Calculus

Problem 23601

Find the value of limx41(x4)3\lim _{x \rightarrow 4^{-}} \frac{1}{(x-4)^{3}}: 0, 1, \infty, or -\infty?

See Solution

Problem 23602

Find the derivative of f(x)=4x3+2x2+1f(x)=4x^3+2x^2+1 using limΔx0f(x+Δx)f(x)Δx\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}.

See Solution

Problem 23603

Find the remaining amount of a 669mg669 \mathrm{mg} radioactive substance after 87 years using A(t)=669e0.033tA(t)=669 e^{-0.033 t}.

See Solution

Problem 23604

Find the value of kk in the integral x4+2x5+10xdx=kln(x5+10x)+C\int \frac{x^{4}+2}{x^{5}+10 x} d x=k \ln \left(x^{5}+10 x\right)+C.

See Solution

Problem 23605

Find the volume of the solid formed by rotating the area between x=2y2x=2-y^{2} and x=y4x=y^{4} around the yy-axis.

See Solution

Problem 23606

Find the instantaneous rate of change of f(x)=ex+1f(x)=e^{x+1} at x=3x=-3 using the limit below. No need to simplify.

See Solution

Problem 23607

Find the average rate of change of f(x)=125(0.9)xf(x)=125(0.9)^{x} between years 11-15 and compare it to 1-5.

See Solution

Problem 23608

Untersuchen Sie die Form einer Satellitenschüssel (Querschnitt: 40 cm40 \mathrm{~cm} breit, 6,8 cm6,8 \mathrm{~cm} tief).
a) Schätzen Sie, wie viel Bier (ca. 5,6 Liter) passt hinein. b) Legen Sie den Querschnitt für die Rotation um die xx-Achse fest. c) Bestimmen Sie die Funktion f(x)f(x) für die Schüssel. d) Skizzieren Sie ff, zeichnen Sie Rechtecke für die Untersumme S4\underline{S}_{4} und Obersumme Sˉ4\bar{S}_{4} ein. Berechnen Sie den Rauminhalt der Rotationskörper und die Biermenge.

See Solution

Problem 23609

Calculate the average population change of 3,000 bass growing at 2%2\% per year from Year 1-4 and Year 5-8.

See Solution

Problem 23610

A bolt fell from 400ft400 \mathrm{ft}. What was its speed upon hitting the ground using V2=64sV^{2}=64 s?

See Solution

Problem 23611

Ein Tauchroboter bewegt sich vertikal. Gegeben ist h(t)=940t3272t2+4052th(t) = \frac{9}{40} t^{3}-\frac{27}{2} t^{2}+\frac{405}{2} t für 0t300 \leq t \leq 30.
a) Zeigen Sie, dass der Abstand nach 10 Minuten 900 Meter beträgt. b) Berechnen Sie die zurückgelegte Strecke in den ersten 15 Minuten. c) Erklären Sie die Bedeutung des Wendepunkts von hh.

See Solution

Problem 23612

A cylinder's radius decreases at 9 m/min with a constant volume of 728 m³. Find the height change rate when height is 3 m. Use V=πr2hV=\pi r^{2} h and round to three decimals.

See Solution

Problem 23613

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=9x+7f(x)=9x+7, where h0h \neq 0.

See Solution

Problem 23614

Find relative extrema of f(x)=2x33x24f(x)=2 x^{3}-3 x^{2}-4 using the Second Derivative Test. Justify your answers.

See Solution

Problem 23615

Find the value of the relative minimum for the function g(x)=x33x2+1g(x)=x^{3}-3x^{2}+1.

See Solution

Problem 23616

Find limΔx0(x+Δx)3x3Δx\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{3}-x^{3}}{\Delta x} for f(x)=x3f(x)=x^{3}.

See Solution

Problem 23617

Find the xx-values of relative extrema for gg where g(x)=x2+2x8g^{\prime}(x)=x^{2}+2x-8 using the First Derivative Test.

See Solution

Problem 23618

What is the value of limΔx0f(x+Δx)f(x)Δx\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} if f(x)=3f(x)=-3?

See Solution

Problem 23619

Calculate the orbital speed vv and altitude hh of POES, which orbits Earth 14.1 times daily. Use TT, RR_{\oplus}, GG, and MM_{\oplus}.

See Solution

Problem 23620

If f(x)=1xf(x)=\frac{1}{x}, find f(2)f^{\prime}(-2).

See Solution

Problem 23621

Determine if the series n=1n43n\sum_{n=1}^{\infty} \frac{n^{4}}{3^{n}} converges or diverges. State the tests used.

See Solution

Problem 23622

Evaluate the integral 123x(2x21)3dx\int_{-1}^{2} 3 x(2 x^{2}-1)^{3} dx.

See Solution

Problem 23623

t0t \geq 0 时,粒子沿 xx 轴的速度 v(t)=t36t2+10t4v(t)=t^{3}-6 t^{2}+10 t-4 何时方向由右变左?

See Solution

Problem 23624

Given functions C(x)=0.02x2+100x+100C(x) = -0.02x^2 + 100x + 100 and p(x)=3000.1xp(x) = 300 - 0.1x, find profit PP, average profit, and marginal profit for x=900x = 900.

See Solution

Problem 23625

Evaluate the integral from 1 to 2: 12(1+3zz2)dz\int_{1}^{2}\left(1+3 z-z^{-2}\right) d z.

See Solution

Problem 23626

Find the profit function PP, average profit, and marginal profit for C(x)=0.02x2+100x+100C(x)=-0.02 x^2+100 x+100, p(x)=3000.1xp(x)=300-0.1 x, a=900a=900.

See Solution

Problem 23627

Evaluate the integral 01(x+x)dx\int_{0}^{1}(x+\sqrt{x}) \, dx using the Fundamental Theorem of Calculus Part 2.

See Solution

Problem 23628

Find F(x)F^{\prime}(x) using the Fundamental Theorem given F(x)=3x(t2+t+1)dtF(x)=\int_{3}^{x}(t^{2}+t+1) dt.

See Solution

Problem 23629

Find Jean's angular velocity at t=3t=3 from θ(t)=πt28\theta(t)=\frac{\pi t^{2}}{8} and when it is greatest.

See Solution

Problem 23630

How far does an object travel in 10 seconds if v(t)=(12t4)v(t) = (12t - 4) m/s?

See Solution

Problem 23631

Find Jean's angular velocity from θ(t)=πt28\theta(t) = \frac{\pi t^{2}}{8} at t=3t = 3 and when it's maximum. Answer in terms of π\pi.

See Solution

Problem 23632

Find the function that passes through (1,1)(1,1) with dydx=4x2\frac{d y}{d x}=4 x^{2}.

See Solution

Problem 23633

Find the function passing through (0,5)(0,-5) with slope dydx=2\frac{d y}{d x}=2.

See Solution

Problem 23634

Find Jean's angular velocity from θ(t)=πt272\theta(t)=\frac{\pi t^{2}}{72} at t=3t=3 and when it's at its maximum.

See Solution

Problem 23635

Find the indefinite integral: x22xxdx\int \frac{x^{2}-2 \sqrt{x}}{x} dx. Show all work and simplify if possible.

See Solution

Problem 23636

A sandal dropped from a 15.0 m mast on a ship moving at 1.75 m/s south. Find its velocity when it hits the deck: (a) relative to the ship, (b) relative to a stationary observer on shore. (c) Discuss how the answers are consistent for the position where it hits the deck.

See Solution

Problem 23637

A ball rolls down a hill at 5ft/s5 \mathrm{ft/s}. What is its velocity after 15 seconds with a=32ft/s2a = -32 \mathrm{ft/s}^{2}?

See Solution

Problem 23638

Find Jean's angular velocity at t=3t=3 for θ(t)=πt272\theta(t)=\frac{\pi t^{2}}{72} and when is it greatest?

See Solution

Problem 23639

Find how many times the velocity of y(t)=16cos(5t)14sin(5t)y(t)=\frac{1}{6} \cos (5 t)-\frac{1}{4} \sin (5 t) equals 0 in 4 seconds. (A) 0 (B) 3 (C) 5 (D) 6 (E) 7

See Solution

Problem 23640

Velocity function is v(t)=t2+5t4v(t)=-t^{2}+5 t-4 on [0,5][0,5].
5a) Sketch v(t)v(t), find where v(t)=0v(t)=0, and shade the region. 5b) Calculate displacement on [0,5][0,5]. 5c) Calculate distance traveled on [0,5][0,5].

See Solution

Problem 23641

Find Juan's angular velocity from ϕ(t)=πt(24t)72\phi(t)=\frac{\pi t(24-t)}{72} at t=3t=3 and when it is maximized.

See Solution

Problem 23642

Find the position of an object after 10s with acceleration a(t)=3ta(t)=3t, initial position 1m1m, and initial velocity 2m/s2m/s.

See Solution

Problem 23643

Calculate the indefinite integral: e4xdx\int e^{-4 x} dx and include the constant CC.

See Solution

Problem 23644

Find critical points of f(x)=4x3+36xf(x)=-4 x^{3}+36 x on [4,5][-4,5], then determine local and absolute extrema.

See Solution

Problem 23645

Find the Hessian matrix of f(x1,x2)=5x126x1+2x222x2(1+x1)+29f(x_{1}, x_{2})=5 x_{1}^{2}-6 x_{1}+2 x_{2}^{2}-2 x_{2}(1+x_{1})+\frac{2}{9}. Determine its definiteness and extreme points.

See Solution

Problem 23646

Find critical points of f(x)=2x3+42xf(x)=-2x^3+42x on [5,4][-5,4] and determine local/absolute max/min values.

See Solution

Problem 23647

Calculate the indefinite integral: (15e3x15x)dx\int\left(15 e^{3 x}-\frac{15}{x}\right) d x and include the constant CC.

See Solution

Problem 23648

Calculate the indefinite integral and include the constant CC. Use absolute values when needed: (36x2+3x1+24e3x)dx\int(36 x^{2}+3 x^{-1}+24 e^{3 x}) dx

See Solution

Problem 23649

Determine where the function f(x)=x2sinx2sinx+2xcosxf(x)=x^{2} \sin x-2 \sin x+2 x \cos x is increasing or decreasing on (0,2π)(0,2 \pi).

See Solution

Problem 23650

Find the limit: limxπ22senxx\lim _{x \rightarrow \frac{\pi}{2}} \frac{2-\operatorname{sen} x}{x}.

See Solution

Problem 23651

Find the limit: limxπ22sinxx \lim _{x \rightarrow \frac{\pi}{2}} \frac{2-\sin x}{x} .

See Solution

Problem 23652

Analyze the Leonard-Jones potential V(r)=1r6Ar3V(r) = \frac{1}{r^{6}} - \frac{A}{r^{3}} as r0r \to 0. What happens to V(r)V(r)?

See Solution

Problem 23653

Find the indefinite integral using substitution: cosx(sinx1)2dx\int \frac{\cos x}{(\sin x-1)^{2}} d x. Show all work.

See Solution

Problem 23654

Calculate the fetal growth rate dHdt\frac{\mathrm{dH}}{\mathrm{dt}} using H=30.11+1.301t20.6554t2logtH=-30.11+1.301 t^{2}-0.6554 t^{2} \log t. Compare growth at t=8t=8 and t=36t=36 weeks, then for 1HdHdt\frac{1}{H} \frac{\mathrm{dH}}{\mathrm{dt}}.

See Solution

Problem 23655

球体的体积以每秒3立方厘米的速度减少。当半径以每秒0.25厘米的速度减少时,半径是多少?

See Solution

Problem 23656

Find the average value of f(x)=12xf(x)=12 \sqrt{x} on the interval [1,36][1,36].

See Solution

Problem 23657

Evaluate the integral from 1 to e9e^{9} of 1xdx\frac{1}{x} \, dx.

See Solution

Problem 23658

Find the tangent line y=mx+by=m x+b to f(x)=12x+915exf(x)=12 x+9-15 e^{x} at (0,6)(0,-6). Determine mm and bb.

See Solution

Problem 23659

Evaluate the integral 04x9+x2dx\int_{0}^{4} \frac{x}{\sqrt{9+x^{2}}} d x using substitution. Show all work.

See Solution

Problem 23660

Find the expression for electric charge qq in coulombs as a function of time tt given i=3t2+2i=3 t^{2}+2 and q=0q=0 when t=0t=0.

See Solution

Problem 23661

Find the critical numbers AA and BB for the function f(x)=x2e20xf(x)=x^{2} e^{20 x}. Determine if f(x)f(x) is INC or DEC in the intervals (,A](-\infty, A], [A,B][A, B], and [B,)[B, \infty).

See Solution

Problem 23662

Calculez les dérivées des fonctions suivantes : a) f(x)=(4x+1)32x4+x2+1x21f(x)=(4 x+1)^{3}-\frac{2}{\sqrt[4]{x}}+\frac{x^{2}+1}{x^{2}-1}, b) f(x)=2ln(arcsinx3)f(x)=2^{\ln \left(\arcsin x^{3}\right)}, c) f(x)=cos3xsinexf(x)=\cos ^{3} x \cdot \sin e^{x}, d) f(x)=[arctanx+ln(1+x2)]4f(x)=\left[\arctan x+\ln \left(1+x^{2}\right)\right]^{4}, e) f(x)=1cos(2x)log2e2xf(x)=\frac{1}{\cos \left(2^{x}\right)} \cdot \log _{2} e^{2 x}, f) f(x)=x2ex3f(x)=x^{2} \cdot e^{x^{3}}.

See Solution

Problem 23663

Evaluate the integrals given 04f(x)dx=10\int_{0}^{4} f(x) d x=10, 04g(x)dx=20\int_{0}^{4} g(x) d x=20, with ff even and gg odd.
8a) 44f(x)dx\int_{-4}^{4} f(x) d x
8b) 443g(x)dx\int_{-4}^{4} 3 g(x) d x
8c) 44(4f(x)3g(x))dx\int_{-4}^{4}(4 f(x)-3 g(x)) d x
8d) 018xf(4x2)dx\int_{0}^{1} 8 x f(4 x^{2}) d x (Hint: Use w=4x2w=4 x^{2})
8e) 223xf(x)dx\int_{-2}^{2} 3 x f(x) d x (Hint: Check the symmetry of 3xf(x)3 x f(x))

See Solution

Problem 23664

Find the critical number of the function f(x)=(7x+8)e2xf(x)=(7 x+8) e^{2 x}.
x= x=

See Solution

Problem 23665

Find the inflection points of f(x)=x2e4xf(x)=x^{2} e^{4 x} at x=Cx=C and x=Dx=D, then determine concavity on (,C)(-\infty, C), (C,D)(C, D), (D,)(D, \infty).

See Solution

Problem 23666

Find the electric charge qq in coulombs as a function of time tt (seconds) given i=4t44i=4 t^{4}-4 and q=5q=5 at t=0t=0.

See Solution

Problem 23667

Find the value of YY that maximizes utility for U=X0.5Y0.5U=X^{0.5} Y^{0.5} with prices 44 for XX, 22 for YY, and budget 2020.

See Solution

Problem 23668

Find the voltage across a 4 F4 \mathrm{~F} capacitor after 4 seconds if current i=2t+1i=2 t+1 charges it from 9 V9 \mathrm{~V}.

See Solution

Problem 23669

Differentiate the head circumference formula H=30.11+1.301t20.6554t2logtH = -30.11 + 1.301 t^{2} - 0.6554 t^{2} \log t with respect to tt.

See Solution

Problem 23670

Evaluate the integral using symmetry: π/6π/62sec2xdx\int_{-\pi / 6}^{\pi / 6} 2 \sec ^{2} x \, dx.

See Solution

Problem 23671

Bestimme die allgemeine Stammfunktion von f(x)=6x38x3f(x)=6x^{3}-8x^{3}.

See Solution

Problem 23672

Bestimme die Stammfunktion von f(x)=x7+x3f(x)=x^{7}+x^{3}.

See Solution

Problem 23673

Bestimme die allgemeine Stammfunktion von f(x)=6x6+9x9f(x)=6 x^{6}+9 x^{9}.

See Solution

Problem 23674

Find the average velocity over [1,2][1,2] for s(t)=16t2+100ts(t)=-16 t^{2}+100 t, where tt is in hours and ss in feet.

See Solution

Problem 23675

Check if the series k=1k(k+7)(k+6)2\sum_{k=1}^{\infty} \frac{k(k+7)}{(k+6)^{2}} converges or diverges. If convergent, find the sum.

See Solution

Problem 23676

Evaluate the integral using symmetry: 22(7x3)dx\int_{-2}^{2}\left(7-|x|^{3}\right) d x.

See Solution

Problem 23677

Calculez les dérivées des fonctions suivantes : a) f(x)=(4x+1)32x4+x2+1x21f(x)=(4 x+1)^{3}-\frac{2}{\sqrt[4]{x}}+\frac{x^{2}+1}{x^{2}-1} b) f(x)=2ln(arcsinx3)f(x)=2^{\ln(\arcsin x^{3})} c) f(x)=cos3xsinexf(x)=\cos^{3} x \cdot \sin e^{x} d) f(x)=[arctanx+ln(1+x2)]4f(x)=[\arctan x+\ln(1+x^{2})]^{4} e) f(x)=1cos(2x)log2e2xf(x)=\frac{1}{\cos(2^{x})} \cdot \log_{2} e^{2 x} f) f(x)=x2ex3f(x)=x^{2} \cdot e^{x^{3}} Domaine de f(x)=2x2lnx2x2f(x)=2 x^{2} \cdot \ln x-2 x^{2}.

See Solution

Problem 23678

Evaluate the integral or state "IMPOSSIBLE": x2x323dx\int x^{2} \sqrt[3]{x^{3}-2} d x. Use CC for the constant.

See Solution

Problem 23679

Bestimme die Stammfunktion von f(x)=2x7(4x)f(x)=2 x^{7}(4-x).

See Solution

Problem 23680

Find the second derivative yy'' for the equation x4+y4=16x^{4}+y^{4}=16.

See Solution

Problem 23681

Find the average value of f(x)=5x2+1f(x)=\frac{5}{x^{2}+1} over the interval [-1,1] and graph the function with the average value.

See Solution

Problem 23682

Bestimme die allgemeine Stammfunktion von f(x)=8x74x9f(x)=8 x^{7}-4 x^{9}.

See Solution

Problem 23683

Calculate the average value of f(x)=cosxf(x)=-\cos x from π2-\frac{\pi}{2} to π2\frac{\pi}{2} and graph it.

See Solution

Problem 23684

Bestimme die allgemeine Stammfunktion von f(x)=8sin(x)+8xf(x)=8 \sin (x)+8 \sqrt{x}.

See Solution

Problem 23685

Find the derivative of the function h(x)=1ex9ln(t)dth(x)=\int_{1}^{e^{x}} 9 \ln (t) \, dt. What is h(x)h^{\prime}(x)?

See Solution

Problem 23686

Bestimme die Stammfunktion von f(x)=6x+4sin(x)f(x)=\frac{6}{\sqrt{x}}+4 \sin (x).

See Solution

Problem 23687

Evaluate the integral or state if it's impossible: x4x54dx\int x^{4} \sqrt{x^{5}-4} d x (Use CC for the constant.)

See Solution

Problem 23688

Evaluate the integral from 1 to 3: 13(1x26x3)dx\int_{1}^{3}\left(\frac{1}{x^{2}}-\frac{6}{x^{3}}\right) d x

See Solution

Problem 23689

Bestimme die allgemeine Stammfunktion von f(x)=57xf(x)=\frac{5}{7 \sqrt{x}}.

See Solution

Problem 23690

Berechne das Integral 02s(t)dt\int_{0}^{2} s(t) \, dt mit s(t)=16e0.5t14et2s(t) = 16e^{-0.5t} - 14e^{-t} - 2 und bestimme die prozentuale Abweichung vom Näherungswert.

See Solution

Problem 23691

Find the average value of f(x)=1x2+1f(x)=\frac{1}{x^{2}+1} over the interval [-1,1] and graph it with the average value indicated.

See Solution

Problem 23692

Bestimme die Stammfunktion von f(x)=x63+73xf(x)=\frac{x^{6}}{3}+\frac{7}{3} \sqrt{x}.

See Solution

Problem 23693

Calculate the indefinite integral and include the constant CC: 3x3+2x2+5xxdx\int \frac{3 x^{3}+2 x^{2}+5 x}{x} d x

See Solution

Problem 23694

Find the tangent line of y=f(x)y=f(x) at x=1x=1 for f(x)=1x4x+2x2f(x)=\frac{1}{x}-\frac{4}{\sqrt{x}}+\frac{2}{x^{2}}. The tangent line is y=y=\square.

See Solution

Problem 23695

Evaluate the integral from 1 to 3 of (1x26x3)\left(\frac{1}{x^{2}}-\frac{6}{x^{3}}\right). Result: 103\frac{10}{3}.

See Solution

Problem 23696

Evaluate the integral or state "IMPOSSIBLE": xx533dx\int x \sqrt[3]{x^{5}-3} d x. Use CC for the constant of integration.

See Solution

Problem 23697

Calculate the integral x(x5)2.7dx\int x(x-5)^{2.7} d x.

See Solution

Problem 23698

Hill's function models oxygen binding in hemoglobin: f(P)=Pnkn+Pnf(P)=\frac{P^{n}}{k^{n}+P^{n}}. Find f(P)f^{\prime}(P) and show f(P)>0f^{\prime}(P)>0 for P>0P>0.

See Solution

Problem 23699

Bestimme die allgemeine Stammfunktion von f(x)=x3445x3f(x)=\frac{x^{3}}{4}-\frac{4}{5 x^{3}}.

See Solution

Problem 23700

Bestimme die allgemeine Stammfunktion von f(x)=x69x58x72f(x)=\frac{x^{6}-9 x^{5}}{8 x-72}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord