Calculus

Problem 33501

Find the derivative yy', where y=(lnx)lnxy=(\ln x)^{\ln x}.

See Solution

Problem 33502

Find the derivative of y=xsin(log7x)y=x \sin \left(\log _{7} x\right). What is y=y^{\prime}=?

See Solution

Problem 33503

Find the derivative yy', given y=3log8(log2t)y=3 \log _{8}(\log _{2} t).

See Solution

Problem 33504

Evaluate the integral from e2e^{2} to e3e^{3} of 1+ln(x)xln(x)dx\frac{1+\ln (x)}{x \ln (x)} \, dx. Options: 1ln(2)1-\ln(2), 1+ln(3)ln(2)1+\ln(3)-\ln(2), ln(3)ln(2)\ln(3)-\ln(2), 12ln(2)1-2\ln(2), none.

See Solution

Problem 33505

Find the derivative of y=xln(ln(x))y=x \ln (\ln (x)) at x=ex=e. What is the value? Choose from: ee, none, 2, 0, 1.

See Solution

Problem 33506

Find the derivative of y=xln(ln(x))y=x^{\ln (\ln (x))} at x=ex=e. What is the value? Options: none, e, 1, 0, e1e^{-1}.

See Solution

Problem 33507

Find yy^{\prime} if y=3log8(log2t)y=3 \log _{8}(\log _{2} t). Choose the correct derivative from the options.

See Solution

Problem 33508

Find the derivative yy', where y=(x+1)xy=(x+1)^{x}. Options include: (x+1)x(xx+1+ln(x+1))(x+1)^{x}\left(\frac{x}{x+1}+\ln (x+1)\right).

See Solution

Problem 33509

Find the derivative yy', where y=3log8(log2t)y=3 \log _{8}(\log _{2} t).

See Solution

Problem 33510

Find the derivative of y=xln(x)y=x^{\ln (x)} for x>0x>0. Choose the correct option from the list.

See Solution

Problem 33511

Evaluate the integral dxxlog10x\int \frac{d x}{x \log_{10} x}. Select the correct answer from the options given.

See Solution

Problem 33512

Find the derivative of y=(x+1)xy=(x+1)^{x}. What is y=y^{\prime}=?

See Solution

Problem 33513

Find the derivative yy^{\prime} of y=3log8(log2t)y=3 \log _{8}\left(\log _{2} t\right).

See Solution

Problem 33514

Find the derivative yy^{\prime} if y=log2(8tln2)y=\log _{2}(8 t^{\ln 2}). Choices: ln8t\frac{\ln 8}{t}, 3+lnt3+\ln t, tln2\frac{t}{\ln 2}, 1t\frac{1}{t}, none.

See Solution

Problem 33515

Calculate the integral from e2e^{2} to e3e^{3} of 1+ln(x)xln(x)\frac{1+\ln (x)}{x \ln (x)}. What is the result?

See Solution

Problem 33516

Find the derivative yy', where y=3log8(log2t)y=3 \log _{8}(\log _{2} t).

See Solution

Problem 33517

Find the derivative yy', where y=(x+1)xy=(x+1)^{x}. Options include: xx+1+ln(x+1)\frac{x}{x+1}+\ln (x+1), (x+1)xxx+1(x+1)^{x} \frac{x}{x+1}, none, (x+1)x(1x+1+ln(x+1))(x+1)^{x}\left(\frac{1}{x+1}+\ln (x+1)\right), (x+1)x(xx+1+ln(x+1))(x+1)^{x}\left(\frac{x}{x+1}+\ln (x+1)\right).

See Solution

Problem 33518

Find the derivative yy', where y=xsin(log7x)y=x \sin \left(\log _{7} x\right). Choose the correct option from the list.

See Solution

Problem 33519

Calculate the integral from 2 to 3 of xx(1+ln(x))x^{x}(1+\ln (x)). What is the result? Options: 5, none, 23, 1, 21.

See Solution

Problem 33520

Evaluate the integral 2log2(x1)(x1)dx\int \frac{2 \log _{2}(x-1)}{(x-1)} d x and choose the correct answer.

See Solution

Problem 33521

Evaluate the integral from 2 to e of 1+ln(x)xln(x)dx\frac{1+\ln (x)}{x \ln (x)} \, dx. Select the correct answer.

See Solution

Problem 33522

Evaluate the integral from 2 to e of 1+ln(x)xln(x)\frac{1+\ln (x)}{x \ln (x)} dx. What is the result?

See Solution

Problem 33523

Find yy' if y=(x+1)xy=(x+1)^{x}. Choose from:
1. (x+1)x(1x+1+ln(x+1))(x+1)^{x}\left(\frac{1}{x+1}+\ln (x+1)\right)
2. (x+1)x(xx+1+ln(x+1))(x+1)^{x}\left(\frac{x}{x+1}+\ln (x+1)\right)
3. none
4. xx+1+ln(x+1)\frac{x}{x+1}+\ln (x+1)
5. (x+1)xxx+1(x+1)^{x} \frac{x}{x+1}

See Solution

Problem 33524

Find the derivative of y=xln(x)y=x^{\ln (x)} for x>0x>0. Choose the correct option from the list provided.

See Solution

Problem 33525

Find the limits of the piecewise function f(x)={3x+4 if x<44x+17 if x>4f(x)=\left\{\begin{array}{lll}-\frac{3}{x+4} & \text { if } & x<-4 \\ 4 x+17 & \text { if } & x>-4\end{array}\right. at x=4x=-4.

See Solution

Problem 33526

Find the derivative yy^{\prime} of y=(x+1)xy=(x+1)^{x}. Choose from the options given.

See Solution

Problem 33527

Given 0anbn0 \leq a_{n} \leq b_{n} for n1n \geq 1, which statements about the convergence/divergence of an\sum a_{n} and bn\sum b_{n} are true?

See Solution

Problem 33528

Find the derivative of y=xln(ln(x))y=x \ln (\ln (x)) at x=ex=e. What is the value? Options: 2, e, none, 0, 1.

See Solution

Problem 33529

Integrate x2x(1+lnx)x^{2 x}(1+\ln x) with respect to xx. Choose the correct answer.

See Solution

Problem 33530

Evaluate the integral: dxxlog10x\int \frac{d x}{x \log _{10} x}. Choose the correct answer from the options provided.

See Solution

Problem 33531

Find the derivative yy', if y=(t)ty=(\sqrt{t})^{t}.

See Solution

Problem 33532

Find yy' if y=(t)ty=(\sqrt{t})^{t}. Choose one: 12t\frac{1}{2 \sqrt{t}}, none, lnt2+12\frac{\ln t}{2}+\frac{1}{2}, (t)t(lnt2+12)(\sqrt{t})^{t}\left(\frac{\ln t}{2}+\frac{1}{2}\right), t(t)t1t(\sqrt{t})^{t-1}.

See Solution

Problem 33533

Determine the convergence of these series: 1. n=12n+n44n+n2\sum_{n=1}^{\infty} \frac{2^{n}+n^{4}}{4^{n}+n^{2}}, 2. n=24n5n+n\sum_{n=2}^{\infty} \frac{4^{n}}{5^{n}+n}, 3. n=1n!3n\sum_{n=1}^{\infty} \frac{n !}{3^{n}}.

See Solution

Problem 33534

Determine which series converge:
1. n=1lnnen+2\sum_{n=1}^{\infty} \frac{\ln n}{e^{n}+2}
2. n=2sin2(n)n+n3/2\sum_{n=2}^{\infty} \frac{\sin ^{2}(n)}{n+n^{3 / 2}}
3. n=11n7/3\sum_{n=1}^{\infty} \frac{1}{n^{7 / 3}} Options: a. 2 and 3, b. 1 only, c. all, d. 2 only, e. 1 and 2, f. none, g. 1 and 3, h. 3 only.

See Solution

Problem 33535

Find the derivative of y=(lnx)lnxy=(\ln x)^{\ln x}. What is y=y^{\prime}=?

See Solution

Problem 33536

If y=3log8(log2t)y = 3 \log_{8}(\log_{2} t), find the derivative yy'.

See Solution

Problem 33537

Evaluate the integral x2x(1+lnx)dx\int x^{2 x}(1+\ln x) d x.

See Solution

Problem 33538

Calculate the integral from 2 to 3 of xx(1+ln(x))x^{x}(1+\ln (x)). What is the value? Options: 5, none, 23, 1, 21.

See Solution

Problem 33539

Evaluate the integral: dxx(log8x)2\int \frac{d x}{x\left(\log _{8} x\right)^{2}}

See Solution

Problem 33540

Calculate the integral from 2 to 3 of xx(1+ln(x))x^x(1+\ln(x)). What is the result? Options: 5, 21, none, 1, 23.

See Solution

Problem 33541

Differentiate the function f(x)=xln(x)f(x) = x^{\ln(x)} with respect to xx.

See Solution

Problem 33542

Determine if the series n=17+10cosnn4\sum_{n=1}^{\infty} \frac{7+10 \cos n}{n^{4}} converges or diverges.

See Solution

Problem 33543

Evaluate the integral from 1 to 2: 12xx(1+ln(x))dx=\int_{1}^{2} x^{x}(1+\ln (x)) d x=. Choose from: 0, 1, 2, 3, none.

See Solution

Problem 33544

Find the derivative of y=xln(ln(x))y=x^{\ln (\ln (x))} at x=ex=e. What is the value?

See Solution

Problem 33545

Find the derivative of y=xln(x)y=x^{\ln (x)} for x>0x>0. Select one:

See Solution

Problem 33546

Find the derivative yy^{\prime} if y=(lnx)lnxy=(\ln x)^{\ln x}.

See Solution

Problem 33547

Evaluate the integral: dxx(log8x)2\int \frac{d x}{x\left(\log _{8} x\right)^{2}}. Choose the correct answer.

See Solution

Problem 33548

Evaluate the integral: dxx(log8x)2\int \frac{d x}{x\left(\log _{8} x\right)^{2}}. Choose the correct answer.

See Solution

Problem 33549

Calculate the integral from 1 to 2 of the function xx(1+ln(x))x^{x}(1+\ln (x)).

See Solution

Problem 33550

Evaluate the integral: dxx(log8x)2\int \frac{d x}{x\left(\log _{8} x\right)^{2}}. Choose the correct answer from the options given.

See Solution

Problem 33551

Evaluate the limit: limx1x2+5x62x+2=\lim _{x \rightarrow 1} \frac{x^{2}+5 x-6}{-2 x+2}=

See Solution

Problem 33552

Evaluate the integral: dxxlog10x\int \frac{d x}{x \log_{10} x}. Choose the correct answer from the options given.

See Solution

Problem 33553

Find the derivative of y=sin(xx)y=\sin \left(x^{x}\right). What is y=y^{\prime}=?

See Solution

Problem 33554

Given 0anbn0 \leq a_{n} \leq b_{n}, determine which statement about the convergence of an\sum a_{n} and bn\sum b_{n} is true.

See Solution

Problem 33555

Find the derivative of y=xln(ln(x))y=x^{\ln (\ln (x))} at x=ex=e. What is the value? Options: ee, 0, 1, e1e^{-1}, none.

See Solution

Problem 33556

Find the derivative of the function y=xsinxy=x^{\sin x}. What is yy^{\prime}?

See Solution

Problem 33557

Given 0anbn0 \leq a_{n} \leq b_{n}, determine which statement is true about the series: a, b, c, or d.

See Solution

Problem 33558

Evaluate the integral: dxx(log8x)2\int \frac{d x}{x\left(\log _{8} x\right)^{2}}. Choose the correct answer from the options provided.

See Solution

Problem 33559

Find the derivative of y=xln(ln(x))y=x \ln (\ln (x)) at x=ex=e. What is the value? Options: 2, e, 0, 1, none.

See Solution

Problem 33560

Find the derivative of the function y=xsin(log7x)y=x \sin \left(\log _{7} x\right). What is yy^{\prime}?

See Solution

Problem 33561

Find the derivative yy' if y=tlog3(e(sint)(ln3))y=t \log _{3}(e^{(\sin t)(\ln 3)}).

See Solution

Problem 33562

Determine the convergence of the series n=1(lnn)nnn\sum_{n=1}^{\infty} \frac{(\ln n)^{n}}{n^{n}} using various tests.

See Solution

Problem 33563

Determine the convergence of these series: I. n=111+1n\sum_{n=1}^{\infty} \frac{1}{1+\frac{1}{n}}, II. n=21(lnn4)\sum_{n=2}^{\infty} \frac{1}{\left(\ln n^{4}\right)}, III. n=1nn2+1\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{2}+1}}.

See Solution

Problem 33564

Determine if the series n=11n3n\sum_{n=1}^{\infty} \frac{1}{n 3^{n}} converges or diverges using comparison tests.

See Solution

Problem 33565

Evaluate the integral from 2 to e of 1+ln(x)xln(x)dx\frac{1+\ln (x)}{x \ln (x)} dx. Choose the correct answer from the options.

See Solution

Problem 33566

Find the derivative yy^{\prime} of the function y=tlog3(e(sint)(ln3))y=t \log _{3}\left(e^{(\sin t)(\ln 3)}\right).

See Solution

Problem 33567

Find yy^{\prime} if y=(t)ty=(\sqrt{t})^{t}. Choose the correct option from: 1) 12t\frac{1}{2 \sqrt{t}}, 2) none, 3) lnt2+12\frac{\ln t}{2}+\frac{1}{2}, 4) (t)t(lnt2+12)(\sqrt{t})^{t}\left(\frac{\ln t}{2}+\frac{1}{2}\right), 5) t(t)t1t(\sqrt{t})^{t-1}.

See Solution

Problem 33568

Determine the convergence of the series n=15nn2+1\sum_{n=1}^{\infty} \frac{5 n}{n^{2}+1} using various tests.

See Solution

Problem 33569

Determine if the series n=1nn5n2\sum_{n=1}^{\infty} \frac{n^{n}}{5^{n^{2}}} converges or diverges.

See Solution

Problem 33570

Find the derivative of y=xsinxy=x^{\sin x}. What is y=y^{\prime}=? Choose from the given options.

See Solution

Problem 33571

Find the limit limnan+1an\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} for the series n=1(2n)!(n!)(n+1)!\sum_{n=1}^{\infty} \frac{(2 n) !}{(n !)(n+1) !}. Options: a. 2 b. 4 c. 0 d. 1 e. \infty

See Solution

Problem 33572

Find the derivative yy^{\prime} of y=log2(8tln2)y=\log_{2}(8 t^{\ln 2}). Select from options given.

See Solution

Problem 33573

Evaluate the integral: 2log2(x1)(x1)dx\int \frac{2 \log _{2}(x-1)}{(x-1)} d x. Choose the correct answer from the options.

See Solution

Problem 33574

Find the derivative of y=ln(secθ)+ln(cos2θ)y=\ln (\sec \theta)+\ln \left(\cos ^{2} \theta\right). What is it?

See Solution

Problem 33575

Find the derivative yy^{\prime} of the function y=xsinxy=x^{\sin x}.

See Solution

Problem 33576

Find the derivative yy^{\prime} if y=3log8(log2t)y=3 \log _{8}\left(\log _{2} t\right).

See Solution

Problem 33577

Find the derivative yy', given y=3log8(log2t)y=3 \log _{8}(\log _{2} t).

See Solution

Problem 33578

Determine the convergence of the series n=21n21\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^{2}-1}} using comparison tests.

See Solution

Problem 33579

Evaluate the integral from 2 to e of 1+ln(x)xln(x)dx\frac{1+\ln (x)}{x \ln (x)} dx and choose the correct answer.

See Solution

Problem 33580

Find the limit limnan+1an\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} for the series n=1312nn2+1\sum_{n=1}^{\infty} \frac{3^{1-2 n}}{n^{2}+1}. Choices: a. \infty, b. 13\frac{1}{3}, c. 9, d. 3, e. 19\frac{1}{9}.

See Solution

Problem 33581

Determine if the series n=15nn2+1\sum_{n=1}^{\infty} \frac{5 n}{n^{2}+1} converges or diverges using comparison tests.

See Solution

Problem 33582

Find the integral of dxx(log8x)2\frac{d x}{x\left(\log _{8} x\right)^{2}}. Choose the correct answer.

See Solution

Problem 33583

Find the derivative of y=sin(xx)y=\sin \left(x^{x}\right): what is yy^{\prime}? Choose from the options.

See Solution

Problem 33584

Find the derivative yy^{\prime} of y=xsin(log7x)y=x \sin \left(\log _{7} x\right).

See Solution

Problem 33585

Find the derivative of y=xsinxy=x^{\sin x}, which is y=y^{\prime}=. Choose the correct option from the list provided.

See Solution

Problem 33586

Find the derivative yy', where y=(x+1)xy=(x+1)^{x}. Choose the correct expression for yy'.

See Solution

Problem 33587

Calculate the integral: 1e31+ln(x)xln(x)dx\int_{1}^{e^{3}} \frac{1+\ln (x)}{x \ln (x)} d x

See Solution

Problem 33588

Evaluate the integral 12xx(1+ln(x))dx=\int_{1}^{2} x^{x}(1+\ln (x)) d x=: Select one 0, 20, none, 3, 10.

See Solution

Problem 33589

Determine which series converge:
1. n=1lnnen+2\sum_{n=1}^{\infty} \frac{\ln n}{e^{n}+2}
2. n=2sin2(n)n+n3/2\sum_{n=2}^{\infty} \frac{\sin^2(n)}{n+n^{3/2}}
3. n=11n7/3\sum_{n=1}^{\infty} \frac{1}{n^{7/3}} Options: a. I and III, b. I only, c. None, d. all, e. III only, f. III and II, g. I and II, h. II only.

See Solution

Problem 33590

Find the derivative yy^{\prime} of y=(x+1)xy=(x+1)^{x}. Options include:
1. xx+1+ln(x+1)\frac{x}{x+1}+\ln (x+1)
2. (x+1)x(xx+1+ln(x+1))(x+1)^{x}\left(\frac{x}{x+1}+\ln (x+1)\right)
3. none
4. (x+1)xxx+1(x+1)^{x} \frac{x}{x+1}
5. (x+1)x(1x+1+ln(x+1))(x+1)^{x}\left(\frac{1}{x+1}+\ln (x+1)\right)

See Solution

Problem 33591

If 0anbn0 \leq a_{n} \leq b_{n}, which statements about the convergence of an\sum a_{n} and bn\sum b_{n} are true?

See Solution

Problem 33592

Find the limit as xx approaches 8 for the expression 99.

See Solution

Problem 33593

Calculate the integral from 2 to 3 of xx(1+ln(x))x^{x}(1+\ln (x)). What is the result? Options: 1, 23, 5, 21, none.

See Solution

Problem 33594

Find the derivative of f(x)=9x+11f(x)=9x+11 and calculate f(2)f'(-2).

See Solution

Problem 33595

Determine the convergence of the series n=1(lnn)nnn\sum_{n=1}^{\infty} \frac{(\ln n)^{n}}{n^{n}} using various tests.

See Solution

Problem 33596

Evaluate the limit as zz approaches -3 for the expression 2z56z2 z^{5}-6 z.

See Solution

Problem 33597

Find the derivative yy', if y=sin(xx)y=\sin(x^x). Choose from the options provided.

See Solution

Problem 33598

Find the derivative of y=xsinxy=x^{\sin x}. What is y=y^{\prime}=?

See Solution

Problem 33599

Determine the convergence or divergence of the series n=1n+1n3+6n+3\sum_{n=1}^{\infty} \frac{n+1}{n^{3}+6 n+3} using limit comparison tests.

See Solution

Problem 33600

Find the tangent line equation for y=4sinxy=4 \sin x at (π6,2)\left(\frac{\pi}{6}, 2\right) in the form y=mx+by=m x+b.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord