Calculus

Problem 22001

Find where the function f(x)=3x2+(x4)2/3+1xf(x)=3 x^{2}+(x-4)^{2 / 3}+\frac{1}{x} is continuous.

See Solution

Problem 22002

Find the tangent line equation for f(x)=25x2+1f(x)=\frac{25}{x^{2}+1} at x=2x=2.

See Solution

Problem 22003

Find where the function f(x)=3x2+(x4)23+1xf(x) = 3x^{2} + (x-4)^{\frac{2}{3}} + \frac{1}{x} is continuous.

See Solution

Problem 22004

Inflate a balloon at 16 in³/s. Find the radius increase rate when it’s 3 inches. Give exact or rounded answer with units.

See Solution

Problem 22005

Evaluate the integral from 0 to 1 of (2+x2)(2+x^{2}) with respect to xx.

See Solution

Problem 22006

A rock thrown up on the moon at 32 m/s has height s(t)=32t0.8t2s(t)=32t-0.8t^2. Solve for velocity, time to max height, and max height.

See Solution

Problem 22007

Find the drug concentration C(9)\mathrm{C}(9) after 9 minutes using C(t)=0.07(1e0.2t)C(t)=0.07(1-e^{-0.2 t}). Round to three decimals.

See Solution

Problem 22008

Find the absolute max and min of f(x)=x3+6x22f(x)=x^{3}+6x^{2}-2 on the interval 5x1-5 \leq x \leq 1.

See Solution

Problem 22009

Find the absolute max and min of f(x)=x3+6x22f(x) = x^{3} + 6x^{2} - 2 on [5,1][-5, 1]. Min = -30; Max = 2.

See Solution

Problem 22010

Find the elasticity of demand for D(p)=155p2D(p) = 155 - p^{2} at p=11p = 11 and classify it as elastic, inelastic, or unit elastic.

See Solution

Problem 22011

Find the production level xx that minimizes the average cost given c(x)=5x335x2+5,547xc(x)=5x^{3}-35x^{2}+5,547x.

See Solution

Problem 22012

Find the derivative of e4x2+3xy+y2e^{4 x^{2}+3 x y+y^{2}} with respect to xx.

See Solution

Problem 22013

Let (Δv)n=1n(n+1)(\Delta v)_{n}=\frac{1}{n(n+1)}.
(a) Expand 1n(n+1)\frac{1}{n(n+1)} using partial fractions. (b) Find vnv_{n} based on (a). (c) Verify your result in (b) by finding the forward difference. (d) Write the first six terms of (Δv)n(\Delta v)_{n} from (a) without combining fractions. (e) Calculate n=1N(Δv)n\sum_{n=1}^{N}(\Delta v)_{n} for N=2,3,4N=2,3,4. (f) Relate the result from (e) to continuous calculus concepts.

See Solution

Problem 22014

Find the partial derivative yx2ln(2xy+3x+y3)\frac{\partial}{\partial y} x^{2} \ln \left(2 x y+3 x+y^{3}\right).

See Solution

Problem 22015

Find the derivative xx2ln(xy+3x+y2)\frac{\partial}{\partial x} x^{2} \ln (x y + 3 x + y^{2}).

See Solution

Problem 22016

Find the arc length of the curve y=x66+116x4y=\frac{x^{6}}{6}+\frac{1}{16 x^{4}} on [1,3][1,3]. Length: \square.

See Solution

Problem 22017

112 rabbits are released, growing to 1008 in 2 years. What will the population be after another 9 months? Round to nearest rabbit.

See Solution

Problem 22018

Find the volume VV of the solid formed by rotating the area between x=8y2x=8y^2 and x=8x=8 around the line x=8x=8.

See Solution

Problem 22019

Find the arc length of the curve y=x44+18x2y=\frac{x^{4}}{4}+\frac{1}{8 x^{2}} on the interval [1,4][1,4].

See Solution

Problem 22020

Find the exponential growth rate of a bacteria culture that doubles in 8hr8 \mathrm{hr}. Options: a) 5.5%5.5 \% b) 8.7%8.7 \% c) 3.8%3.8 \% d) 4.2%4.2 \%

See Solution

Problem 22021

Find the tangent line equation to y=f(x)y=f(x) at x=ex=e, where f(x)=x6lnxf(x)=x-6 \ln x.

See Solution

Problem 22022

Evaluate the series n=1cos(nπ)\sum_{n=1}^{\infty} \cos (n \pi): find partial sums SkS_{k}, check convergence, and use a test.

See Solution

Problem 22023

Differentiate and optimize: 5x2+4x165 x^{2}+4 x-16. Find x=x=, with a (max or min) value of. Show workings to 1.d.p.

See Solution

Problem 22024

Show that the function f(x)=x3+4x28x10f(x)=x^{3}+4 x^{2}-8 x-10 has a zero between a=6a=-6 and b=5b=-5 using the Intermediate Value Theorem.

See Solution

Problem 22025

Calculate the average value of f(x)=x215f(x)=x^{2}-15 over the interval from x=0x=0 to x=6x=6: \square.

See Solution

Problem 22026

A ball is thrown horizontally at 20 m/s20 \mathrm{~m/s} from 42 m high. How long until it hits the ground?

See Solution

Problem 22027

Find the arc length of y=ln(xx21)y=\ln \left(x-\sqrt{x^{2}-1}\right) for 1x21 \leq x \leq \sqrt{2}.

See Solution

Problem 22028

Calculate the arc length of y=ln(xx21)y=\ln \left(x-\sqrt{x^{2}-1}\right) for 1x21 \leq x \leq \sqrt{2}. Simplify your answer.

See Solution

Problem 22029

Find the volume VV of the solid formed by rotating the area between y=x3y=x^{3}, y=1y=1, and x=2x=2 around y=4y=-4.

See Solution

Problem 22030

Calculate the arc length of y=ln(xx21)y=\ln \left(x-\sqrt{x^{2}-1}\right) for 1x21 \leq x \leq \sqrt{2}.

See Solution

Problem 22031

Find the max and min of y=12sin(2x)+3cos(x)+xy=\frac{1}{2} \sin (2 x)+3 \cos (x)+x for 0<x<2π0<x<2 \pi. [4 marks]

See Solution

Problem 22032

Find the partial fraction expansion of an=3n2+3na_{n}=\frac{3}{n^{2}+3n} and analyze the convergence of the series n=1an\sum_{n=1} a_{n}.

See Solution

Problem 22033

Find the integral for the arc length of y=3xy=\frac{3}{x} from x=1x=1 to x=10x=10 and simplify it. Options: A. 1101+9x4dx\int_{1}^{10} \sqrt{1+\frac{9}{x^{4}}} dx, B. 11013x4dx\int_{1}^{10} \sqrt{1-\frac{3}{x^{4}}} dx, C. 1103x2dx\int_{1}^{10}-\frac{3}{x^{2}} dx, D. 1101+9x2dx\int_{1}^{10} \sqrt{1+\frac{9}{x^{2}}} dx.

See Solution

Problem 22034

(11) Expand an=3n2+3na_{n}=\frac{3}{n^{2}+3n} using partial fractions and analyze its convergence. (12) Check if n=0an\sum_{n=0}^{\infty} a_{n} converges with an+1=an3a_{n+1}=\frac{a_{n}}{3}, starting from a0=10a_{0}=10. (13) Use the ratio or root test to check convergence for: (a) n=110nn!\sum_{n=1}^{\infty} \frac{10^{n}}{n!} (b) n=1(n2+12n2+1)n\sum_{n=1}^{\infty}\left(\frac{n^{2}+1}{2n^{2}+1}\right)^{n} (c) n=13n5n+n\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n}+n} (d) n=2(n+1n)n2\sum_{n=2}^{\infty}\left(\frac{n+1}{n}\right)^{n^{2}} (e) n=21(lnn)n\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{n}} (14) Determine convergence or divergence for: (a) n=1tan(1/n)n\sum_{n=1}^{\infty} \frac{\tan(1/n)}{n} (b) n=1135(2n1)5nn!\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2n-1)}{5^{n} n!} (c) n=1(2n1)n\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)^{n}

See Solution

Problem 22035

Find the arc length of the curve y=4xy=\frac{4}{x} for 5x155 \leq x \leq 15 using the integral: 5151+16x4dx\int_{5}^{15} \sqrt{1+\frac{16}{x^{4}}} dx. Approximate the length.

See Solution

Problem 22036

Find the average rate of change of the function g(x)=x29x+27g(x)=-x^{2}-9 x+27 over the interval 9x1-9 \leq x \leq -1.

See Solution

Problem 22037

Ein Flugzeug bewegt sich gemäß der Funktion f(t)=16075(t41403t3+672t22880t+34146)f(t)=\frac{1}{6075}\left(t^{4}-\frac{140}{3} t^{3}+672 t^{2}-2880 t+34146\right) für t[0;25]t \in [0; 25] Minuten.
a) Bestimmen Sie die minimale und maximale Flughöhe. b) Finden Sie die maximale Flughöhe in den ersten 4 Minuten. c) Was ist der Grenzwert der Höhe für tt \to \infty und was bedeutet das für den Definitionsbereich?

See Solution

Problem 22038

Evaluate the integrals ab1+64x8dx\int_{a}^{b} \sqrt{1+64 x^{8}} d x and ab1+225cos2(3x)dx\int_{a}^{b} \sqrt{1+225 \cos ^{2}(3 x)} d x. Choose correct answers for their antiderivatives.

See Solution

Problem 22039

Berechne die Steigung von ff an x0x_0 mit der h-Methode für: a) f(x)=x2x,x0=1f(x)=x^{2}-x, x_{0}=1 b) f(x)=2x2+1,x0=2f(x)=2 x^{2}+1, x_{0}=-2 c) f(x)=3x+2,x0=2f(x)=3 x+2, x_{0}=2

See Solution

Problem 22040

Determine convergence of n=0an\sum_{n=0}^{\infty} a_{n} where an+1=an3a_{n+1}=\frac{a_{n}}{3} and a0=10a_{0}=10. Find its value if it converges.

See Solution

Problem 22041

Find the arc length of the line y=5x+2y=5x+2 on [0,4][0,4] using calculus. Which integral represents this arc length?

See Solution

Problem 22042

Compare the lengths of the curves y=1x2y=1-x^{2} and y=cos(πx/2)y=\cos (\pi x / 2) over [1,1][-1,1]. Which is longer?

See Solution

Problem 22043

Find the average temperature from the function T(t)=40+6t13t2T(t)=40+6 t-\frac{1}{3} t^{2} over 18 hours.

See Solution

Problem 22044

Estimate the balance of a savings account with daily deposits of \$12,000 at 8\% interest compounded continuously after 6 years.

See Solution

Problem 22045

Determine convergence of these series using the ratio or root test: (a) n=110nn!\sum_{n=1}^{\infty} \frac{10^{n}}{n !}, (b) n=1(n2+12n2+1)n\sum_{n=1}^{\infty}\left(\frac{n^{2}+1}{2 n^{2}+1}\right)^{n}, (c) n=13n5n+n\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n}+n}, (d) n=2(n+1n)n2\sum_{n=2}^{\infty}\left(\frac{n+1}{n}\right)^{n^{2}}, (e) n=21(lnn)n\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{n}}.

See Solution

Problem 22046

Estimate the balance of a savings account with daily deposits of \19,000at19,000 at 8\%$ interest compounded continuously after 5 years.

See Solution

Problem 22047

Calculate the average rate of change of f(x)=2x2+6f(x)=2x^{2}+6 for these intervals: (a) 3 to 5, (b) 1 to 3, (c) 3 to 6.

See Solution

Problem 22048

Determine if the following series converge or diverge: (a) n=1tan(1/n)n\sum_{n=1}^{\infty} \frac{\tan (1 / n)}{n}, (b) n=1135(2n1)5nn!\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{5^{n} n !}, (c) n=1(2n1)n\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)^{n}.

See Solution

Problem 22049

Determine the convergence or divergence of these series: (a) n=1tan(1/n)n\sum_{n=1}^{\infty} \frac{\tan (1 / n)}{n} (b) n=1135(2n1)5nn!\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{5^{n} n !} (c) n=1(2n1)n\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)^{n} (d) n=1(2n)nn2n\sum_{n=1}^{\infty} \frac{(2 n)^{n}}{n^{2 n}} (e) n=21(lnn)lnn\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}

See Solution

Problem 22050

Evaluate the integral from 1 to x: 1xyb1dy\int_{1}^{x} y^{b-1} d y.

See Solution

Problem 22051

Find the derivative of f(x)=cos2(5x29)f(x)=\cos^{2}(5x^{2}-9) with respect to xx.

See Solution

Problem 22052

A thermometer at 79F79^{\circ} \mathrm{F} cools to 57F57^{\circ} \mathrm{F} in a cold room at 35F35^{\circ} \mathrm{F}. How long?

See Solution

Problem 22053

Find the tangent line equations for the curve x=t2,y=t3tx=t^{2}, y=t^{3}-t at points (4,6)(4,6) and (1,0)(1,0). Why two at (1,0)(1,0)?

See Solution

Problem 22054

Differentiate the function f(x)=2e5(x2+1)2f(x)=2 e^{5\left(x^{2}+1\right)^{2}}.

See Solution

Problem 22055

Find the derivative of the function y=106x+1y=10^{6 x+1}.

See Solution

Problem 22056

Differentiate the function f(x)=ln(98x2)f(x)=\ln(9-8x^{2}) with respect to xx.

See Solution

Problem 22057

Differentiate yy^{\prime} for y=(8x)ln8xy=(8 x)^{\ln 8 x} using logarithmic differentiation.

See Solution

Problem 22058

Evaluate the limit limx0ex14x=\lim _{x \rightarrow 0} \frac{e^{x}-1}{4 x}=\square.

See Solution

Problem 22059

Find the antiderivative F(t)F(t) of f(t)=6sec2(t)2t3f(t)=6 \sec ^{2}(t)-2 t^{3} with F(0)=0F(0)=0. Calculate F(4)F(4).

See Solution

Problem 22060

Find the max and min of s=sintcosts=\sin t-\cos t for 0<t<2π0<t<2\pi and when they occur. [4 marks]

See Solution

Problem 22061

Find the limit: limx0xln(1x)10x2\lim _{x \rightarrow 0} \frac{-x-\ln (1-x)}{10 x^{2}} and simplify your answer.

See Solution

Problem 22062

Find the limit using Taylor series: limx0(1+x)ex5x2=\lim _{x \rightarrow 0} \frac{(1+x)-e^{x}}{5 x^{2}}=\square

See Solution

Problem 22063

Find the limit: limt03t2+6cost6t4=(\lim _{t \rightarrow 0} \frac{3 t^{2}+6 \cos t-6}{t^{4}}=\square( Simplify your answer. ))

See Solution

Problem 22064

Find the population size at t=5.2t=5.2 given a growth rate of 3%3\% and N(5)=100N(5)=100. The answer is \square.

See Solution

Problem 22065

If the artery radius R\mathrm{R} is accurate to 2%2\%, how accurate is the speed v(R)=CR2v(R)=C R^{2}? Use linear approximations.

See Solution

Problem 22066

Find the limit: limx5xsin17x=\lim _{x \rightarrow \infty} 5 x \sin \frac{1}{7 x} = \square (Enter an integer or simplified fraction.)

See Solution

Problem 22067

Find the speed error of blood flow v(R)=CR2v(R)=\mathrm{CR}^{2} with a 2%2\% radius accuracy. Which error formula is correct?

See Solution

Problem 22068

Evaluate the limit: limx0ln(1+x)x+x224x3=(\lim _{x \rightarrow 0} \frac{\ln (1+x)-x+\frac{x^{2}}{2}}{4 x^{3}}=\square( Simplify your answer.)

See Solution

Problem 22069

Determine the fetal growth rate dHdt\frac{\mathrm{dH}}{\mathrm{dt}} for H=30.03+1.262t20.2532t2logtH=-30.03+1.262 t^{2}-0.2532 t^{2} \log t at t=8t=8 and t=36t=36 weeks.

See Solution

Problem 22070

The area of a circle grows at 344 sq ft/min. Find the circumference change rate when the radius is 9. Round to three decimals.

See Solution

Problem 22071

A cube's volume decreases at 1678 ft³/s. When the side is 9 ft, find the surface area change rate. Round to three decimals.

See Solution

Problem 22072

Determine if the series n=1arctannn\sum_{n=1}^{\infty} \frac{\arctan n}{n} converges or diverges.

See Solution

Problem 22073

Find the rate of change of the surface area of a cube with volume 186 m³ decreasing at 511 m³/min. Round to three decimals.

See Solution

Problem 22074

A cube's volume decreases by 511 m³/min. When its volume is 186 m³, find the surface area change rate. Round to three decimals.

See Solution

Problem 22075

Evaluate the limit: limx07tan1x7x+73x3x5\lim _{x \rightarrow 0} \frac{7 \tan ^{-1} x-7 x+\frac{7}{3} x^{3}}{x^{5}} using Taylor series.

See Solution

Problem 22076

Find the particle's maximum speed on the interval 0t20 \leq t \leq 2 for the position function y(t)=6t2t3+10y(t)=6t-2t^3+10.

See Solution

Problem 22077

Given the function f(x)=0.5x4+3x2f(x) = -0.5x^4 + 3x^2, find intervals of positive/negative concavity and any inflection points.

See Solution

Problem 22078

Invest \$3000 at a 5% annual interest rate. How much will it be after 9 years with continuous compounding?

See Solution

Problem 22079

Show that P(x)=3x43x2+2x1P(x)=3 x^{4}-3 x^{2}+2 x-1 has a zero between 0.5 and 1 using the intermediate value theorem. Calculate P(0.5)P(0.5).

See Solution

Problem 22080

Find the absolute maximum of the function y=x22x+1y=x^{2}-2 x+1.

See Solution

Problem 22081

Find g(1)g^{\prime}(1) for g(x)=4x36x2+8x+10g(x)=4 x^{3}-6 x^{2}+8 x+\sqrt{10}.

See Solution

Problem 22082

Find g(1)g^{\prime}(1) for g(x)=4x36x2+8x+10g(x)=4 x^{3}-6 x^{2}+8 x+\sqrt{10}. Options: 66, 6+106+\sqrt{10}, 88, 8+108+\sqrt{10}.

See Solution

Problem 22083

Verify if the function P(x)=x53x3+2P(x)=x^{5}-3 x^{3}+2 has a real zero between -1.8 and -1.9 using the intermediate value theorem.

See Solution

Problem 22084

Find the instantaneous rate of change of g(x)=limh0ex+hexhg(x)=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} at x=2x=2.

See Solution

Problem 22085

Find the future value of an investment of \$18,000 for 14 years with continuous compounding at: (a) 3\%, (b) 4\%, (c) 5.5\%.

See Solution

Problem 22086

Find the exponential growth function for a world population of 7.5 billion with a growth rate of 1.06%1.06\%. Then, answer:
a) What is P(t)P(t)? b) World population in 2028? c) Year it reaches 14 billion? d) Doubling time?

See Solution

Problem 22087

Find the intervals where the function g(x)=x4+2x21g(x)=-x^{4}+2 x^{2}-1 is both concave up and decreasing.

See Solution

Problem 22088

Find the intervals where the function g(x)=x4+2x21g(x)=-x^{4}+2 x^{2}-1 is both concave up and decreasing.

See Solution

Problem 22089

Identify which function satisfies the Mean Value Theorem on [0,5][0,5]: (A) f(x)=x3x+3f(x)=\frac{x-3}{x+3} (B) f(x)=(x1)23f(x)=(x-1)^{\frac{2}{3}} (C) f(x)=x+3x3f(x)=\frac{x+3}{x-3} (D) f(x)=x4f(x)=|x-4|

See Solution

Problem 22090

Graph f(x)=0.5x4+3x2f(x)=-0.5 \cdot x^{4}+3 x^{2}. Find intervals of positive/negative concavity and any inflection points.

See Solution

Problem 22091

Calculate the following: (a) 535^{3}, (b) Δ5n\Delta 5^{\underline{n}}, (c) Δ(k=1nsin(k!))\Delta\left(\sum_{k=1}^{n} \sin (k !)\right), (d) What continuous calculus concept relates to (c)?

See Solution

Problem 22092

Find relative extrema of gg given g(x)=(5x)x3g^{\prime}(x)=(5-x) x^{-3} for x>0x>0. Justify your conclusions.

See Solution

Problem 22093

The derivative of xex^{e} is xeln(x)x^{e} \ln (x). Is this statement True or False?

See Solution

Problem 22094

Find the limit: limx2x3(e2x31)\lim _{x \rightarrow \infty} 2 x^{3}\left(e^{-\frac{2}{x^{3}}}-1\right).

See Solution

Problem 22095

Given the parametric equations x=4+sectx=-4+\sec t and y=5+2tanty=5+2 \tan t, find the first and second derivatives.

See Solution

Problem 22096

If ff is differentiable and f(c)=0f^{\prime}(c)=0, is x=cx=c a critical number for ff? True or False?

See Solution

Problem 22097

Find the absolute maximum and minimum of the function f(x)=exsinxf(x)=e^{x} \sin x on the interval [0,2π][0,2 \pi].

See Solution

Problem 22098

Is it true that a continuous function gg on (π,π)(-\pi, \pi) has an absolute minimum in that interval? True or False?

See Solution

Problem 22099

Find the rectangle's dimensions with max area, one corner at (0,0) and opposite at (x,y)(x, y) on y=31+4x2y=\frac{3}{1+4 x^{2}}, 0x30 \leq x \leq 3.

See Solution

Problem 22100

Find the differential dyd y for y=9+7x2y=\sqrt{9+7 x^{2}} at x=1x=1 with dx=0.1d x=0.1. Provide the answer as a decimal.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord