Calculus

Problem 6001

Ergänzen Sie die Tabelle mit den Differenzenquotienten und Limes für die Funktionen f(x)=5x2f(x)=5x^{2}, f(x)=4x26f(x)=4x^{2}-6 und f(x)=((1+h)1)3(11)3hf(x)=\frac{((1+h)-1)^{3}-(1-1)^{3}}{h}. Zusatz: Umformen, sodass hh nicht im Nenner steht.

See Solution

Problem 6002

Berechne die 1. Ableitung von ff an x0x_0 als Grenzwert des Differenzenquotienten für: a) f(x)=0,25x2f(x)=0,25 x^{2}, x0=2x_{0}=2 b) f(x)=0,5x21f(x)=0,5 x^{2}-1, x0=1x_{0}=-1

See Solution

Problem 6003

Find the rate of change of f(t)=94t99t94f(t)=\frac{94 t}{99 t-94} after 1 hour. Answer in facts/hour, rounded to the nearest integer.

See Solution

Problem 6004

Ein Fallschirmspringer springt aus 4000 m. Berechne nach 10 s die Fallhöhe, die Höhe und die Zeit bis 1000 m erreicht werden.

See Solution

Problem 6005

Find limxsin(1+x4)1+x4\lim _{x \rightarrow \infty} \frac{\sin \left(1+x^{4}\right)}{1+x^{4}} and explain your reasoning.

See Solution

Problem 6006

Ein Fallschirmspringer springt aus 4000 m Höhe. Berechne nach 10 s die gefallene Strecke, Höhe und die Zeit bis 1000 m.

See Solution

Problem 6007

Ein Fallschirmspringer springt aus 4000 m4000 \mathrm{~m}. a) Strecke und Höhe nach 10s? b) Höhe h(t)h(t)? c) Zeit bis 1000 m1000 \mathrm{~m}?

See Solution

Problem 6008

A steel sheet (3.6 mm thick) has nitrogen at 120°C. Given diffusion coefficient 6.1×1011 m2/s6.1 \times 10^{-11} \mathrm{~m}^{2}/\mathrm{s}, find nitrogen flux.

See Solution

Problem 6009

Continuity Quiz: Determine the nature of the discontinuity for w(t)w(t) defined as w(t)={t2,t<42t,t>4w(t)=\left\{\begin{array}{ll} t^{2}, & t<4 \\ 2 t, & t>4 \end{array}\right. at t=4t=4.

See Solution

Problem 6010

Which function is continuous on 3x73 \leq x \leq 7? a. y=cos(x)y=\cos (x) b. y=ln(x3)y=\ln (x-3) c. y=x3x7y=\frac{\sqrt{x-3}}{x-7} d. y=5x29y=\frac{5}{x^{2}-9}

See Solution

Problem 6011

Find the vertical asymptotes of f(x)=2x26xx29f(x)=\frac{2 x^{2}-6 x}{x^{2}-9} and justify using limits.

See Solution

Problem 6012

Find the average rate of change of f(x)=3x3+2x2f(x)=3 x^{3}+2 x^{2} on the interval [1,3][1,3]. Choices: a. 2, b. 17, c. 5, d. 47.

See Solution

Problem 6013

Find aa such that the average rate of change of f(x)=6x2+7x5f(x)=6x^2+7x-5 from 00 to 1818 equals the instantaneous rate at x=ax=a. Options: a. 6, b. 19, c. 9, d. 8.

See Solution

Problem 6014

Leiten Sie die Funktion ff ab: a) f(x)=xsin(3x)f(x)=x \cdot \sin (3 x) b) f(x)=(2x1)2xf(x)=(2 x-1)^{2} \cdot \sqrt{x} c) f(x)=3x5cos(2x)f(x)=3 x^{5} \cdot \cos (2 x) d) f(x)=3xsin(4x1)f(x)=3 x \cdot \sin (4 x-1) e) f(x)=(43x)2sin(x)f(x)=(4-3 x)^{2} \cdot \sin (x) f) f(x)=0,5x24xf(x)=0,5 x^{2} \cdot \sqrt{4-x} g) f(x)=x2cos(1x)f(x)=x^{2} \cdot \cos (1-x) h) f(x)=2x+3x2f(x)=\sqrt{2 x+3} \cdot x^{2} i) f(x)=(5x+2)7cos(x)f(x)=(5 x+2)^{7} \cdot \cos (x)

See Solution

Problem 6015

Find points on the curve y=cot(x5)y=\cot \left(\frac{x}{5}\right) where the tangent is parallel to x+5y=18x+5y=18.

See Solution

Problem 6016

Find dydt\frac{d y}{d t} given y2(x+1)2=sin(xy)y^{2}-(x+1)^{2}=\sin (x y), dxdt=45\frac{d x}{d t}=-\frac{4}{5}, x=0x=0, y=1y=1.

See Solution

Problem 6017

Berechnen Sie das Integral: 21(2x3+3x3)dx\int_{-2}^{-1}\left(-2 x^{-3}+3 x^{-3}\right) d x

See Solution

Problem 6018

Find the 50th50^{\text{th}} derivative of the function f(x)=cos(2x)f(x) = \cos(2x).

See Solution

Problem 6019

Berechne das Integral: 1e(12x+0,5x1)dx\int_{1}^{e}\left(\frac{1}{2 x}+0,5 x^{-1}\right) d x

See Solution

Problem 6020

Find the derivative of the function f(x)=exf(x)=e^{-x}. What is f(x)f^{\prime}(x)?

See Solution

Problem 6021

A car's velocity increased from 8.00m/s8.00 \, m/s to 16.0m/s16.0 \, m/s in 5.40s5.40 \, s. Find the distance traveled in that time.

See Solution

Problem 6022

A pool is 10 ft wide and 15 ft long. Find VV in terms of hh and rates dVdt\frac{dV}{dt} and dhdt\frac{dh}{dt}. If hh rises at 110ftmin\frac{1}{10} \frac{\mathrm{ft}}{\min}, find dVdt\frac{dV}{dt}. If filled at 20ft3min20 \frac{\mathrm{ft}^3}{\mathrm{min}}, find dhdt\frac{dh}{dt}.

See Solution

Problem 6023

Calculate the limit: limt0(3t1+t3t)\lim _{t \rightarrow 0}\left(\frac{3}{t \sqrt{1+t}}-\frac{3}{t}\right).

See Solution

Problem 6024

Evaluate the limit: limt0(3t1+t3t)\lim _{t \rightarrow 0}\left(\frac{3}{t \sqrt{1+t}}-\frac{3}{t}\right).

See Solution

Problem 6025

Evaluate the limit:
limt0(3t1+t3t) \lim _{t \rightarrow 0}\left(\frac{3}{t \sqrt{1+t}}-\frac{3}{t}\right)
What is the result?

See Solution

Problem 6026

Graph the function g(x)g(x) where limx2g(x)=\lim _{x \rightarrow 2^{-}} g(x)=-\infty.

See Solution

Problem 6027

Find the average rate of change of f(x)=(3x2)(x+5)x2+6x+5f(x)=\frac{(3 x-2)(x+5)}{x^{2}+6 x+5} from x=6x=-6 to x=3x=-3. Is it 0.5?

See Solution

Problem 6028

A spacecraft with mass 2.8×104 kg2.8 \times 10^{4} \mathrm{~kg} moves at <0,26,0>km/s<0,26,0>\mathrm{km/s}. After firing thrusters for 21.5 s21.5 \mathrm{~s} with force <8×105,0,0>N<8 \times 10^{5}, 0,0>\mathrm{N}, where will it be in one hour?

See Solution

Problem 6029

At a clothing company, the cost function is C(x)=x27x+30xC(x)=\frac{x^{2}-7x+30}{x}.
a) Find the cost of 3000 jeans. b) Calculate the cost change rate at 3000 jeans.

See Solution

Problem 6030

Taylor Expand 100+3x+8x2+3x3+4x4100 + 3x + 8x^2 + 3x^3 + 4x^4 at x=2x = -2.

See Solution

Problem 6031

Expand 4x4+3x3+8x2+3x+1004 x^{4}+3 x^{3}+8 x^{2}+3 x+100 using Taylor series at x=2x=-2.

See Solution

Problem 6032

Find the instantaneous rate of change of f(x)f(x) at x=1x=1 using approximations. Justify your result. f(x)=15cos2x+4f(x)=\frac{1}{5} \cos 2 x+4

See Solution

Problem 6033

Find the derivative of the function f(x)=2ekx2f(x) = 2 e^{k - x^{2}}.

See Solution

Problem 6034

Find the function ff if f(x)=2f'''(x) = 2 and it has a saddle point at S(2,13)S(2, -\frac{1}{3}).

See Solution

Problem 6035

Find the second derivative of g(t)=(t3+1)2g(t)=(t^{3}+1)^{2}. What is g(t)g^{\prime \prime}(t)? Options: A. 4t24 t^{2} B. 12t(t3+1)+18t412 t (t^{3}+1)+18 t^{4} C. 6t2(t3+1)+4t26 t^{2} (t^{3}+1)+4 t^{2} D. 4t2+14 t^{2}+1 E. None.

See Solution

Problem 6036

Person A is 100 feet west of a runner moving north at 9 ft/s. After 10 seconds, find the rate of distance change in ft/s.

See Solution

Problem 6037

A balloon leaks at 50 cm3/s50 \mathrm{~cm}^{3} / \mathrm{s}. Find the radius change rate (in cm/s\mathrm{cm} / \mathrm{s}) when radius is 10 cm10 \mathrm{~cm}. Round to 0.000 place.

See Solution

Problem 6038

Water flows from a cone funnel (4m height, 8m radius) at 0.8 m3/min0.8 \mathrm{~m}^{3} / \mathrm{min}. Find the radius change rate when water height is 3 m3 \mathrm{~m}. Answer to 0.0000 decimal places.

See Solution

Problem 6039

Find the derivative of y=3cosxcotxy=3 \cos x \cot x. What is dydx\frac{d y}{d x}?

See Solution

Problem 6040

Find the derivative of the function y=5secx+3cscxy=5 \sec x+3 \csc x.

See Solution

Problem 6041

Find the derivative dydx\frac{d y}{d x} for the function y=cosx1+cosxy=\frac{\cos x}{1+\cos x}.

See Solution

Problem 6042

Find the derivative of f(x)=6tan(7x2)f(x)=6 \tan(7-x^{2}) with respect to xx.

See Solution

Problem 6043

Find the derivative of f(x)=cot(39x)f(x)=\cot (3-9 x) with respect to xx.

See Solution

Problem 6044

Evaluate the limit: limx(x25x+1x)=\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-5 x+1}-x\right)=

See Solution

Problem 6045

Evaluate the limit: limx6ex+3=\lim _{x \rightarrow \infty} \frac{6}{e^{x}+3}=

See Solution

Problem 6046

Calculate the limit: limx(x25x+1x)\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}-5 x+1}-x\right).

See Solution

Problem 6047

What would \29investedat3%continuousinterestin1623beworthin2000?Usetheformula29 invested at 3\% continuous interest in 1623 be worth in 2000? Use the formula A = Pe^{rt}$.

See Solution

Problem 6048

Find the limits: (a) limx6ex+3\lim _{x \rightarrow \infty} \frac{6}{e^{x}+3} and (b) limx6ex+3\lim _{x \rightarrow-\infty} \frac{6}{e^{x}+3}.

See Solution

Problem 6049

Find the derivative of h(s)=sin8s+cos7sh(s)=\sin ^{8} s+\cos ^{7} s with respect to ss.

See Solution

Problem 6050

Find the derivative of f(x)=cosx3cos9xf(x)=\frac{\cos x^{3}}{\cos ^{9} x} with respect to xx.

See Solution

Problem 6051

Find the derivative of f(x)=8csc(36x)f(x)=-8 \csc (3-6 x) with respect to xx.

See Solution

Problem 6052

Find the limit: limx0+(1x1x2+x)\lim _{x \rightarrow 0^{+}}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x^{2}+x}}\right).

See Solution

Problem 6053

Find the derivative of f(x)=cosx8cos7xf(x)=\frac{\cos x^{8}}{\cos ^{7} x} with respect to xx.

See Solution

Problem 6054

Investing P0\mathrm{P}_{0} at 6.9%6.9\% interest, find P(t)P(t), balance after 1 year for \$1500, and when it doubles.

See Solution

Problem 6055

Find the derivative of f(x)=cos2(6x24)f(x)=\cos^{2}(6x^{2}-4) with respect to xx.

See Solution

Problem 6056

Find the derivative yy^{\prime} for the function y=sec5(5x)y=\sec^{5}(5x).

See Solution

Problem 6057

Find the derivative of the function f(x)=7+xsinxf(x)=\sqrt{7+x \sin x}.

See Solution

Problem 6058

Find the derivative dydt\frac{d y}{d t} for y=sin(tan(5t6))y=\sin (\tan (5 t-6)).

See Solution

Problem 6059

Find the derivative of the function f(x)=9sinx2+9f(x)=9 \sin \sqrt{x^{2}+9}.

See Solution

Problem 6060

Find the derivative dd of the function y=e7ue7ue7u+e7uy=\frac{e^{7u}-e^{-7u}}{e^{7u}+e^{-7u}}.

See Solution

Problem 6061

Determine the discontinuity of the piecewise function g(x)={x3 if x<0ex if x>0g(x)=\left\{\begin{array}{ll}x^{3} & \text { if } x<0 \\ e^{x} & \text { if } x>0\end{array}\right..

See Solution

Problem 6062

Find the sum of the series: i=0(12i)\sum_{i=0}^{\infty}\left(\frac{1}{2^{i}}\right). Choose (a) 1, (b) 12\frac{1}{2}, (c) 14\frac{1}{4}, (d) 2.

See Solution

Problem 6063

Find the sum of the series 1+e1+e2+e3+1+e^{-1}+e^{-2}+e^{-3}+\ldots from the options: (a) 1+1c1+\frac{1}{c} (b) ee+1\frac{e}{e+1} (c) 11e1-\frac{1}{e} (d) ee1\frac{e}{e-1}.

See Solution

Problem 6064

Find the half-life of a substance with a decay rate of 8.9%8.9\% per day using the continuous exponential decay model.

See Solution

Problem 6065

Find the half-life of a radioactive substance with a decay rate of 8.9%8.9\% per day.

See Solution

Problem 6066

Find dzdt\frac{d z}{d t} given x2+y2+z2=9x^{2}+y^{2}+z^{2}=9, dxdt=4\frac{d x}{d t}=4, dydt=3\frac{d y}{d t}=3, at (2,2,1)(2,2,1).

See Solution

Problem 6067

A rectangle's length increases by 9 cm/s9 \mathrm{~cm/s} and width by 5 cm/s5 \mathrm{~cm/s}. Find area growth rate when length is 7 cm7 \mathrm{~cm} and width is 4 cm4 \mathrm{~cm}.

See Solution

Problem 6068

Set up a definite integral using the disk/washer method for the volume of the solid formed by rotating the region bounded by x=2yx=2\sqrt{y}, x=0x=0, y=9y=9, and the line x=7x=7.

See Solution

Problem 6069

Find the centripetal acceleration in terms of g\mathrm{g} for a stone rotated every 0.44s0.44 \mathrm{s} on a 1.14m1.14 \mathrm{m} rope.

See Solution

Problem 6070

Use Boyle's Law PV=CPV=C. Given V=300 cm3V=300 \mathrm{~cm}^{3}, P=100kPaP=100 \mathrm{kPa}, and dPdt=10kPa/min\frac{dP}{dt}=10 \mathrm{kPa/min}, find dVdt\frac{dV}{dt}.

See Solution

Problem 6071

Find centripetal acceleration as a multiple of gg for a plane at 1727 km/h1727 \mathrm{~km/h} on a curve with radius 8 km8 \mathrm{~km}.

See Solution

Problem 6072

Find the volume of the solid formed by rotating the area between y=x2y=x^{2} and y=2xy=2x about various lines.

See Solution

Problem 6073

Find the volume of the solid with a base under y=1x2y=1-x^{2} and the x-axis, with square cross sections perpendicular to x-axis.

See Solution

Problem 6074

Evaluate the limit: limx(1+4x)x3\lim _{x \rightarrow \infty}\left(1+\frac{4}{x}\right)^{\frac{x}{3}}. Use L'Hospital's rule if needed.

See Solution

Problem 6075

Evaluate the integral: (12x2+x4)dx\int (1 - 2x^{2} + x^{4}) \, dx

See Solution

Problem 6076

Evaluate the expression x23x3+x55x - \frac{2}{3} x^{3} + \frac{x^{5}}{5} from x=1x = -1 to x=1x = 1.

See Solution

Problem 6077

Find the volume of the solid with a base under y=1x2y=1-x^{2} and the xx-axis, with square cross sections.

See Solution

Problem 6078

f(x)f(x)g(x)g(x) 的原函数,哪项正确?A. f(x)dx=g(x)+c\int f(x) d x=g(x)+c B. g(x)dx=f(x)+c\int g(x) d x=f(x)+c C. f(x)dx=g(x)\int f(x) d x=g(x) D. g(x)dx=f(x)\int g(x) d x=f(x)

See Solution

Problem 6079

Find the discontinuity point of the piecewise function: f(x)={cosxif x0exif x>0f(x) = \begin{cases} \cos x & \text{if } x \leq 0 \\ e^{x} & \text{if } x > 0 \end{cases}.

See Solution

Problem 6080

Find the derivative of the equation 9xy+7x3+2y2=89xy + 7x^3 + 2y^2 = 8 with respect to xx.

See Solution

Problem 6081

Find the constant value of d2ydx2(dydx)4\frac{\frac{d^{2} y}{d x^{2}}}{\left(\frac{d y}{d x}\right)^{4}} for the curve defined by x=t3+1x=t^{3}+1 and y=t2+1y=t^{2}+1.

See Solution

Problem 6082

Calculate the partial derivative of 9xy+7x3+2y2=89xy + 7x^3 + 2y^2 = 8 with respect to yy.

See Solution

Problem 6083

In a snowball fight, if you throw one snowball at 6161^{\circ} with speed 11 m/s11 \mathrm{~m/s}, what angle should the second snowball be thrown at? Also, how many seconds after the first should it be thrown? Use g=9.8 m/s2g = 9.8 \mathrm{~m/s^2}.

See Solution

Problem 6084

Set up a definite integral for the volume of the solid formed by rotating the area between x=2yx=2\sqrt{y}, x=0x=0, y=9y=9 around x=7x=7.

See Solution

Problem 6085

Set up a definite integral using the disk/washer method for the volume of the solid formed by rotating the region bounded by x=2yx=2\sqrt{y}, x=0x=0, y=9y=9, and the line y=3y=-3.

See Solution

Problem 6086

Find the average rate of change of f(x)=7x25f(x)=7 x^{2}-5 from x=4x=4 to x=ax=a. Express your answer in terms of aa.

See Solution

Problem 6087

Between 2006-2016, patent applications NN grew by 3.9%3.9\% yearly.
a) Find N(t)=444,000e0.039tN(t)=444,000 e^{0.039 t}. b) Estimate NN in 2020. c) Estimate the growth rate in 2020.

See Solution

Problem 6088

已知函数 f(x)={13x3+mx2(x0,0m<1),ex1(x>0).f(x)=\left\{\begin{array}{l}\frac{1}{3} x^{3}+m x^{2}(x \leqslant 0,0 \leqslant m<1), \\ \mathrm{e}^{x-1}(x>0) .\end{array}\right. 求切线方程和极值及区间 [2,0][-2,0] 上的最值.

See Solution

Problem 6089

Find the one-sided limit: limx(1/2)+15x2tanπx\lim _{x \rightarrow(1 / 2)^{+}} 15 x^{2} \tan \pi x.

See Solution

Problem 6090

Prove that limx51x5=\lim _{x \rightarrow 5^{-}} \frac{1}{x-5}=-\infty using the εδ\varepsilon-\delta definition of limits.

See Solution

Problem 6091

A 10m ladder leans against a house. If its base moves away at 0.5m/s, find rates rr for x=6,8x=6, 8 and limit as xx approaches 10.
r=0.5x100x2 m/s r=\frac{0.5 x}{\sqrt{100-x^{2}}} \mathrm{~m/s}

See Solution

Problem 6092

Estimate the slope between the points (12,13)\left(-\frac{1}{2}, \frac{1}{3}\right) and (0.90,0)\left(0.90, 0\right).

See Solution

Problem 6093

Calculate the limit: limx1(1x11x+1)\lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{1}{x+1}\right).

See Solution

Problem 6094

Find the derivative of f(x)=x3+5x2+6f(x)=x^{3}+5 x^{2}+6 at x=5x=-5 using the alternative derivative form.

See Solution

Problem 6095

Find the derivative of f(x)=x3+5x2+6f(x) = x^{3} + 5x^{2} + 6 at x=c=5x = c = -5 using the alternative form of the derivative.

See Solution

Problem 6096

Find the function f(x)f(x) and the number cc given that the limit represents f(c)f^{\prime}(c):
f(x)=limΔx0[32(1+Δx)]1Δxf(x)=\lim _{\Delta x \rightarrow 0} \frac{[3-2(1+\Delta x)]-1}{\Delta x}

See Solution

Problem 6097

Find the tangent lines to f(x)=10xx2f(x)=10x - x^2 through (5,26)(5,26), one with positive slope and one with negative slope.

See Solution

Problem 6098

Find the derivative of f(x)=12e13x+2f(x)=\frac{1}{2} e^{\frac{1}{3} x+2} and simplify it.

See Solution

Problem 6099

Find the xx-values where the function f(x)=(x+2)2/3f(x)=(x+2)^{2 / 3} is differentiable. Use interval notation for your answer.

See Solution

Problem 6100

Find the derivative of f(x)=7x5f(x)=\sqrt{7x-5} and simplify your answer.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord