15x15f(x)=\frac{|x-15|}{x-15} as x15+x \to 15^{+}, x15x \to 15^{-}, and at x=15x=15.

See Solution

Problem 29826

Determine if the limit exists and find its value:
limx7x6x8 \lim _{x \rightarrow \infty} \frac{7 x}{6 x-8}
Choose A for the limit value or B if it doesn't exist.

See Solution

Problem 29827

Find the limit for the left end behavior of the function f(x)=40x6+3x217x54xf(x)=\frac{40 x^{6}+3 x^{2}}{17 x^{5}-4 x}. What is limxf(x)=\lim _{x \rightarrow-\infty} f(x)=\square?

See Solution

Problem 29828

Determine if the limit exists: limx3x2+2x4x23x+1\lim _{x \rightarrow \infty} \frac{3 x^{2}+2 x}{4 x^{2}-3 x+1}. If so, find its value.

See Solution

Problem 29829

Find the limit: limx2x21x+8\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x^{2}-1}}{x+8}.

See Solution

Problem 29830

Determine if the limit exists: limx6x3+6x16x48x39\lim _{x \rightarrow \infty} \frac{6 x^{3}+6 x-1}{6 x^{4}-8 x^{3}-9}. If so, find its value.

See Solution

Problem 29831

Find local max/min of f(x)=x34x2+12f(x)=x^{3}-4 x^{2}+12 using the second derivative test.

See Solution

Problem 29832

Check if Rolle's theorem applies for f(x)=5x2f(x)=\frac{5}{x^{2}} on [3,3][-3,3] and find cc if conditions are met.

See Solution

Problem 29833

Given the piecewise function f(x)={x2 if x<42 if 4x6x+3 if x>6f(x)=\left\{\begin{array}{ll}x-2 & \text { if } x<4 \\ 2 & \text { if } 4 \leq x \leq 6 \\ x+3 & \text { if } x>6\end{array}\right., find the limits: a. limx4f(x)\lim _{x \rightarrow 4} f(x) b. limx6f(x)\lim _{x \rightarrow 6} f(x) Choose A or B for your answer.

See Solution

Problem 29834

Determine if the limit exists: limx6x32x67x25x6\lim _{x \rightarrow \infty} \frac{6 x^{3}-2 x-6}{7 x^{2}-5 x-6}. What is its value?

See Solution

Problem 29835

Find the domain, asymptotes, intercepts, intervals of increase/decrease, concavity, relative extrema, inflection points, and graph for f(x)=14x4+x3f(x)=\frac{1}{4} x^{4}+x^{3}.

See Solution

Problem 29836

Find the limit: limx0+x1(e4x1)\lim _{x \rightarrow 0^{+}} x^{-1}\left(e^{4 x}-1\right). What is its value?

See Solution

Problem 29837

Find the limit as xx approaches 3 for the expression x24x+32x27x+3\frac{x^{2}-4 x+3}{2 x^{2}-7 x+3}.

See Solution

Problem 29838

Determine if the limit exists: limx6x39x24x22x9\lim _{x \rightarrow \infty} \frac{6 x^{3}-9 x-2}{4 x^{2}-2 x-9}. If yes, find its value.

See Solution

Problem 29839

Estimate limx3f(x)\lim _{x \rightarrow 3} f(x) using the provided values. Choose A or B for your answer.

See Solution

Problem 29840

Determine for which xRx \in \mathbb{R} the function f(x)=n=0e2nxf(x) = \sum_{n=0}^{\infty} e^{-2 n x} is defined.

See Solution

Problem 29841

A city's population is given by P(t)=1.2(1.05)tP(t)=1.2(1.05)^{t}.
a) What is the average rate of change in population per year? b) Estimate the instantaneous rate of change in 2010.

See Solution

Problem 29842

Explain the Intermediate Value Theorem and its plausibility. Choose the correct answer about continuous functions on [a,b][a, b].

See Solution

Problem 29843

Evaluate the following integrals:
a) 02xdx\int_{0}^{2} x \, dx b) 113x2dx\int_{-1}^{1} 3 x^{2} \, dx c) 13(4x+1)dx\int_{1}^{3} (4x + 1) \, dx d) 254dx\int_{2}^{5} 4 \, dx e) 024xdx\int_{0}^{2} 4x \, dx f) 036x2dx\int_{0}^{3} 6x^{2} \, dx g) 112dx\int_{-1}^{1} 2 \, dx h) 15(3x2+2x+2)dx\int_{1}^{5} (3x^{2} + 2x + 2) \, dx i) 31(7x6+6x52)dx\int_{-3}^{1} (7x^{6} + 6x^{5} - 2) \, dx j) 0.5ππsinxdx\int_{0.5\pi}^{\pi} \sin x \, dx k) 13(x2+2x)dx\int_{1}^{3} (x^{2} + 2x) \, dx l) 1e1xdx\int_{1}^{e} \frac{1}{x} \, dx m) 22(4x73x2+4)dx\int_{-2}^{2} (4x^{7} - 3x^{2} + 4) \, dx n) π2πcosxdx\int_{\pi}^{2\pi} \cos x \, dx o) 02(x3x)dx\int_{0}^{2} (x^{3} - x) \, dx p) 046xdx\int_{0}^{4} 6x \, dx q) 03(cosxx2)dx\int_{0}^{3} (\cos x - x^{2}) \, dx

See Solution

Problem 29844

Find the values of xx where r(x)=lnxx7r(x)=\ln \left|\frac{x}{x-7}\right| is discontinuous and state the limits.

See Solution

Problem 29845

Find the limits of the postage function C(x)C(x) as xx approaches 3 from the left, right, and both sides.

See Solution

Problem 29846

Find local min/max points of y=x234y=-x^{\frac{2}{3}}-4 using the first derivative test.

See Solution

Problem 29847

Estimate the glacier's movement rate after 20 days using the model d(t)=0.01t2+0.5td(t)=0.01 t^{2}+0.5 t.

See Solution

Problem 29848

Find the intervals where the graph of y=x48x3+5x7y=-x^{4}-8 x^{3}+5 x-7 is concave up or down.

See Solution

Problem 29849

Find the limit: limx0+(7x+1)3cotx\lim _{x \rightarrow 0^{+}}(7 x+1)^{3 \cot x}. What does it equal?

See Solution

Problem 29850

Bestimmen Sie eine Stammfunktion FF für die Funktionen f(x)f(x) in den Aufgaben a) bis 1) und prüfen Sie Ihre Ergebnisse.

See Solution

Problem 29851

Check if the mean value theorem applies to f(x)=x32xf(x)=x^{3}-2x on [1,3][1,3] and find cc in (1,3)(1,3).

See Solution

Problem 29852

Find critical numbers of f(x)=3x2x+4f(x)=\frac{3 x^{2}}{x+4}. Options: x=8x=-8, x=4x=-4, x=0x=0, or combinations.

See Solution

Problem 29853

Evaluate the limit as xx approaches infinity for 7x2+5x89x32x2+1\frac{7 x^{2}+5 x-8}{9 x^{3}-2 x^{2}+1}.

See Solution

Problem 29854

Find the limit: limx011+x1x\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}-1}{x} (2 marks)

See Solution

Problem 29855

Find critical numbers of f(x)=32x44x3+3x2+2f(x)=\frac{3}{2} x^{4}-4 x^{3}+3 x^{2}+2 and identify local min/max points using a graph.

See Solution

Problem 29856

Untersuchen Sie Wendepunkte der Funktion f(x)=2exexf(x)=2 \cdot e^{x}-e^{-x} und skizzieren Sie den Graphen.

See Solution

Problem 29857

Find the limit: limx5x28x+3\lim _{x \rightarrow-\infty} \frac{\sqrt{5 x^{2}-8}}{x+3}.

See Solution

Problem 29858

Find the limit of postage cost C(x)C(x) as xx approaches 3 oz from the left: limx3C(x)=$\lim_{x \rightarrow 3^{-}} C(x)=\$ \square.

See Solution

Problem 29859

Find the inflection point(s) for the function f(x)=2x6+3x5+12x2f(x)=-2 x^{6}+3 x^{5}+12 x-2. Options: (0,2)(0,-2), (1,11)(1,11), (0,12)(0,12), (1,15)(1,15).

See Solution

Problem 29860

Find the inflection point(s) for f(x)=x5+5x4+12x2f(x)=-x^{5}+5 x^{4}+12 x-2. Options: (3,0), (0,-2), (3,196), (3,147).

See Solution

Problem 29861

Postage costs \0.34forthefirstounceand$0.24foreachadditionalounce.Find0.34 for the first ounce and \$0.24 for each additional ounce. Find \lim C(x)as as x \rightarrow 3^{-}.A.. A. \lim C(x)=\ \quad (integer or decimal) B. Limit does not exist.

See Solution

Problem 29862

Is the function f(x)=x23f(x)=\sqrt[3]{x^{2}} differentiable at x=0x=0? If not, explain why.

See Solution

Problem 29863

Evaluate the integral: 01(2e5x+1x3)dx\int_{0}^{1}\left(2 e^{5 x+1}-x^{3}\right) d x.

See Solution

Problem 29864

Use Newton's formula to approximate 7.53\sqrt[3]{7.5} from x37.5=0x^{3}-7.5=0 and find the third iteration value.

See Solution

Problem 29865

Find the limit of postage cost C(x)C(x) as xx approaches 3 ounces: $\lim_{x \rightarrow 3^{-}} C(x) = \$.

See Solution

Problem 29866

Berechne die Fläche AA zwischen den Funktionen f(x)=0,5x2+2f(x)=0,5 x^{2}+2 und g(x)=0,5x+1g(x)=-0,5 x+1 im Intervall [1,1,5][-1, 1,5]. Zeige, dass A=11,5(f(x)g(x))dxA=\int_{-1}^{1,5} (f(x)-g(x)) \, dx.

See Solution

Problem 29867

Estimate 2415x2+1dx\int_{2}^{4} \frac{15}{x^{2}+1} d x using Simpson's rule with n=4n=4. Round to five decimal places.

See Solution

Problem 29868

Berechnen Sie die Fläche A zwischen den Funktionen f(x)=2x2f(x)=2-x^{2} und g(x)=0,5x2+0,5g(x)=0,5 x^{2}+0,5 im Intervall [1,1][-1, 1].

See Solution

Problem 29869

Calculate the integral x3x2+1dx\int x^{3} \sqrt{x^{2}+1} \, dx.

See Solution

Problem 29870

Find local minima and maxima of the function y=x36x2+2y=x^{3}-6 x^{2}+2 using the first derivative test.

See Solution

Problem 29871

Calculate the average value of the function f(x)=3x22xf(x)=3 x^{2}-2 x on the interval [2,3][-2,3].

See Solution

Problem 29872

Find the limit: limh0(8+h)264h\lim _{h \rightarrow 0} \frac{(8+h)^{2}-64}{h} or state if it doesn't exist.

See Solution

Problem 29873

Find oˉ\bar{o} for the limit as xx approaches 7 in limx7(2x6)=8\lim _{x \rightarrow 7}(2 x-6)=8 with ε=0.001\varepsilon=0.001.

See Solution

Problem 29874

Find the tangent line equation to f(x)=x5f(x)=x^{5} at x=2x=-2. Choices: y=80x+128y=-80 x+128, y=80x192y=-80 x-192, y=80x192y=80 x-192, y=80x+128y=80 x+128.

See Solution

Problem 29875

Calculate the limit: limx42(2x+3)250x+4\lim _{x \rightarrow-4} \frac{2(2 x+3)^{2}-50}{x+4} or state if it doesn't exist.

See Solution

Problem 29876

Find the rate of change of paycheck with respect to hours worked given hours: 40, 80, 125, 160 and paychecks: 828, 1788, 2868, 3708.

See Solution

Problem 29877

Evaluate limx6+x6\lim _{x \rightarrow 6^{+}} \sqrt{x-6} and explain why this limit does not exist.

See Solution

Problem 29878

Find the limits of the piecewise function f(x)={x2+10,x<10x+10,x10f(x)=\left\{\begin{array}{ll}x^{2}+10, & x<-10 \\ \sqrt{x+10}, & x \geq-10\end{array}\right. at x=10x=-10.
a. limx10f(x)\lim _{x \rightarrow-10^{-}} f(x) b. limx10+f(x)\lim _{x \rightarrow-10^{+}} f(x) c. limx10f(x)\lim _{x \rightarrow-10} f(x)

See Solution

Problem 29879

Find the limit or state if it doesn't exist: limh04+h2h\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}

See Solution

Problem 29880

Find the differential dydy for y=cos(7x2+1)y=\cos(7x^2+1).

See Solution

Problem 29881

Find the limit limx1[4f(x)]\lim _{x \rightarrow 1}[4 f(x)] given limx1f(x)=5\lim _{x \rightarrow 1} f(x)=5 and state the limit laws used.

See Solution

Problem 29882

Find the limit: limx144x12x144\lim _{x \rightarrow 144} \frac{\sqrt{x}-12}{x-144} or state if it doesn't exist.

See Solution

Problem 29883

Find the limit or state if it doesn't exist: limx196x14x196\lim _{x \rightarrow 196} \frac{\sqrt{x}-14}{x-196}

See Solution

Problem 29884

Find δ\delta for ε=0.5,0.1,0.05\varepsilon=0.5, 0.1, 0.05 given limx4(4x2)=14\lim _{x \rightarrow 4}(4 x-2)=14.

See Solution

Problem 29885

Given g(x)=f(9x)g(x)=f(9-x), with limx9+f(x)=6\lim _{x \rightarrow 9^{+}} f(x)=6 and limx9f(x)=5\lim _{x \rightarrow 9^{-}} f(x)=5, find limx0+g(x)\lim _{x \rightarrow 0^{+}} g(x) and limx0g(x)\lim _{x \rightarrow 0^{-}} g(x). limx0+g(x)=\lim _{x \rightarrow 0^{+}} g(x)=\square (Type an integer or a decimal.)

See Solution

Problem 29886

Show that limx0x=0\lim _{x \rightarrow 0}|x|=0 by finding limx0x\lim _{x \rightarrow 0^{-}}|x| and limx0+x\lim _{x \rightarrow 0^{+}}|x|.

See Solution

Problem 29887

Show that limx0x=0\lim _{x \rightarrow 0}|x|=0 by finding limx0x\lim _{x \rightarrow 0^{-}}|x| and limx0+x\lim _{x \rightarrow 0^{+}}|x|.

See Solution

Problem 29888

Find limx7f(x)g(x)h(x)\lim _{x \rightarrow 7} \frac{f(x)}{g(x)-h(x)} given limx7f(x)=28\lim _{x \rightarrow 7} f(x)=28, limx7g(x)=6\lim _{x \rightarrow 7} g(x)=6, limx7h(x)=4\lim _{x \rightarrow 7} h(x)=4. State the limit laws used.

See Solution

Problem 29889

Find where the tangent line to y=f(x)=x3ln(x)y=f(x)=x^{3} \ln (x) is horizontal and if it intersects at (1,0)(1,0).

See Solution

Problem 29890

Calculate the limit: limx0x3sin(3x2)\lim _{x \rightarrow 0} \frac{x^{3}}{\sin \left(3 x^{2}\right)}. Does it exist?

See Solution

Problem 29891

Find the limit as xx approaches -\infty for exsin(x2)e^{x} \sin(x^{2}). Does it exist?

See Solution

Problem 29892

Calculate the limit: limx1e11x2\lim _{x \rightarrow-1^{-}} e^{\frac{-1}{1-x^{2}}}. Does it exist?

See Solution

Problem 29893

Find the radius of convergence for the series n=12n(n+1n)xn\sum_{n=1}^{\infty} 2^{n}\left(n+\frac{1}{n}\right) x^{n}.

See Solution

Problem 29894

Analyze the function f(x)=1x21f(x)=\frac{1}{x^{2}-1} for max/min and if it's increasing: (a) max? (b) min? (c) increasing?

See Solution

Problem 29895

Find the value of the series n=0n503n\sum_{n=0}^{\infty} \frac{n^{50}}{3^{n}}.

See Solution

Problem 29896

Find where f(x)=n=0e2nxf(x)=\sum_{n=0}^{\infty} e^{-2 n x} is defined and calculate f(x)f^{\prime}(x).

See Solution

Problem 29897

Find where the tangent line to f(x)=x3ln(x)f(x)=x^{3} \ln (x) is horizontal for x(0,)x \in (0, \infty).

See Solution

Problem 29898

Is the function f(x)={(x1)sin(1x1)x11x=1f(x)=\left\{\begin{array}{cc}(x-1) \sin \left(\frac{1}{x-1}\right) & x \neq 1 \\ 1 & x=1\end{array}\right. continuous on R\mathbb{R}?

See Solution

Problem 29899

Find the limit: limx0x3sin(x2)\lim _{x \rightarrow 0} \frac{x^{3}}{\sin \left(x^{2}\right)} or state if it doesn't exist.

See Solution

Problem 29900

Find the derivative of f(x)=(1+cos2x)6f(x) = (1 + \cos^2 x)^6.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord