Calculus

Problem 22601

Find the average rate of change of g(x)=x25x+11g(x)=-x^{2}-5x+11 from x=8x=-8 to x=4x=4.

See Solution

Problem 22602

Find the function f(x)f(x) given that f(x)=0.8e0.7xf^{\prime}(x)=0.8 e^{-0.7 x} and f(0)=1f(0)=1.

See Solution

Problem 22603

Find the derivative f(5)f^{\prime}(5) for the function f(x)=2x35xf(x) = 2 \sqrt{x^{3}} - \frac{5}{\sqrt{x}}.

See Solution

Problem 22604

Find the derivative f(5)f^{\prime}(5) for the function f(x)=2x35xf(x)=2 \sqrt{x^{3}}-\frac{5}{\sqrt{x}}.

See Solution

Problem 22605

Find the function f(x)f(x) given f(x)=0.2e0.3xf'(x) = 0.2 e^{-0.3 x} and f(0)=3.f(0) = 3.

See Solution

Problem 22606

Find the function f(x)f(x) given its derivative f(x)=0.2e0.3xf^{\prime}(x) = 0.2 e^{-0.3 x} and f(0)=3f(0) = 3.

See Solution

Problem 22607

Evaluate the integral (ln(z))61zdz\int(\ln (z))^{6} \frac{1}{z} d z using the substitution u=ln(z)u=\ln (z) and du=1zdzd u=\frac{1}{z} d z.

See Solution

Problem 22608

Find the antiderivative of f(x)=x4+1f^{\prime}(x)=\sqrt[4]{x}+1 with the condition f(1)=0f(1)=0.

See Solution

Problem 22609

Calculate the area between the curve f(x)=36x2f(x)=36-x^{2} and the x-axis from 8-8 to 88.

See Solution

Problem 22610

Find the area between the curve f(x)=e2x11f(x)=e^{2 x}-11 and the xx-axis from 00 to ln112\frac{\ln 11}{2}.

See Solution

Problem 22611

Calculate the area between the curve f(x)=e3x6f(x)=e^{3 x}-6 and the xx-axis from 00 to ln63\frac{\ln 6}{3}.

See Solution

Problem 22612

Find the derivatives using the Fundamental Theorem of Calculus:
1. For f(x)=2xt3+8dtf(x)=\int_{-2}^{x} \sqrt{t^{3}+8} d t, f(x)=x3+8f^{\prime}(x)=\sqrt{x^{3}+8}.
2. For g(x)=5x11+t4dtg(x)=\int_{5}^{x} \frac{1}{1+t^{4}} d t, g(x)=11+x4σ8g^{\prime}(x)=\frac{1}{1+x^{4}}-\sigma^{8}.

See Solution

Problem 22613

Calculate the area between the curves y=4x24y=4 x^{2}-4 and y=3x2+3y=-3 x^{2}+3 for xx in [1,1][-1, 1].

See Solution

Problem 22614

Find the derivative of f(x)=2xt3+8dtf(x)=\int_{-2}^{x} \sqrt{t^{3}+8} dt and g(x)=5x11+t4dtg(x)=\int_{5}^{x} \frac{1}{1+t^{4}} dt.

See Solution

Problem 22615

Find the area between the curves y=x6y=x^{6} and y=8x3y=8x^{3} from their intersection points.

See Solution

Problem 22616

Find the area between the curves y=9x2y=-9 x^{2} and y=xy=-\sqrt{x} at their intersection points.

See Solution

Problem 22617

Evaluate the integral from -7 to -2 of 6u26u+86u^{2} - 6u + 8 and round the answer to three decimal places.

See Solution

Problem 22618

Calculate the average value of f(x)=x215f(x) = x^{2} - 15 over the interval from x=0x = 0 to x=9x = 9.

See Solution

Problem 22619

Calculate the volume of the solid formed by rotating y=36x2y=\sqrt{36-x^{2}} from x=6x=-6 to x=6x=6 around the xx-axis.

See Solution

Problem 22620

Find the average value of f(x)=1xf(x) = \frac{1}{x} from x=112x = \frac{1}{12} to x=12x = 12.

See Solution

Problem 22621

Find the volume of the solid formed by revolving the area between y=3x2y=3 x^{2} and the xx-axis from x=0x=0 to x=3x=3 around the xx-axis.

See Solution

Problem 22622

Prove that if f(x)=xnf(x)=x^{n}, then f(x)=nxn1f^{\prime}(x)=n x^{n-1} using implicit or logarithmic differentiation.

See Solution

Problem 22623

Find the volume of the solid formed by revolving y=xy=\sqrt{x} from x=0x=0 to x=14x=14 around the xx-axis.

See Solution

Problem 22624

Prove the Quotient Rule: If f(x)=u(x)v(x)f(x)=\frac{u(x)}{v(x)}, show that f(x)=uvuvv2f^{\prime}(x)=\frac{u^{\prime} v - u v^{\prime}}{v^{2}}.

See Solution

Problem 22625

Find the area between the curves x=y2+1x=y^{2}+1 and x=5x=5 by integrating with respect to yy. Provide the exact answer.

See Solution

Problem 22626

Calculate the integral: (x4/33x5/2)dx\int\left(x^{4 / 3}-3 x^{5 / 2}\right) d x

See Solution

Problem 22627

Find the sum: k=11k2+1\sum_{k=1}^{\infty} \frac{1}{\sqrt{k^{2}+1}}.

See Solution

Problem 22628

Calculate the integral: 7x3dx\int 7 x^{-3} d x

See Solution

Problem 22629

Find the bounds aa and bb for the integral abf(x)dx\int_{a}^{b} f(x) dx given that a=2a=2 and b=11b=11.

See Solution

Problem 22630

Evaluate the integral: (tt+e3t)dt\int\left(t^{t}+e^{3 t}\right) d t

See Solution

Problem 22631

Calculate the integral: (t4+e3t)dt\int\left(t^{4}+e^{3 t}\right) d t

See Solution

Problem 22632

Find the tangent line to y=f(x)y=f(x) where f(x)=2csc2(x)f(x)=2 \csc ^{2}(x) at x=2π3x=\frac{2 \pi}{3}.

See Solution

Problem 22633

Evaluate the integral: xdx(7x2+3)5\int \frac{x d x}{\left(7 x^{2}+3\right)^{5}}

See Solution

Problem 22634

Find the tangent line equation for y=3sec2(x)y=-3 \sec ^{2}(x) at x=0x=0.

See Solution

Problem 22635

Find C(x)C(x) given C(x)=5x27x+4C'(x)=5 x^{2}-7 x+4 and C(6)=260C(6)=260.

See Solution

Problem 22636

Solve the initial-boundary value problem:
ut=32ux2,u(0,t)=u(π,t)=0,u(x,0)=4x2. \frac{\partial u}{\partial t}=3 \frac{\partial^{2} u}{\partial x^{2}}, \, u(0, t)=u(\pi, t)=0, \, u(x, 0)=-4 x^{2}.
Find u(x,t)u(x, t) as a series in terms of nn.

See Solution

Problem 22637

Ein Bauer will mit einem 200 m langen Zaun die größte rechteckige Weide am Kanal abstecken. Bestimme die Zielfunktion und das Maximum.

See Solution

Problem 22638

Bestimmen Sie die Flächeninhalte der Funktion f(x)=4f(x)=4 im Intervall [0;3][0 ; 3].

See Solution

Problem 22639

Bestimme die Flächeninhalte der Funktionen im Intervall: b) f(x)=2,5f(x)=-2,5 für [0;3,5][0 ; 3,5] c) f(x)=2xf(x)=2x für [0;2][0 ; 2] d) f(x)=2xf(x)=-2x für [0;3][0 ; 3] e) f(x)=3x2f(x)=3x^{2} für [0;1][0 ; 1] f) f(x)=x2f(x)=x^{2} für [0;2][0 ; 2]

See Solution

Problem 22640

Berechne die Flächeninhalte der Funktionen im Intervall: b) f(x)=2,5f(x)=-2,5 für [0;3,5][0 ; 3,5] c) f(x)=2xf(x)=2 x für [0;2][0 ; 2] d) f(x)=2xf(x)=-2 x für [0;3][0 ; 3] e) f(x)=3x2f(x)=3 x^{2} für [0;1][0 ; 1] f) f(x)=x2f(x)=x^{2} für [0;2][0 ; 2]

See Solution

Problem 22641

Ein Bauer möchte mit einem 200 m langen Zaun eine rechteckige Weide am Kanal abstecken. Bestimmen Sie die maximalen Maße der Weide.

See Solution

Problem 22642

Find the position function s(t)s(t) if a(t)=4t+4a(t)=4t+4, v(0)=4v(0)=4, and s(0)=ws(0)=w.

See Solution

Problem 22643

Find the position function s(t)s(t) for an object with acceleration a(t)=4t+4a(t)=4t+4, initial velocity v(0)=4v(0)=4, and s(0)=10s(0)=10.

See Solution

Problem 22644

Calculate the average rate of change of f(x)=xf(x)=\sqrt{x} from x1=16x_{1}=16 to x2=36x_{2}=36. The answer is \square.

See Solution

Problem 22645

Find the marginal cost of producing the 9,001st cell phone using M(n)=0.0000015n2+0.0001n+4M(n)=0.0000015 n^{2}+0.0001 n+4. Answer in dollars.

See Solution

Problem 22646

Bestimme die Ableitung von f(t)=1,5te0,5t+1+37f(t)=1,5 \cdot t \cdot e^{-0,5 t+1}+37.

See Solution

Problem 22647

Bestimmen Sie die lokale Änderungsrate von ff an den Stellen a mit der h-Methode für die Funktionen a) bis f) und vergleichen Sie die Grenzwerte mit dem Differenzenquotienten für h=0,000001h=0,000001.

See Solution

Problem 22648

Milch bei 6C6^{\circ} \mathrm{C} erwärmt sich im Raum mit 25C25^{\circ} \mathrm{C}. Bestimme die Erwärmungsgeschwindigkeit und die Temperatur in Abhängigkeit von der Zeit.

See Solution

Problem 22649

Berechne den Flächeninhalt unter f(x)=3x2f(x)=3 \cdot x^{2} im Intervall [0;2][0; 2] mit n=16n=16 gleich großen Teilintervallen.

See Solution

Problem 22650

Berechne den Flächeninhalt unter f(x)=3x2f(x)=3 \cdot x^{2} im Intervall [0;2][0 ; 2] mit n=8n=8 Untersummen. U8=U_{8} =

See Solution

Problem 22651

Berechne den Flächeninhalt zwischen dem Graphen von f(x)=3x2f(x)=3 \cdot x^{2} und der xx-Achse im Intervall [0;2][0;2] für n=16n=16.

See Solution

Problem 22652

Izračunajte limitu: limn2n3n1+3n\lim _{n \rightarrow \infty} \frac{2^{n}-3^{n}}{1+3^{n}}.

See Solution

Problem 22653

Find the derivative dydx\frac{d y}{d x} for the polar function r=2sin(3θ)r=2 \sin (3 \theta).

See Solution

Problem 22654

Find the slope of the tangent line to the polar curve r=2θr=2 \theta at θ=π2\theta=\frac{\pi}{2}.

See Solution

Problem 22655

Bestimme die Ableitung von f(x)=2sin(x)+x3f(x)=2 \sin(x) + x^{-3}.

See Solution

Problem 22656

Estimate the area under g(x)=5x2+5g(x) = 5x^2 + 5 on [1,3][1,3] using 8 rectangles. Find the area bounds.

See Solution

Problem 22657

Graph the function f(x)=3x+2f(x)=3x+2 and estimate the area under it from x=0x=0 to x=3x=3 using rectangles.

See Solution

Problem 22658

Evaluate the definite integral using the limit definition: 164dx\int_{1}^{6} 4 \, dx.

See Solution

Problem 22659

Find the absolute minimum of f(x)=x48x2+10f(x)=x^{4}-8 x^{2}+10 on the interval [3,1][-3,1].

See Solution

Problem 22660

Find the absolute minimum value of the function f(x)=x48x2+10f(x)=x^{4}-8 x^{2}+10 on the interval [3,1][-3,1].

See Solution

Problem 22661

Find intervals where the function ff is decreasing given that f(x)=x3+18x272xf^{\prime}(x)=-x^{3}+18 x^{2}-72 x.

See Solution

Problem 22662

Find the intervals where the function f(x)=x416x3f(x)=x^{4}-16 x^{3} is decreasing.

See Solution

Problem 22663

Find the intervals where the function f(x)=2x33x212x+20f(x)=2 x^{3}-3 x^{2}-12 x+20 is increasing.

See Solution

Problem 22664

Berechnen Sie die Ableitungen von ff für die folgenden Funktionen: a) f(x)=x3+x2f(x)=x^{3}+x^{2} b) f(x)=1x4f(x)=1-x^{4} c) f(x)=x3+x5+x+2f(x)=x^{3}+x^{5}+x+2

See Solution

Problem 22665

Find the absolute maximum of the function f(x)=x39x2+27x5f(x)=x^{3}-9 x^{2}+27 x-5 on the interval [2,4][2,4].

See Solution

Problem 22666

Finde die zwei falschen Aussagen über Ableitungen: (1) f(x)=x3f(x)=3x2f(x)=x^{3} \Rightarrow f^{\prime}(x)=3 \cdot x^{2}, (2) f(x)=xxf(x)=xxx1f(x)=x^{x} \Rightarrow f^{\prime}(x)=x \cdot x^{x-1}, (3) f(x)=x2af(x)=2xaf(x)=x^{2 a} \Rightarrow f^{\prime}(x)=2 \cdot x^{a}, (4) f(x)=xa+1f(x)=(a+1)xaf(x)=x^{a+1} \Rightarrow f^{\prime}(x)=(a+1) \cdot x^{a}.

See Solution

Problem 22667

Find the second derivative of ff where f(x)=2+x+3ecos(4x)f'(x)=-2+x+3 e^{-\cos(4x)} and analyze ff on the interval 0<x<?0 < x < ?.

See Solution

Problem 22668

Find the first derivative of f(x)=5x3x35f(x) = \frac{5}{x^3} - \frac{x^3}{5}.

See Solution

Problem 22669

Find the horizontal asymptote of the function f(x)=9x3+3x22x9x2+3x2f(x)=\frac{9 x^{3}+3 x^{2}-2 x}{9 x^{2}+3 x-2}.

See Solution

Problem 22670

Bestimme die erste Ableitung von f(x)=(x+4)2f(x) = (x + 4)^2.

See Solution

Problem 22671

Find the second derivative of the function ff given that f(x)=2+x+3ecos(4x)f^{\prime}(x)=-2+x+3 e^{-\cos (4 x)}.

See Solution

Problem 22672

Find the value of xx that minimizes the average cost function for C(x)=489888+1.7x+42x2C(x)=489888+1.7x+42x^{2}, where 1x2851 \leq x \leq 285.

See Solution

Problem 22673

Berechnen Sie die erste Ableitung von f(x)=x4+1x2 f(x) = \sqrt[4]{x} + \frac{1}{x^{2}} .

See Solution

Problem 22674

The drug concentration C(t)=12t2+1C(t)=\frac{1}{2t^{2}+1}:
a. Find the horizontal asymptote and describe concentration behavior as tt increases. b. Graph C(t)C(t); state the domain and range with reasoning. c. Find when the concentration is highest.

See Solution

Problem 22675

Find the horizontal asymptote of C(t)=12t2+1C(t)=\frac{1}{2t^{2}+1} and explain the concentration behavior as tt increases. Graph it with appropriate domain and range, then find when the concentration is highest.

See Solution

Problem 22676

Find the increase in total costs when production rises from 62 to 82 units, given marginal cost 262+212x262+\frac{212}{\sqrt{x}}.

See Solution

Problem 22677

Find the solution to the differential equation: y=2x(logx2+1ln10)y^{\prime}=2 x\left(\log x^{2}+\frac{1}{\ln 10}\right).

See Solution

Problem 22678

Find the differential of the function A=20πx2A=20 \pi x^{2}.

See Solution

Problem 22679

Estimate the cost change using differentials for C(x)=278+5x+0.16x2C(x)=278+5 x+0.16 x^{2} from 71 to 74 units.

See Solution

Problem 22680

Find the first derivative of f(t)=2(3t1)2f(t) = 2 \cdot (3t - 1)^2.

See Solution

Problem 22681

Find the derivative of the function f(x)=(5x+2)3f(x) = (5x + 2)^3.

See Solution

Problem 22682

Calculate and round e0.41e^{-0.41} to three decimal places: e0.41e^{-0.41} \approx \square.

See Solution

Problem 22683

Calculate f(a)f(a), f(a+h)f(a+h), and f(a+h)f(a)h\frac{f(a+h)-f(a)}{h} for f(x)=7+6x2f(x)=7+6x^{2}.

See Solution

Problem 22684

Find the limit as xx approaches -19 for the piecewise function: f(x)=x2+38x+379f(x) = x^2 + 38x + 379 if x<19x < -19 and f(x)=20x+398f(x) = 20x + 398 if x19x \geq -19.

See Solution

Problem 22685

Find the limit as xx approaches -19 from the left for the function defined as:
f(x)={x2+38x+379 if x<1920x+398 if x19 f(x)=\left\{\begin{array}{ll} x^{2}+38 x+379 & \text { if } x<-19 \\ 20 x+398 & \text { if } x \geq-19 \end{array}\right.

See Solution

Problem 22686

Find the limit as xx approaches -19 from the right for the function defined as: f(x)={x2+38x+379 if x<1920x+398 if x19f(x)=\left\{\begin{array}{ll} x^{2}+38 x+379 & \text { if } x<-19 \\ 20 x+398 & \text { if } x \geq-19 \end{array}\right.

See Solution

Problem 22687

Find the slope of the tangent line for the function f(x)=2x8x27x3f(x)=2x-8x^{2}-7x^{3} at x=2x=-2.

See Solution

Problem 22688

Find the meaning of f(7)=1253f^{\prime}(7)=-1253 for the function f(x)=8x36x2+7x+3f(x)=-8 x^{3}-6 x^{2}+7 x+3.

See Solution

Problem 22689

Find the derivative of the function using the Product or Quotient Rule: f(x)=9x2+68x58f(x)=\frac{-9 x^{2}+6}{8 x^{5}-8}

See Solution

Problem 22690

Given the function f(x)=x3+3xf(x)=x^{3}+3 x, find the average rate of change for intervals: [2,3][2,3], [2,2.5][2,2.5], [2,2.1][2,2.1], [2,2.01][2,2.01], [2,2.001][2,2.001]. What value do these rates approach as intervals shrink?

See Solution

Problem 22691

Given f(x)=x3+3xf(x)=x^{3}+3x, find the average rate of change for the intervals: [2,3][2,3], [2,2.5][2,2.5], [2,2.1][2,2.1], [2,2.01][2,2.01], [2,2.001][2,2.001].

See Solution

Problem 22692

Find the slopes of the tangent lines for f(x)=42x4x2f(x)=4-2x-4x^{2} at x=0x=0, x=1x=1, and x=2x=2.

See Solution

Problem 22693

A rock creates a ripple with a radius increasing at 4ft/sec4 \mathrm{ft} / \mathrm{sec}. Find the area increase speed when radius is 2 ft.

See Solution

Problem 22694

Find the derivative of 1lnx2x2 \frac{1 - \ln x}{2 x^{2}} with respect to x x .

See Solution

Problem 22695

Calculate the one-sided limit: limx6(x3x6)\lim _{x \rightarrow 6^{-}}\left(\frac{x-3}{x-6}\right).

See Solution

Problem 22696

Find the dimensions of a square-based crate with volume 12800ft312800 \mathrm{ft}^{3} that minimizes material cost.

See Solution

Problem 22697

Find the tangent line equation to f(x)=513xf(x)=\frac{5}{1-3x} at point P(2,f(2))P(2, f(2)).

See Solution

Problem 22698

Find the xx-coordinates where the tangent line to f(x)=x3+x2x+3f(x)=x^{3}+x^{2}-x+3 is horizontal.

See Solution

Problem 22699

Mosquito population grows exponentially. Given N(t)=N0ekt\mathrm{N}(t)=\mathrm{N}_{0} e^{\mathrm{kt}}, find N(4)\mathrm{N}(4) and time for 70,000 mosquitoes.

See Solution

Problem 22700

Find the maximum value of y=23x312x23x+2y=\frac{2}{3} x^{3}-\frac{1}{2} x^{2}-3 x+2 on [0,2][0,2].

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord