Calculus

Problem 12001

Find the slope of the curve 6y9+5x9=7y+4x6 y^{9}+5 x^{9}=7 y+4 x at the point (1,1)(1,1).

See Solution

Problem 12002

Given y=tan(4x+8)y=\tan(4x+8), find dyd y for x=1x=1 with dx=0.4d x=0.4 and dx=0.8d x=0.8.

See Solution

Problem 12003

Find dyd y for y=tan(4x+8)y=\tan(4x+8) at x=1x=1 and dx=0.4d x=0.4. Result: dy=sec212d y=\sec^2 12.

See Solution

Problem 12004

Find the integral of exee^{x^{e}} with respect to xx: exedx\int e^{x^{e}} d x.

See Solution

Problem 12005

Find df1dx\frac{d f^{-1}}{d x} at x=1186x=1186 where f(x)=8x315x22,x1.5f(x)=8 x^{3}-15 x^{2}-2, x \geq 1.5.

See Solution

Problem 12006

Find the limit as xx approaches -4 for the expression 3x+10x+48x2+4x\frac{3x+10}{x+4}-\frac{8}{x^2+4x}.

See Solution

Problem 12007

Find f(1)f^{\prime}(1) and f(1)f^{\prime}(-1) for the function f(x)=2x4+7x2f(x)=2 x^{-4}+7 x^{-2}.

See Solution

Problem 12008

Find the differential formula for the volume change of a sphere when the radius changes from r0r_{0} to r0+drr_{0} + \mathbf{d r}. dV=d V =

See Solution

Problem 12009

Find the change in volume of a sphere with radius rr using differentials.
(A) dV=4πr02drd V=4 \pi r_0^{2} d r;
(B) dV=4π(10)2drd V=4 \pi (10)^{2} d r;
(C) Estimate dVd V when radius changes from 10 cm10 \mathrm{~cm} to 9.5 cm9.5 \mathrm{~cm}.

See Solution

Problem 12010

Analyze the sequence {4(1)nn2n2+2}n=0\left\{\frac{4(-1)^{n} n^{2}}{n^{2}+2}\right\}_{n=0}^{\infty} for monotonicity, boundedness, and convergence.

See Solution

Problem 12011

Find the integral cot3(x)csc3(x)dx\int \cot^{3}(x) \csc^{3}(x) \, dx and express your answer in terms of xx.

See Solution

Problem 12012

Calculate the integral xx2+2axdx\int \frac{x}{\sqrt{x^{2}+2 a x}} d x using a trigonometric substitution, with a0a \neq 0.

See Solution

Problem 12013

Find the grams of carbon-14 left after 6515 years using the model A=16e0.000121tA=16 e^{-0.000121 t}. Answer: \square grams.

See Solution

Problem 12014

Find the limit of the series: 1+n=13(23)n1 + \sum_{n=1}^{\infty} -3 \cdot \left(-\frac{2}{3}\right)^{n}.

See Solution

Problem 12015

Find the derivative of c=5q2q2+3+5000c=\frac{5 q^{2}}{\sqrt{q^{2}+3}}+5000 with respect to qq.

See Solution

Problem 12016

Find f(0)f^{\prime \prime \prime}(0) for f(x)=2sinh(3x)+5cosh(10x)f(x)=2 \sinh (3 x)+5 \cosh (10 x). Choices: -5000, 54, 5054, None.

See Solution

Problem 12017

A stone falls from rest. Its velocity vv (m/s) at time tt satisfies 5dvdt+v=505 \frac{dv}{dt} + v = 50. Find vv.

See Solution

Problem 12018

Evaluate the integral 0π61+cos(2x)dx\int_{0}^{\frac{\pi}{6}} \sqrt{1+\cos(2x)} \, dx.

See Solution

Problem 12019

Differentiate f(x)=(cosh(5x))xf(x)=(\cosh(5x))^x using logarithmic differentiation.

See Solution

Problem 12020

Find the derivative of the function y=2x1x2+1y=\frac{2 x-1}{x^{2}+1}.

See Solution

Problem 12021

A stone falls from rest. Its velocity vv at time tt satisfies 5dvdt+v=505 \frac{d v}{d t}+v=50. Find vv.

See Solution

Problem 12022

Find the limit of the sequence 2n2n2+4\frac{2 n^{2}}{n^{2}+4} as nn approaches infinity.

See Solution

Problem 12023

Calculate the integral: x33(1+x)dx\int \frac{x^{3}}{3(1+x)} dx.

See Solution

Problem 12024

Check if the sequence {(1)nn3n2+2}n=0\left\{\frac{(-1)^{n} n^{3}}{n^{2}+2}\right\}_{n=0}^{\infty} converges or diverges.

See Solution

Problem 12025

Find the limit of the series: 5+n=31(34)n5+\sum_{n=3}^{\infty} 1 \cdot\left(\frac{3}{4}\right)^{n}.

See Solution

Problem 12026

Find the inflection point coordinates for the graph y=2x+123y=-2 \sqrt[3]{x+12}. Options: A. (12,0)(-12,0) B. (12,2)(-12,-2) C. (2,12)(-2,12) D. (12,0)(12,0)

See Solution

Problem 12027

Find the relative rate of change of yy with respect to xx at x=3x=3 for the function xx+9\frac{x}{x+9}.

See Solution

Problem 12028

Find cc using the C.M.V.T for f(x)=exf(x)=e^{x} and g(x)=exg(x)=e^{-x} on [a,b][a, b] where a,b>0a, b > 0.

See Solution

Problem 12029

Find the limit of f(x)=x2+10x3+16f(x)=\frac{x^{2}+10}{x^{3}+16} as xx \rightarrow \infty. A. limxf(x)=\lim _{x \rightarrow \infty} f(x)=\square, B. limit does not exist.

See Solution

Problem 12030

Erstellen Sie eine Tabelle mit Funktionen f(x)f(x), die mindestens dritten Grades sind, aus u(x)u(x) und v(x)v(x) bestehen und ein Minuszeichen enthalten. Berechnen Sie f(x)f'(x) und F(x)F(x). Beispiel: f(x)=2x30.5x27x+9f(x)=2x^3 - 0.5x^2 - 7x + 9.

See Solution

Problem 12031

Find the marginal cost C(z)C'(z) for the total cost function C(z)=2z2+25z100C(z)=2 z^{2}+25 z-100. Choose the correct option.

See Solution

Problem 12032

Find the limits: a. limx5(x23x10x5)\lim _{x \rightarrow 5}\left(\frac{x^{2}-3 x-10}{x-5}\right), b. limx(5xx4x3)\lim _{x \rightarrow \infty}\left(\frac{5-x}{x^{4}-x^{3}}\right), c. limx(7x2+3x3+18000x+6)\lim _{x \rightarrow-\infty}\left(7 x^{2}+3 x^{3}+18000 x+6\right).

See Solution

Problem 12033

Bestimmen Sie die Tangenten- und Normalengleichung bei x=2\mathrm{x}=2 für f(x)=x2+xf(x)=-x^{2}+x und den Schnittwinkel mit der x-Achse.

See Solution

Problem 12034

Bestimmen Sie die Flächeninhaltsfunktion A0(x)A_{0}(x) für f(x)=xf(x)=x mit der unteren Grenze 0.

See Solution

Problem 12035

Find the profit change for BrushPro when painting the 23rd office using the function P(x)=x3+27x2+132x+2970P(x)=-x^{3}+27x^{2}+132x+2970. Choose the correct option.

See Solution

Problem 12036

Bestimme die Flächeninhaltsfunktion A0(x)A_{0}(x) für f(x)=x+2f(x)=x+2 mit unterer Grenze 0.

See Solution

Problem 12037

Berechnen Sie die Flächeninhaltsfunktion A0(x)A_{0}(x) für die Funktion f(x)=2f(x)=2 mit unterer Grenze 0.

See Solution

Problem 12038

Gegeben ist die Funktion fa(x)=ax3+4axf_{a}(x)=-a x^{3}+4 a x. Zeigen Sie die Symmetrie, Punkte und Wendetangente mit m=8m=8.

See Solution

Problem 12039

Berechne die Steigung von ff an x0x_0 mit der h-Methode für: a) f(x)=x2,x0=1f(x)=x^{2}, x_{0}=1 b) f(x)=2x2,x0=1f(x)=2x^{2}, x_{0}=-1 c) f(x)=x3,x0=2f(x)=x^{3}, x_{0}=2 d) f(x)=2x,x0=1f(x)=2x, x_{0}=1.

See Solution

Problem 12040

Gegeben ist die Funktion fa(x)=ax3+4ax(a0)f_{a}(x)=-a x^{3}+4 a x \quad(a \neq 0).
a) Zeigen Sie die Punktsymmetrie zum Ursprung. b) Bestimmen Sie die Punkte P(20)P(-2 \mid 0) und Q(20)Q(2 \mid 0). c) Nachweis für einen Hoch- und einen Tiefpunkt. d) Finden Sie die Wendetangente und den Wert von aa für die Steigung m=8m=8.

See Solution

Problem 12041

Berechnen Sie die Steigung von ff an x0x_{0} mit der hh-Methode für: a) f(x)=x2xf(x)=x^{2}-x, x0=1x_{0}=1; b) f(x)=2x2+1f(x)=2 x^{2}+1, x0=2x_{0}=-2; c) f(x)=3x+2f(x)=3 x+2, x0=2x_{0}=2.

See Solution

Problem 12042

Untersuchen Sie die Stetigkeit der Funktion ff an der Stelle x0=2x_{0}=2 für f(x)=4x2162x4f(x)=\frac{4x^{2}-16}{2x-4} (für x2x \neq 2) und f(2)=8f(2)=8.

See Solution

Problem 12043

Leiten Sie die Funktionen ab und nennen Sie die benötigten Regeln:
a) f(x)=x(x+1)2f(x)=\sqrt{x} \cdot(x+1)^{2} b) f(x)=(x+2)3xf(x)=(x+2)^{3} \cdot x c) f(x)=1x(x4+3x2)f(x)=\frac{1}{x} \cdot\left(x^{4}+3 x^{2}\right)

See Solution

Problem 12044

Sketch a graph of a continuous function ff where f(x)<0f^{\prime}(x)<0 and f(x)>0f^{\prime \prime}(x)>0. Choose from options A, B, C, D.

See Solution

Problem 12045

Finde die Extrempunkte der Funktion f(x)=x2+2x(1x)2f(x)=\frac{-x^{2}+2 x}{(1-x)^{2}}.

See Solution

Problem 12046

Liste die Ableitungsregeln für die Funktionen f(x)=x2+sin(x)f(x)=x^{2}+\sin (x), f(x)=(3x+2)5f(x)=(3 x+2)^{5}, f(x)=1x2x+1f(x)=\frac{1}{x} \cdot \sqrt{2 x+1}, f(x)=3cos(x)f(x)=3 \cos (x), f(x)=(x1)(x+5)4f(x)=(x-1) \cdot(x+5)^{4}, f(x)=sin(x)cos(2x)f(x)=\sin (x) \cdot \cos (2 x), f(x)=42x+5f(x)=4 \cdot \sqrt{2 x+5} und f(x)=x+(5x1)3f(x)=x+(5 x-1)^{-3}.

See Solution

Problem 12047

Find the maximum of A(φ)=(1cos(φ))sin(φ)A(\varphi) = (1 - \cos(\varphi)) \cdot \sin(\varphi) for φ\varphi between 6060^{\circ} and 180180^{\circ}.

See Solution

Problem 12048

Untersuchen Sie die Stetigkeit der Funktion ff bei x0=2x_0=2, gegeben durch f(x)=4x2162x4f(x)=\frac{4x^2-16}{2x-4} für x2x \neq 2 und f(2)=8f(2)=8.

See Solution

Problem 12049

Gegeben ist die Funktion f(x)=14x2+14f(x)=\frac{1}{4} x^{2}+\frac{1}{4}. Zeichne den Graphen für 3x3-3 \leq x \leq 3, finde die mittlere Steigung in [1, 3] und x0x_{0} für Steigung -1.

See Solution

Problem 12050

Find local maxima and inflection points for f(x)=x27x4f(x)=\frac{x^{2}-7}{x-4}. Use f(x)f^{\prime}(x) and f(x)f^{\prime \prime}(x).

See Solution

Problem 12051

Finde die Funktion f(x)f(x) für die Ableitungen: a) f(x)=sin(x)+(x+2)cos(x)f^{\prime}(x)=\sin (x)+(x+2) \cos (x), b) f(x)=2sin(0,5x)+xcos(0,5x)f^{\prime}(x)=2 \sin (0,5 x)+x \cdot \cos (0,5 x). Leite g(x)=cf(x)g(x)=c \cdot f(x) ab.

See Solution

Problem 12052

What is the instantaneous speed of an object moving at 20 m/s20 \mathrm{~m} / \mathrm{s} to the East?

See Solution

Problem 12053

Bestimmen Sie die Ableitung von f(x)=15(x3)312x2+2x2f(x)=\frac{1}{5}(x-3)^{3}-\frac{1}{2} x^{2}+2 x-2.

See Solution

Problem 12054

Find the derivative of f(x)=15(x3)312x2+2x2f(x)=\frac{1}{5}(x-3)^{3}-\frac{1}{2} x^{2}+2 x-2.

See Solution

Problem 12055

Find the Jacobian (x,y,z)(s,t,u)\frac{\partial(x, y, z)}{\partial(s, t, u)} for x=5t4s+3u,y=5s4t4u,z=2s5t4ux=5t-4s+3u, y=5s-4t-4u, z=2s-5t-4u.

See Solution

Problem 12056

Gegeben ist A(t)=0.15t32.4t2+9.6A(t)=0.15t^3-2.4t^2+9.6. Beurteilen Sie die Aussagen zu AA, AA', und AA''.

See Solution

Problem 12057

Bestimmen Sie die Stammfunktion von f(x)=25x2f(x) = \frac{2}{5 x^{2}}.

See Solution

Problem 12058

Find the derivatives of these functions: a) f(x)=3x22x1x3f(x)=3x^2-2\sqrt{x}-\frac{1}{\sqrt[3]{x}}; c) f(x)=5sin(x)+3cos(x)f(x)=5\sin(x)+3\cos(x).

See Solution

Problem 12059

Bestimmen Sie die Ableitung von f(x)=(3x22x+1)(3x2+2x1)f(x)=\left(3 x^{2}-2 x+1\right) \cdot\left(3 x^{2}+2 x-1\right).

See Solution

Problem 12060

Bestimmen Sie die Stammfunktion von f(x)=(2x+2)3f(x)=(2x+2)^3.

See Solution

Problem 12061

Hva bør radiusen til en sylinder være for å minimere overflatearealet, gitt at volumet er 2 liter?

See Solution

Problem 12062

Gegeben sind die Funktionen h(x)=x(x1)(x3)h(x)=x(x-1)(x-3) und i(x)=x38x2+15xi(x)=x^{3}-8x^{2}+15x.
a) Finde die Nullstellen und Schnittpunkte mit den Achsen. Bestimme das Verhalten für x+x \rightarrow+\infty und zeichne die Graphen. b) Untersuche die Symmetrie von hh und begründe. c) Analysiere das Monotonieverhalten von ii. d) Bestimme den Grad von hh und ii und erkläre, warum sie maximal zwei Extremstellen haben. e) Überprüfe, ob die mittlere Steigung von hh im Intervall [0,5,0,5][-0,5, 0,5] mehr als 10%10\% von der Änderungsrate bei x0=0x_{0}=0 abweicht.

See Solution

Problem 12063

Differentiate the function f(x)=4e2xf(x)=-4 e^{-2 x}. Find ddx(4e2x)=\frac{d}{d x}\left(-4 e^{-2 x}\right)=\square.

See Solution

Problem 12064

Find the derivative of y=x2xy=x^{2^{x}}. What is dydx\frac{dy}{dx}?

See Solution

Problem 12065

Find the derivative of y=lnx+5y=\ln \sqrt{x+5}. What is dydx=\frac{d y}{d x}=\square?

See Solution

Problem 12066

Find the limit as x x approaches -6 for the constant function 6: limx6(6) \lim _{x \rightarrow-6}(6) .

See Solution

Problem 12067

Find the derivative of y=16tt23y=\frac{-16 t}{\sqrt[3]{t^{2}}}. What is yy^{\prime}?

See Solution

Problem 12068

Use the model P(x)=75e0.16xP(x)=75 e^{0.16 x} to find: (a) P(16)P(16), (b) P(x)P^{\prime}(x) and P(16)P^{\prime}(16). Interpret results.

See Solution

Problem 12069

Finde die Ableitung von f(x)=x43x5f(x)=\frac{x^{4}-3 x}{5}.

See Solution

Problem 12070

Find the derivative of y=ln(13x2+8x)y=\ln(-13x^{2}+8x). What is y=?y'=? (Type an exact answer.)

See Solution

Problem 12071

Find the derivative of the function y=x7e4xy=x^{7} e^{-4 x}. What is y=y^{\prime}=\square?

See Solution

Problem 12072

Find the slope of the tangent line to 4sin(x)+6cos(y)2sin(x)cos(y)+x=4π4 \sin (x)+6 \cos (y)-2 \sin (x) \cos (y)+x=4 \pi at (4π,3π/2)(4 \pi, 3 \pi / 2).

See Solution

Problem 12073

Find the derivative f(t)f^{\prime}(t) of f(t)=1035e0.162tf(t)=1035 e^{0.162 t} and the GNI change rates for 2000 and 2016.

See Solution

Problem 12074

Find the derivative of f(x)=8x12173x2+5xf(x) = 8x^{12} - \sqrt[3]{17}x^{2} + 5x.

See Solution

Problem 12075

Find the derivative of f(x)=2x+x2f(x) = \frac{2}{\sqrt{x}} + \frac{\sqrt{x}}{2}.

See Solution

Problem 12076

Find the derivative of h(t)=2t4h(t)=\sqrt{2} \cdot t^{4}.

See Solution

Problem 12077

Differentiate the function y=ln(9x)y=\sqrt{\ln(9x)}. Find dydx=\frac{d y}{d x}=\square.

See Solution

Problem 12078

Find the population of breeding adults in 2024 using P(x)=75e0.16xP(x)=75 e^{0.16 x}, where x=12x=12 for 2012. Calculate:
(a) P(16)P(16) (b) P(x)P'(x) and P(16)P'(16) (c) Interpret results from (a) and (b). (a) P(16)=P(16)=\square (Round to the nearest integer.)

See Solution

Problem 12079

Find df1dx\frac{d f^{-1}}{d x} at x=0x=0 for f(x)=x218x+80f(x)=x^{2}-18x+80 where x>9x>9. What is the answer?

See Solution

Problem 12080

Given the GNI function f(t)=1035e0.162tf(t)=1035 e^{0.162 t}, find f(t)f^{\prime}(t) and the GNI change rates for 2000 and 2016.

See Solution

Problem 12081

Use the model P(x)=75e0.16xP(x)=75 e^{0.16 x} to find P(16)P(16), P(x)P'(x), and P(16)P'(16), then interpret the results.

See Solution

Problem 12082

Find the function f(x)f(x) if its derivative is f(x)=38x425x7f^{\prime}(x)=\frac{3}{8} x^{4}-\frac{2}{5} x^{7}.

See Solution

Problem 12083

Find the limit as xx approaches 9 for the expression 5x36x2+8x25x^3 - 6x^2 + 8x - 2. What is the result?

See Solution

Problem 12084

Given C(t)=12(6t+2)12C(t)=\frac{1}{2}(6 t+2)^{-\frac{1}{2}}, find the rate of change CC for t=1,5,7t=1, 5, 7 (round to four decimals).

See Solution

Problem 12085

Calculate the limit: limx89x+7=\lim _{x \rightarrow 8} \sqrt{9 x+7}=\square (Provide the exact answer with radicals.)

See Solution

Problem 12086

Find the derivative of y=arctan(x3x1+x4)+arctanxy=\arctan \left( \frac{x^{3}-x}{1+x^{4}} \right) + \arctan x.

See Solution

Problem 12087

Use the model P(x)=75e0.16xP(x)=75 e^{0.16 x} to find: (a) P(16)P(16), (b) P(x)P^{\prime}(x) and P(16)P^{\prime}(16), (c) Interpret results.

See Solution

Problem 12088

Conjecture the value of limx3x29x+3\lim _{x \rightarrow -3} \frac{x^{2}-9}{x+3}. What is the limit? lim=\lim = \square (integer or decimal).

See Solution

Problem 12089

Find the rate of change of C(t)=12(6t+2)12C(t)=\frac{1}{2}(6 t+2)^{-\frac{1}{2}} for t=1,5,7t=1, 5, 7. Round to four decimal places.

See Solution

Problem 12090

Given C(t)=12(6t+2)12C(t)=\frac{1}{2}(6 t+2)^{-\frac{1}{2}}, find CC' for t=1t=1, t=5t=5, t=7t=7, and t=7.5t=7.5.

See Solution

Problem 12091

A researcher measures a mineral's level in the bloodstream over days. Given C(t)=12(6t+2)12C(t)=\frac{1}{2}(6 t+2)^{-\frac{1}{2}}, find C(1)C'(1).

See Solution

Problem 12092

Find the derivative of yy with respect to xx for y=lnx2+3lnxy=\frac{\ln x}{2+3 \ln x}.

See Solution

Problem 12093

Find dydx\frac{d y}{d x} for the curve ex2y=y2x+4e^{x^{2}-y}=y^{2 x+4} using logarithmic differentiation.

See Solution

Problem 12094

Find the derivative yy^{\prime} for y=(x+6x+8)3y=\left(\frac{x+6}{x+8}\right)^{3}.

See Solution

Problem 12095

Find the first, second, and third derivatives of f(x)=3(ln(x))2f(x) = 3(\ln(x))^2.

See Solution

Problem 12096

A researcher measures the mineral C(t)=12(6t+2)12C(t)=\frac{1}{2}(6t+2)^{-\frac{1}{2}} in blood. Find the rate of change at t=1t=1 and t=5t=5.

See Solution

Problem 12097

Lena nimmt um 8 Uhr ein Vitamin-D-Präparat. Bestimme c, max. Wirkung, wann der Spiegel sinkt und definiere Annas Funktion g.

See Solution

Problem 12098

Find the derivative of f(x)=0.5x2xf(x)=\frac{0.5 x}{2-x}.

See Solution

Problem 12099

Berechnen Sie die durchschnittliche Änderungsrate von f(x)=1,5xf(x)=1,5^{x} im Intervall [0,4][0, 4].

See Solution

Problem 12100

Lena nimmt um 8 Uhr ein Vitamin-D-Präparat. Bestimmen Sie cc, die maximale Wirkung, und wann der Spiegel sinkt. Anna nimmt um 10 Uhr ein Präparat mit 25 % höherem Spiegel. Bestimmen Sie die Funktion gg und wiederholen Sie die Berechnungen. Skizzieren Sie die Graphen von ff und gg.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord