Calculus

Problem 25501

Find the concavity regions for the function y=2x+72xy=\frac{2 x+7}{2 x}, where x0x \neq 0.

See Solution

Problem 25502

A child swings at a max speed of 5.20 m/s5.20 \mathrm{~m/s} and is 0.860 m0.860 \mathrm{~m} high at the lowest point. Find his max height.

See Solution

Problem 25503

Find limh03(x+h)2+7(x+h)3x27xh\lim _{h \rightarrow 0} \frac{3(x+h)^{2}+7(x+h)-3 x^{2}-7 x}{h} treating xx as constant.

See Solution

Problem 25504

Find the limit limh0f(x+h)f(x)h\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} for functions 37-42:
37. f(x)=4xf(x)=4-x, 38. f(x)=2x+3f(x)=2x+3, 39. f(x)=x23f(x)=x^{2}-3, 40. f(x)=x2+x+1f(x)=x^{2}+x+1, 41. f(x)=x34x2f(x)=x^{3}-4x^{2}, 42. f(x)=52x3x2f(x)=5-2x-3x^{2}.

See Solution

Problem 25505

Find the octopus population change over the first 4 weeks given ddtP=125(2t22t+1)1.2(2t1)\frac{d}{d t} P=125(2 t^{2}-2 t+1)^{1.2}(2 t-1). Round to the nearest whole number.

See Solution

Problem 25506

Finde die Ableitung von f(x)=43x3f(x) = \frac{4}{3 x^{3}}.

See Solution

Problem 25507

Find inflection points and concavity regions for f(x)=8e9x2,x0f(x)=8 e^{-9 x^{2}}, x \geq 0.

See Solution

Problem 25508

Which statement is TRUE by the Comparison Test? Analyze integrals involving ln(x)\ln(x) and cos(x)\cos(x) for convergence.

See Solution

Problem 25509

Estimate the temperature change at 4.5 meters from the heater after 7 minutes, given the rates of change.

See Solution

Problem 25510

Find the inflection points of f(x)=8e9x2f(x)=8 e^{-9 x^{2}} for x0x \geq 0.

See Solution

Problem 25511

Is the piecewise function f(x)={2x3,1x<0x3,0x4f(x)=\begin{cases} 2x-3, & -1 \leq x < 0 \\ x-3, & 0 \leq x \leq 4 \end{cases} differentiable?

See Solution

Problem 25512

Find the derivative of f(x)=cos2(6x2)7f(x)=\cos^{2}(6x^{2})-7.

See Solution

Problem 25513

Find the smallest growth rate of the fungus given by L(t)=2.8t+0.6cos(πt12)L(t)=2.8 t+0.6 \cos \left(\frac{\pi t}{12}\right).

See Solution

Problem 25514

A cargo falls from a crane, taking 1.2 s1.2 \mathrm{~s} to fall halfway. Find the total fall time to the ground.

See Solution

Problem 25515

Find the distance rr that minimizes the Leonard-Jones potential V(r)=1r6Ar3V(r)=\frac{1}{r^{6}}-\frac{A}{r^{3}}, where A>0A>0.

See Solution

Problem 25516

Gegeben ist f(x)=ex+1f(x)=e^{x}+1. a) Berechne 01f(x)dx\int_{0}^{1} f(x) d x. b) Bestimme g(x)g(x), das aus ff durch Spiegeln und Verschieben entsteht.

See Solution

Problem 25517

Find the derivative of the function given by g(x)=(x2(2x))g^{\prime}(x)=\left(x^{2}\left(2^{x}\right)\right)^{\prime}.

See Solution

Problem 25518

Gitt f(x)=x2x2x2+x2f(x)=\frac{x^{2}-x-2}{x^{2}+x-2}, finn nullpunkter, derivert, polynomdivisjon, asymptoter og skisser grafen.

See Solution

Problem 25519

Berechnen Sie die mittlere Änderungsrate zwischen den Punkten P(3,2.5)P(3, 2.5) und Q(6.5,13)Q(6.5, 13) sowie im Intervall [1,4][1, 4] für g(x)=x3g(x)=x^{3}. Untersuchen Sie die Grenzwerte: limx3x+2x\lim_{x \to \infty} \frac{3x+2}{x} und limx3+x22x2\lim_{x \to \infty} \frac{3+x^{2}}{2x^{2}}. Finden Sie die Nullstellen von f(x)=x29f(x)=x^{2}-9 und g(x)=2x44x216g(x)=2x^{4}-4x^{2}-16. Analysieren Sie die Funktion f(x)=x33x2f(x)=x^{3}-3x^{2}: Grad, Nullstellen, Symmetrie, Punkt Q(2.5,3.25)Q(2.5, -3.25), Schnittpunkte mit g(x)=xg(x)=x, und zeichnen Sie f(x)f(x) und g(x)g(x) im Intervall [1,3.5][-1, 3.5]. Berechnen Sie die Temperatur T(x)=630.93x+19T(x)=63 \cdot 0.93^{x}+19 beim Einschenken und nach 10 Minuten, die durchschnittliche Abnahme in den ersten 6 Minuten, und die langfristige Temperatur.

See Solution

Problem 25520

Berechnen Sie f(2)f^{\prime}(-2) für die Funktion f(x)=x22f(x)=x^{2}-2 mit dem Differenzenquotienten für h0h \rightarrow 0.

See Solution

Problem 25521

Bestimmen Sie die Stammfunktion von 0,03s3+0,9s21,7s+0,1-0,03 s^{3}+0,9 s^{2}-1,7 s+0,1.

See Solution

Problem 25522

Bestimme die Tangentengleichung t(x)t(x) bei Punkt P durch Ableitung für f(x)=x3+x2+xf(x)=x^{3}+x^{2}+x und f(x)=x3+2x2f(x)=-x^{3}+2x^{2}.

See Solution

Problem 25523

Approximate the negative root of ex=9x2e^{x}=9-x^{2} using Newton's method to six decimal places.

See Solution

Problem 25524

Evaluate the integral 26dxx23\int_{2}^{6} \frac{d x}{\sqrt[3]{x-2}} or state if it diverges. Show your work.

See Solution

Problem 25525

Find the limit: limx2(2x+3)(x2+1)\lim _{x \rightarrow 2}(2 x+3)(x^{2}+1).

See Solution

Problem 25526

Find the limit: limx2e(x2+1)\lim _{x \rightarrow 2} e\left(x^{2}+1\right).

See Solution

Problem 25527

Find the total change in price of an ice cream cone from 2000 to 2005 given the rate 18e0.04t18 e^{0.04 t} cents/year.

See Solution

Problem 25528

Find the limits: a) limx3x2x8\lim _{x \rightarrow 3} \frac{x-2}{x-8}, b) limx2x251x\lim _{x \rightarrow 2} \frac{x^{2}-5}{1-x}.

See Solution

Problem 25529

Find the limit as xx approaches 2 for the expression (2x+3)\sqrt{(2x + 3)}.

See Solution

Problem 25530

Find the limits: b) limx3(3x+7)\lim _{x \rightarrow 3}(3 x+7) and c) limx3(5x4)(3x+7)\lim _{x \rightarrow 3} \frac{(5 x-4)}{(3 x+7)}.

See Solution

Problem 25531

Find the limits: a) limx3xx3\lim _{x \rightarrow 3} \frac{x}{x-3} and b) limx34x2x6\lim _{x \rightarrow 3} \frac{4 x}{2 x-6}.

See Solution

Problem 25532

Find the limits: a) limx2x2x24\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4} b) limx23x27x+2x4\lim _{x \rightarrow 2} \frac{3 x^{2}-7 x+2}{x-4}

See Solution

Problem 25533

Calculate the sum of the integrals: 10(x21)dx+21(x21)dx\int_{-1}^{0}(x^{2}-1) dx + \int_{-2}^{-1}(x^{2}-1) dx.

See Solution

Problem 25534

Berechne die Ableitung der Funktion f(x)=1x2f(x)=\frac{1}{x^{2}}.

See Solution

Problem 25535

Find the limits as xx approaches infinity: limx(3x2+1)\lim_{x \rightarrow \infty}(3x^2 + 1) and limx(2x5+x41000)\lim_{x \rightarrow \infty}(2x^5 + x^4 - 1000).

See Solution

Problem 25536

Find the limits: a) limx12x4\lim_{x \rightarrow \infty} \frac{1}{2x^4}, b) limx52x\lim_{x \rightarrow \infty} \frac{5}{2x}, c) limx1x3\lim_{x \rightarrow \infty} \frac{1}{x^3}.

See Solution

Problem 25537

Find the limits: a) limxπ\lim _{x \rightarrow \infty} \pi b) limx2.718\lim _{x \rightarrow -\infty} 2.718

See Solution

Problem 25538

Calculate 10(x21)dx+21(x21)dx-\int_{-1}^{0}(x^{2}-1) dx + \int_{-2}^{-1}(x^{2}-1) dx.

See Solution

Problem 25539

Find the limits: a) limx2x4+x23x3+x+2\lim _{x \rightarrow \infty} \frac{2 x^{4}+x^{2}-3}{x^{3}+x+2}, b) limx2x3+x23x3+x+2\lim _{x \rightarrow \infty} \frac{2 x^{3}+x^{2}-3}{x^{3}+x+2}, c) limxx+12x2+5x\lim _{x \rightarrow \infty} \frac{x+1}{2 x^{2}+5 x}.

See Solution

Problem 25540

Beweisen Sie die Volumenformeln für (a) Kegel, (b) Kugel, (c) Kegelstumpf und erläutern Sie (d) den Hinweis zu (b).

See Solution

Problem 25541

Find the limits: limx4x4x+2\lim _{x \rightarrow 4} \frac{x-4}{x+2} and limx22x43\lim _{x \rightarrow 2} \frac{2 x-4}{3}.

See Solution

Problem 25542

Bestem stammfunksjonen for A=02,356sin(x)0,3xdxA=\int_{0}^{2,356} \sin (x)-0,3 x \, dx og beregn integralet.

See Solution

Problem 25543

Find the radius change rate when the circle area is 25π25 \pi in², decreasing at 205 in²/min. Round to 3 decimals.

See Solution

Problem 25544

Berechnen Sie die Integrale: a) 02(x324x2+60x32)dx\int_{0}^{2}(x^{3}-24 x^{2}+60 x-32) dx b) 12(7+60x3x)dx\int_{1}^{2}(7+60 x-\frac{3}{x}) dx c) 03(2et)dt\int_{0}^{3}(2 e^{t}) dt d) abxdx\int_{a}^{b} x dx

See Solution

Problem 25545

A cylinder's radius increases at 8 cm/min, with a constant volume of 174 cm³. Find the height's change rate when height is 7 cm. Use V=πr2hV=\pi r^{2} h and round to three decimal places.

See Solution

Problem 25546

Bestimmen Sie alle Häufungspunkte der Folgen ana_n und geben Sie jeweils limnan\lim_{n \rightarrow \infty} a_n an. a) an=1ncos(nπ4)a_n=\frac{1}{n} \cos \left(\frac{n \pi}{4}\right) b) an=sin(nπ2)n+22na_n=\sin \left(\frac{n \pi}{2}\right) \frac{n+2}{2 n}

See Solution

Problem 25547

A cylinder's height decreases at 4 in/s and volume increases at 370 in³/s. Find the radius change rate when h=7 in, V=110 in³. Use V=πr2hV=\pi r^{2} h and round to three decimal places.

See Solution

Problem 25548

A sphere's radius decreases at 6 ft/s. When its volume is 163 ft³, find the volume's rate of change using V=43πr3V=\frac{4}{3} \pi r^{3}. Round to three decimal places.

See Solution

Problem 25549

If R(x)|R(x)| \rightarrow \infty as xx approaches cc, then x=cx=c is a vertical asymptote of the graph of RR.

See Solution

Problem 25550

A spherical balloon's volume increases at 100 cm3/s100 \mathrm{~cm}^{3}/\mathrm{s}. Find the radius growth rate when the diameter is 50 cm50 \mathrm{~cm}.

See Solution

Problem 25551

Untersuche die Funktion f(x)=xcos(x)f(x)=x-\cos (x) auf Nullstellen, Extremstellen und Wendestellen.

See Solution

Problem 25552

Untersuchen Sie die Funktion f(x)=xcos(x)f(x)=x-\cos(x) auf dem Intervall [0;2π][0; 2\pi] hinsichtlich Nullstellen, Extremstellen und Wendepunkten.

See Solution

Problem 25553

A 10 ft ladder leans against a wall. If the base moves away at 1 ft/s, how fast does the top slide down when it's 6 ft from the wall?

See Solution

Problem 25554

Find the rate at which the water level is rising in a cone-shaped tank with base radius 2 m2 \mathrm{~m} and height 4 m4 \mathrm{~m}, when water is being pumped in at 2 m3/min2 \mathrm{~m}^{3}/\mathrm{min} and the water is 3 m3 \mathrm{~m} deep.

See Solution

Problem 25555

A sphere's radius decreases at 2 m/min. When the radius is 7 m, find the volume change rate using V=43πr3V=\frac{4}{3} \pi r^{3}. Round to three decimal places.

See Solution

Problem 25556

A sphere's volume increases at 1146 m³/s. When V=426V=426 m³, find the rate of change of the radius using V=43πr3V=\frac{4}{3} \pi r^{3}. Round to three decimal places.

See Solution

Problem 25557

Find intervals where the graph of f(x)=(4x22x)e2xf(x)=(4x^{2}-2x)e^{-2x} is concave down.

See Solution

Problem 25558

Determine where the graph of f(x)=(x21)exf(x)=\left(-x^{2}-1\right) e^{x} is concave down.

See Solution

Problem 25559

Determine the intervals where the function f(x)=3x2e3x+2f(x)=-3 x^{2} e^{-3 x+2} is decreasing.

See Solution

Problem 25560

A man walks at 4ft/s4 \mathrm{ft/s}, 20ft20 \mathrm{ft} from a searchlight. Find the rotation rate when he is 15ft15 \mathrm{ft} away.

See Solution

Problem 25561

A 10 m ladder leans against a wall. If the foot moves away at 0.2 m/s, find the speed of the top when it's 6 m from the wall.

See Solution

Problem 25562

A milk can's volume is 250 cm³. Find rr and hh relationship. Cost is C(A)=0.0023A+400πA2C(A)=0.0023A+\frac{400\pi}{A^2}.
1. Find dCdA\frac{dC}{dA}.
2. Minimize cost with respect to AA.
3. Profit P(A)P(A) is based on sales N(A)=11300+20AN(A)=11300+20\sqrt{A}.
4. Maximize profit using a calculator.
5. Determine can dimensions for max profit.

See Solution

Problem 25563

Find intervals where the function f(x)=x3+3x224xf(x)=x^{3}+3 x^{2}-24 x is decreasing and concave down.

See Solution

Problem 25564

Find when N(t)=5000N(t) = 5000 for N(t)=4000e0.0374tN(t) = 4000 e^{0.0374 t} and when it doubles. Answers: 6 hours, 18.5 hours.

See Solution

Problem 25565

Bestimme das Volumen des Körpers, der durch die Rotation von f(x)=x2+1f(x)=x^{2}+1 im Intervall [1;2][1 ; 2] entsteht.

See Solution

Problem 25566

Find the Jacobian for the transformation x=uvuwx=u v-u w, y=vw+uvy=v w+u v, z=2wuvz=2 w-u v.

See Solution

Problem 25567

Evaluate the line integral using Green's Theorem for the curve defined by CC: C(y6x3tan1x)dx+(y2sec3yx)dy\int_{C}\left(y-6 x^{3} \tan ^{-1} x\right) d x+\left(y^{2} \sec ^{3} y-x\right) d y.

See Solution

Problem 25568

Find the half-life of a drug with an initial dose of 80 mg, where A(t)=80(0.6)tA(t)=80(0.6)^{t}. Round to two decimal places.

See Solution

Problem 25569

Find the divergence of the vector field H=y2zcosxi+y2zsinxj+y2zsin(x)k\mathbf{H}=y^{2} z \cos x \mathbf{i}+y^{2} z \sin x \mathbf{j}+y^{2} z \sin (x) \mathbf{k}.

See Solution

Problem 25570

Find the derivative of f(x)=ex3f(x)=e^{x-3} at x=6x=-6 using the limit: limh0f(x+h)f(x)h\lim_{{h \to 0}} \frac{f(x+h) - f(x)}{h}.

See Solution

Problem 25571

Model the drug concentration in blood after one pill using the equation: dcdt=k1c,c(0)=c0\frac{d c}{d t}=-k_{1} c, c(0)=c_{0}.

See Solution

Problem 25572

Find the indefinite integral: (cscw+3)7cscwcotwdw\int(\csc w+3)^{7} \csc w \cot w \, d w using a variable change.

See Solution

Problem 25573

Evaluate the integral: (cscw+5)8cscwcotwdw\int(\csc w+5)^{8} \csc w \cot w \, dw

See Solution

Problem 25574

Use u=4x2+5xu=4 x^{2}+5 x to evaluate the integral (8x+5)4x2+5xdx\int(8 x+5) \sqrt{4 x^{2}+5 x} d x. Find the result.

See Solution

Problem 25575

Calculate the integral 5dx(x3)4\int_{5}^{\infty} \frac{d x}{(x-3)^{4}}.

See Solution

Problem 25576

Model the drug concentration in blood after one pill using the equation dcdt=k1c,c(0)=c0\frac{d c}{d t}=-k_{1} c, \quad c(0)=c_{0}. Why?

See Solution

Problem 25577

Find the interval of convergence for the series n=0(x3)n5n\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{5^{n}}.

See Solution

Problem 25578

Find the absolute extreme values of f(x)=4x34xf(x)=4 x^{\frac{3}{4}}-x on [0,256][0,256]. What is the absolute maximum?

See Solution

Problem 25579

Solve the equation y(t)=18yy^{\prime}(t)=-\frac{1}{8} y with initial condition y0=100y_{0}=100. What is y(t)y(t)?

See Solution

Problem 25580

Evaluate the integral: 09v2+12v3+36v+4dv=\int_{0}^{9} \frac{v^{2}+12}{\sqrt{v^{3}+36 v+4}} d v=\square (Provide the exact answer with radicals.)

See Solution

Problem 25581

Find the derivative of the function f(x)=x+2x23x3f(x) = x + 2x^2 - \sqrt{3}x^3. What is f(x)f'(x)?

See Solution

Problem 25582

Evaluate the integral 0164q(5q2+3)3dq\int_{0}^{1} \frac{64 q}{\left(5 q^{2}+3\right)^{3}} d q using a change of variables. Find the value: \square.

See Solution

Problem 25583

Bestimme die Stammfunktionen zu f(x)=x2f(x)=x^{2} mit x2dx\int x^{2} d x. Lösungen sind unbestimmte Integrale wie F(x)+CF(x)+C.

See Solution

Problem 25584

Find the relative extrema coordinates of the function f(x)=x15(x+3)2f(x) = x^{\frac{1}{5}}(x+3)^{2}.

See Solution

Problem 25585

Finde die zweite Ableitung von f(x)=x+2x23x3f(x)=x+2x^{2}-\sqrt{3}x^{3}.

See Solution

Problem 25586

Find the second derivative of the function: x8+7x52-x^{8}+\sqrt{7} x^{5}-2.

See Solution

Problem 25587

Calculate the sum of the series: n=153nn\sum_{n=1}^{\infty} \frac{5}{3 n^{n}}.

See Solution

Problem 25588

Find the tangent lines to the curve defined by 3y=5x2+xy-3y = 5x^2 + xy at the point where x=2x = 2.

See Solution

Problem 25589

Find the derivative of the function defined by the integral F(x)=x3ecosxt2dtF(x)=\int_{x^{3}}^{e^{\cos x}} t^{2} dt.

See Solution

Problem 25590

Find the tangent line to y=15x+10xy = 1 - 5x + \frac{10}{x} at the point (2,4)(2, -4).

See Solution

Problem 25591

Find the tangent line equation for y=x(2x+1)y = x(2x + 1) at the point (3,15)(-3, 15) using the derivative.

See Solution

Problem 25592

Given the piecewise function f(x)f(x), determine:
(a) The value of kk for continuity at x=2x=-2. (b) The type of discontinuity at x=0x=0 and why. (c) All horizontal asymptotes of ff with justification.

See Solution

Problem 25593

Berechne den Differenzenquotienten von f(x)=7x2+1f(x)=-7 x^{2}+1 für die Intervalle [0;12][0; \frac{1}{2}], [0;14][0; \frac{1}{4}], [0;116][0; \frac{1}{16}]. Vermute den Wert für [0;1n][0; \frac{1}{n}] bei großen nn.

See Solution

Problem 25594

Find the tangent line equation to the curve y=x+2xy = \sqrt{x} + \frac{2}{\sqrt{x}} at the point (4,3)(4,3).

See Solution

Problem 25595

Find the sum of the series: 3252+32253+32354+\frac{3 \cdot 2}{5^{2}}+\frac{3 \cdot 2^{2}}{5^{3}}+\frac{3 \cdot 2^{3}}{5^{4}}+\cdots

See Solution

Problem 25596

Find the rate of change of price pp when demand q=2500q=2500 and increasing at 100 pounds/month in the equation pq1.5=70000p q^{1.5}=70000.

See Solution

Problem 25597

How fast did Archimedes' tub drain if it took 5 minutes to drain 360 liters? Choose: (A) 72 L/min (B) 74 L/min (C) 76 L/min (D) 78 L/min.

See Solution

Problem 25598

Bestimme die Ableitungen und klammere aus für:
a) f(x)=3x+2exf(x)=3x+2e^{x}
b) f(x)=13e3xf(x)=\frac{1}{3}e^{3x}
c) f(x)=3e4x3+5f(x)=3e^{4x-3}+5
d) f(x)=xex4f(x)=xe^{x-4}
e) f(x)=(2x1)e0,5xf(x)=(2x-1)e^{-0,5x}
f) f(x)=x2e4x+26x3f(x)=x^{2}e^{4x+2}-6x^{3}
Für f(x)=e2x+1+1f(x)=e^{-2x+1}+1:
a) Berechne f(12)f\left(\frac{1}{2}\right) und f(12)f^{\prime}\left(\frac{1}{2}\right).
b) Finde die Tangentengleichung bei x=12x=\frac{1}{2} und berechne den Flächeninhalt des Dreiecks.
c) Löse 5=e2x+1+15=e^{-2x+1}+1 und interpretiere die Lösung.
Skizziere den Graphen von ff für:
a) f(x)=ex2f(x)=e^{x}-2
b) f(x)=ex2f(x)=e^{x-2}
c) f(x)=exf(x)=-e^{-x}
d) f(x)=ex1+1f(x)=e^{-x-1}+1
Für f(x)=112x413x3+1f(x)=\frac{1}{12}x^{4}-\frac{1}{3}x^{3}+1:
a) Bestimme Extrem- und Wendepunkte.
b) Beurteile:
1. Eine Funktion fünften Grades hat immer vier Extremstellen.
2. Eine Funktion dritten Grades hat genau eine Wendestelle.

See Solution

Problem 25599

Given ff with f(0)=3f(0)=3 and f(x)=cos(πx)+x4+6f^{\prime}(x)=\cos (\pi x)+x^{4}+6:
(a) Find f(3)f^{\prime \prime}(-3). (b) Write the tangent line equation for y=(f(x))2y=(f(x))^{2} at x=0x=0. (c) Find g(3)g^{\prime}(3) for g(x)=f(2x2+7)g(x)=f(\sqrt{2 x^{2}+7}). (d) Find h(3)h^{\prime}(3) where hh is the inverse of ff.

See Solution

Problem 25600

Find the rate of increase in daily operating budget yy if P=10x0.1y0.9P=10 x^{0.1} y^{0.9} and P=5000P=5000, x=160x=160, hiring 10 workers/year.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord