Calculus

Problem 32601

Find the derivative of f(x)=44x+4f(x)=\frac{4}{4x+4}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 32602

Find the limit as xx approaches 4 for x364x4\frac{x^{3}-64}{x-4} and write a simpler function g(x)g(x) that matches it except at one point.

See Solution

Problem 32603

Estimate the limit of limx0±sinxx\lim _{x \rightarrow 0 \pm} \frac{\sin |x|}{x} from both sides and check if it exists.

See Solution

Problem 32604

Find the limit as xx approaches 0 for the expression x2+5xx\frac{x^{2}+5 x}{x}.

See Solution

Problem 32605

Find the absolute maximum of the function f(x)=x4+8x3+18x2+4f(x)=x^{4}+8 x^{3}+18 x^{2}+4 on the interval [4,1][-4,1].

See Solution

Problem 32606

Find the intervals where the function f(x)=215x65x4f(x)=\frac{2}{15} x^{6}-5 x^{4} is concave up.

See Solution

Problem 32607

Find the derivative yy^{\prime} for y=(4+9x8x2)exy=(4+9x-8x^{2}) e^{x}. Simplify your answer.

See Solution

Problem 32608

Find the limit: limx0x+66x\lim _{x \rightarrow 0} \frac{\sqrt{x+6}-\sqrt{6}}{x}.

See Solution

Problem 32609

Find the limit as xx approaches π2\frac{\pi}{2} of sinx\sin x.

See Solution

Problem 32610

Find the limit as xx approaches -6 for the expression x2+6xx^{2}+6x.

See Solution

Problem 32611

Find the limit: limx5x225x+5\lim _{x \rightarrow -5} \frac{x^{2}-25}{x+5}.

See Solution

Problem 32612

Find the limit as xx approaches π\pi for cos(9x)\cos(9x).

See Solution

Problem 32613

Find the limit as θ\theta approaches 0 for the expression cos(5θ)tan(5θ)θ\frac{\cos (5 \theta) \tan (5 \theta)}{\theta}.

See Solution

Problem 32614

Find dydt\frac{d y}{d t} when y=x3+3y=x^{3}+3, dxdt=5\frac{d x}{d t}=5, and x=1x=1. Answer: dydt=\frac{d y}{d t}=\square.

See Solution

Problem 32615

Find the limit as xx approaches 2 for the expression x2+6x16x24\frac{x^{2}+6x-16}{x^{2}-4}.

See Solution

Problem 32616

1. Analyze the region RR between y=2xy=2x and y=x2y=x^2: (a) Sketch RR. (b) Find and label intersection points. (c) Sketch the solid from revolving RR around the xx-axis. (d) Provide an integral for the volume (no need to solve).
2. Sketch the solid from revolving RR around the yy-axis.

See Solution

Problem 32617

Find dydt\frac{d y}{d t} for 4xy6x+3y3=1354 x y-6 x+3 y^{3}=-135 given dxdt=12\frac{d x}{d t}=-12, x=3x=3, y=3y=-3. dydt=\frac{d y}{d t}=\square

See Solution

Problem 32618

Evaluate the limits given:
1. limxc[5g(x)]\lim _{x \rightarrow c}[5 g(x)]
2. limxc[f(x)+g(x)]\lim _{x \rightarrow c}[f(x)+g(x)]
3. limxc[f(x)g(x)]\lim _{x \rightarrow c}[f(x) g(x)]
4. limxcf(x)g(x)\lim _{x \rightarrow c} \frac{f(x)}{g(x)}

with limxcf(x)=45\lim _{x \rightarrow c} f(x)=\frac{4}{5} and limxcg(x)=4\lim _{x \rightarrow c} g(x)=4.

See Solution

Problem 32619

Find the derivative of the function f(x)=cosx5tanxf(x)=\cos x-5 \tan x, i.e., calculate f(x)f^{\prime}(x).

See Solution

Problem 32620

A boat is 2 feet from a dock, and the rope is pulled in at 1 ft/sec. How fast is the distance to the dock decreasing? \square ft/sec.

See Solution

Problem 32621

Find the limits: (a) limx4(2x23x+42)\lim _{x \rightarrow 4} (2 x^{2}-3 x+42), (b) limx62x+23\lim _{x \rightarrow 62} \sqrt[3]{x+2}, (c) limx4g(f(x))\lim _{x \rightarrow 4} g(f(x)).

See Solution

Problem 32622

Find the derivative f(t)f'(t) of the function f(t)=(t2+7t+6)(6t2+6t3)f(t)=(t^2+7t+6)(6t^{-2}+6t^{-3}).

See Solution

Problem 32623

A ball is thrown with a velocity of 45ft/s45 \mathrm{ft/s}. Height after tt seconds is y=45t14t2y=45t-14t^2. Find average velocity from t=2t=2 for given intervals.

See Solution

Problem 32624

Evaluate the limit as xx approaches infinity for the expression 3x9+11x43 x^{9}+11 x-4. What is the limit?

See Solution

Problem 32625

A point moves on xy=20xy=20. At (4,5)(4,5) with xx increasing by 4 units/sec, find the rate of change of yy.
The yy-coordinate is \square at \square units per second.

See Solution

Problem 32626

Find the limit as xx approaches infinity for 3x9+11x43x^{9} + 11x - 4. What is the limit?

See Solution

Problem 32627

Find the average velocity for the position function s(t)=6t25t7s(t)=6 t^{2}-5 t-7 from t=5t=5 to t=5+ht=5+h. Use exact values. AV[5,5+h]=s(5+h)s(5)h A V_{[5,5+h]}=\frac{s(5+h)-s(5)}{h}

See Solution

Problem 32628

Find dydx\frac{d y}{d x} for y=f(1+2x2)y=f(1+\sqrt{2-x^{2}}) at x=1x=1, given f(2)=3f^{\prime}(2)=-3.

See Solution

Problem 32629

Find the limit as x x approaches negative infinity for the expression: 5x4+3x5+2 -5 x^{4}+3 x^{5}+2 .

See Solution

Problem 32630

Find removable and nonremovable discontinuities of f(x)=7xf(x)=\frac{7}{x}. Identify values of xx.

See Solution

Problem 32631

A boat is pulled toward a dock at 3 ft/s. How fast is the distance to the dock decreasing when 2 ft away? Answer: \square ft/s.

See Solution

Problem 32632

Find the derivative of the function f(t)=(t2+7t+6)(6t2+6t3)f(t)=(t^{2}+7t+6)(6t^{-2}+6t^{-3}). What is f(t)f^{\prime}(t)?

See Solution

Problem 32633

Find the limits:
1. limx3x2x2+5\lim _{x \rightarrow \infty} \frac{3 x-2}{\sqrt{x^{2}+5}}
2. limx3x2x2+5\lim _{x \rightarrow-\infty} \frac{3 x-2}{\sqrt{x^{2}+5}}

See Solution

Problem 32634

Evaluate the limit: limx4(4x21)(6x+1)\lim _{x \rightarrow 4}\left(4 x^{2}-1\right)(\sqrt{6 x+1}) using basic limit laws.

See Solution

Problem 32635

A rock creates ripples in a pond. If the radius increases at 4 ft/s, find the area change rate when the radius is 9 ft. Area change is approximately \square sq ft/s. Round to the nearest thousandth.

See Solution

Problem 32636

Evaluate the limit: limxx45x3+89x2+6 \lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}-5 x^{3}+8}}{9 x^{2}+6}

See Solution

Problem 32637

Find the derivative of the function f(x)=2x23+x2f(x)=\frac{2-x^{2}}{3+x^{2}}.

See Solution

Problem 32638

A 10-foot ladder leans against a wall. If the bottom moves away at 3 ft/sec, how fast is the top sliding down when 6 ft away? The rate is ft/sec\square \mathrm{ft} / \mathrm{sec}.

See Solution

Problem 32639

Evaluate the limit: limx64x8x64\lim _{x \rightarrow 64} \frac{\sqrt{x}-8}{x-64} using direct substitution. Simplify your answer.

See Solution

Problem 32640

Find the derivative dydt\frac{d y}{d t} for y=4tlntety=\frac{4 t \ln t}{e^{t}}. Simplify your answer.

See Solution

Problem 32641

Find the integral: 3425x2dx\int \frac{3}{\sqrt{4-25 x^{2}}} d x.

See Solution

Problem 32642

Find the limit: limΔx010xΔx+5Δx27ΔxΔx\lim _{\Delta x \rightarrow 0} \frac{10 x \Delta x + 5 \Delta x^{2} - 7 \Delta x}{\Delta x}.

See Solution

Problem 32643

Find the limits:
1. limx3x2x2+5\lim _{x \rightarrow \infty} \frac{3 x-2}{\sqrt{x^{2}+5}}
2. limx3x2x2+5\lim _{x \rightarrow-\infty} \frac{3 x-2}{\sqrt{x^{2}+5}}

See Solution

Problem 32644

Find the derivative of the function F(x)=x7x+7F(x)=\frac{\sqrt{x}-7}{\sqrt{x}+7}. What is F(x)F'(x)?

See Solution

Problem 32645

Find the current rate of change of sales given s=50,00040,000e0.00025xs=50,000-40,000 e^{-0.00025 x}, with x=$4,000x=\$ 4,000 and dx/dt=$300dx/dt=\$ 300.

See Solution

Problem 32646

Find the tangent and normal line equations at (1,4)(-1,4) for the curve x2y2=16x^{2} y^{2}=16. Provide answers in slope-intercept form.

See Solution

Problem 32647

Prove that y=x3+3x+1y=x^3+3x+1 satisfies y+xy2y=0y''' + xy'' - 2y' = 0.

See Solution

Problem 32648

Evaluate the limit: limh0256+h16h\lim _{h \rightarrow 0} \frac{\sqrt{256+h}-16}{h} and rewrite it for direct substitution.

See Solution

Problem 32649

Evaluate these limits: (a) limx3+10x28+9x=\lim _{x \rightarrow \infty} \frac{\sqrt{3+10 x^{2}}}{8+9 x}= (b) limx3+10x28+9x=\lim _{x \rightarrow-\infty} \frac{\sqrt{3+10 x^{2}}}{8+9 x}=

See Solution

Problem 32650

Find limits and function values for a=2 a=2 and a=0 a=0 : limxaf(x) \lim_{x \rightarrow a^{-}} f(x) , limxa+f(x) \lim_{x \rightarrow a^{+}} f(x) , limxaf(x) \lim_{x \rightarrow a} f(x) , and f(a) f(a) .

See Solution

Problem 32651

Find the limit as tt approaches \infty for 3t9t2+3t+5\frac{-3t-9}{\sqrt{t^2+3t+5}}. Enter I, -I, or DNE. Limit =

See Solution

Problem 32652

Evaluate the limit: limx64x8x64\lim _{x \rightarrow 64} \frac{\sqrt{x}-8}{x-64} and simplify to find the exact answer.

See Solution

Problem 32653

Determine if the function f(x)f(x) has a jump discontinuity at x=8x=8 by finding the limits: limx8f(x)=,limx8+f(x)=.\lim _{x \rightarrow 8^{-}} f(x) = \square, \quad \lim _{x \rightarrow 8^{+}} f(x) = \square.

See Solution

Problem 32654

Find the limit: limΔx0f(x+Δx)f(x)Δx=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\square

See Solution

Problem 32655

Evaluate these limits: 1. limxx46x329x21=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}-6 x^{3}-2}}{9 x^{2}-1}=\square 2. limxx46x329x21=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{4}-6 x^{3}-2}}{9 x^{2}-1}=\square

See Solution

Problem 32656

Differentiate the function g(x)=x5+1x5g(x)=x^{5}+\frac{1}{x^{5}}. Find g(x)=g^{\prime}(x)=.

See Solution

Problem 32657

Find f(2)f'(2) and f(3)f'(-3) for the function f(x)=7x7f(x)=\frac{7}{x^{7}}.

See Solution

Problem 32658

Calculate the relative rate of change of f(x)=3x2lnxf(x)=3 x^{2}-\ln x at x=4x=4. Answer: \square.

See Solution

Problem 32659

Find f(x)f'(x) for f(x)=12x(sin(x)+cos(x))f(x)=12x(\sin(x)+\cos(x)) and evaluate f(π6)f'(-\frac{\pi}{6}).

See Solution

Problem 32660

Simplify the integral 1x29x2+16dx\int \frac{1}{x^{2} \sqrt{9 x^{2}+16}} d x with a trigonometric substitution.

See Solution

Problem 32661

Find the limit: limxπ29sec(x)+3tan(x)\lim _{x \rightarrow \frac{\pi}{2}} \frac{9 \sec (x)+3}{\tan (x)}.

See Solution

Problem 32662

Find the slope of the tangent line to y=3x3y=3 x^{3} at (5,375)(-5,-375) and write the equation in y=mx+by=m x+b form.

See Solution

Problem 32663

Find the derivative of the function f(x)=4x24x+8f(x)=4 x^{2}-4 x+8. What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 32664

Differentiate the function f(x)=x2+8x+30f(x)=x^{2}+8x+30. Find f(x)f^{\prime}(x).

See Solution

Problem 32665

Find dydx\frac{d y}{d x} for x23+y23=1\sqrt[3]{x^{2}}+\sqrt[3]{y^{2}}=1 and d2ydx2\frac{d^{2} y}{d x^{2}} at x=1125x=\frac{1}{125}.

See Solution

Problem 32666

Calculate the relative rate of change of f(x)=2643xf(x)=264-3x at x=33x=33. Answer: \square (round to three decimals).

See Solution

Problem 32667

Find the derivative f(x)f^{\prime}(x) for the function f(x)=7x13f(x)=7 x^{13}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 32668

Find the derivative of the function f(x)=8x3+9x2+3x7f(x) = 8x^3 + 9x^2 + 3x - 7. What is f(x)=f'(x) = \square?

See Solution

Problem 32669

Given f(t)=(t2+2t+2)(3t2+6)f(t)=(t^{2}+2 t+2)(3 t^{2}+6), find f(t)f^{\prime}(t) and then calculate f(5)f^{\prime}(5).

See Solution

Problem 32670

Find the derivative dydx\frac{\mathrm{dy}}{\mathrm{dx}} for the equation x3+2x2yxy2+y3+3=0x^{3}+2 x^{2} y-x y^{2}+y^{3}+3=0 at the point (1,-1).

See Solution

Problem 32671

Find F(x)F'(x) for F(x)=12x(sinx+cosx)F(x)=12x(\sin x+\cos x) and evaluate F(π6)F'(-\frac{\pi}{6}).

See Solution

Problem 32672

Find the percentage rate of change of f(x)=52505x2f(x)=5250-5 x^{2} at x=25x=25. Answer: %\square \%.

See Solution

Problem 32673

Find the derivative of f(x)=71x9+x2+14f(x)=7 \frac{1}{x^{9}}+x^{2}+14. What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 32674

Simplify the integral 1x29x2+16dx\int \frac{1}{x^{2} \sqrt{9 x^{2}+16}} d x using trigonometric substitution.

See Solution

Problem 32675

Compute the derivative using the Product Rule: Find ddt((t2+1)(t+9))\frac{d}{d t}\left((t^{2}+1)(t+9)\right) at t=3t=-3.

See Solution

Problem 32676

Evaluate if you can use substitution for the limit: limxπ2(sinx+x2)\lim _{x \rightarrow \frac{\pi}{2}}\left(\sin x+x^{2}\right) and find the limit.

See Solution

Problem 32677

Find the derivative of 1x+2\frac{1}{x+2} at x=4x=4.

See Solution

Problem 32678

Find the derivative of the function f(x)=2xx3+1f(x)=\frac{2 x}{x^{3}+1}. What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 32679

Find the derivative of f(x)=e9xf(x)=e^{9x}. What is f(x)f'(x)?

See Solution

Problem 32680

Find the derivative using the Quotient Rule: ddt(t2+1t21)\frac{d}{d t}\left(\frac{t^{2}+1}{t^{2}-1}\right) at t=4t=-4.

See Solution

Problem 32681

Find the derivative of f(x)=xe6xf(x)=x e^{6 x}. What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 32682

Find the tangent line equation for y=4ln(x)y=4 \ln (x) at x=2x=2. Tangent Line: y=y=

See Solution

Problem 32683

Find the derivative of f(x)=e3x3f(x)=e^{-3 x^{3}}. What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 32684

Differentiate the function f(x)=5(x43)2f(x)=\frac{5\left(x^{4}-3\right)}{2}.

See Solution

Problem 32685

Find the average velocity of a stone tossed with height h(t)=15t4.9t2h(t)=15t-4.9t^2 over intervals: a. [1,1.05][1,1.05], b. [1,1.01][1,1.01], c. [1,1.005][1,1.005], d. [1,1.001][1,1.001].

See Solution

Problem 32686

Find the derivative s(t)s^{\prime}(t) of the function s(t)=(87t)(t22)s(t) = (8 - 7t)(t^2 - 2).

See Solution

Problem 32687

Find the slope of the function 4x+y3+xy2=164x + y^3 + xy^2 = 16 at the point (1,2)(1,2).

See Solution

Problem 32688

Differentiate y=ln(3x+2)2y=\ln(3x+2)^{2}.

See Solution

Problem 32689

Find the second derivative yy^{\prime \prime} of the function y=x3+exy=x^{3}+e^{x}.

See Solution

Problem 32690

Find if the critical point (1, 12) of the function f(x)=2x39x2+12x+7f(x) = 2x^3 - 9x^2 + 12x + 7 is a max, min, or neither.

See Solution

Problem 32691

Find the limit as xx approaches 0 for the expression x22xx\frac{x^{2}-2 x}{x}.

See Solution

Problem 32692

Evaluate the limit: limh0(1+h)31h\lim _{h \rightarrow 0} \frac{(1+h)^{3}-1}{h}.

See Solution

Problem 32693

Find values of xx for which demand is elastic or inelastic for p=g(x)=4200.7xp=g(x)=420-0.7 x. Use E(x)=g(x)xg(x)E(x)=-\frac{g(x)}{x g^{\prime}(x)}.

See Solution

Problem 32694

Find all values of pp for which demand is elastic in the equation p+0.02x=50p + 0.02x = 50, where 0p50.(Interval)0 \leq p \leq 50. (Interval)

See Solution

Problem 32695

Evaluate the limit: limx7x7x249\lim _{x \rightarrow 7} \frac{x-7}{x^{2}-49}.

See Solution

Problem 32696

Find values of xx for which demand is elastic or inelastic using p=g(x)=6400.8xp=g(x)=640-0.8x. Elasticity is E(x)=g(x)xg(x)E(x)=-\frac{g(x)}{x g^{\prime}(x)}.

See Solution

Problem 32697

Find the limit as xx approaches infinity for 5x32x5+2x6+3x2\frac{5 x^{3}-2 x^{5}+2}{x^{6}+3 x^{2}}. Options: (a) \infty (b) (c) 12\frac{1}{2}

See Solution

Problem 32698

At the maximum point x=ax=a of y=f(x)y=f(x), which conditions can be true? (a) dy/dx>0dy/dx>0, d2y/dx2=0d^2y/dx^2=0 (b) dy/dx=0dy/dx=0, d2y/dx2<0d^2y/dx^2<0 (c) dy/dx=0dy/dx=0, d2y/dx2>0d^2y/dx^2>0 (d) dy/dx<0dy/dx<0, d2y/dx2=0d^2y/dx^2=0

See Solution

Problem 32699

Find the derivative of f(x)=e2xf(x) = e^{2x} and the tangent line equation at point (x0,f(x0))(x_0, f(x_0)). x0x_0 is unspecified.

See Solution

Problem 32700

Find 162f(x)dx\int_{1}^{6} 2 f(x) d x given 11f(x)dx=3\int_{-1}^{1} f(x) d x=3 and 16f(x)dx=7\int_{-1}^{6} f(x) d x=7.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord