Calculus

Problem 4101

Find A(0)A^{\prime}(0) for A=fgA=f \cdot g given f(0)=6f(0)=6, g(0)=8g(0)=-8, f(0)=1f^{\prime}(0)=1, g(0)=13g^{\prime}(0)=\frac{1}{3}. A. 0 B. -6 C. 103\frac{10}{3} D. 13\frac{1}{3}

See Solution

Problem 4102

Find the derivative of the function defined by r4+s4=Qr^{4}+s^{4}=Q as ddsr=A(sr)a+B(sr)b+C\frac{d}{d s} r=A\left(\frac{s}{r}\right)^{a}+B(s \cdot r)^{b}+C. Determine coefficients AA, aa, BB, bb, and CC.

See Solution

Problem 4103

Find A(2)A^{\prime}(2) for A=(gf)A=\left(\frac{g}{f}\right) using values from the table provided. Choices: A. 23 B. 2364-\frac{23}{64} C. 2364\frac{23}{64} D. -23

See Solution

Problem 4104

Find the derivative of yy from the equation 4x3+8xy4y2=1284 x^{3}+8 x y-4 y^{2}=128 and identify coefficients aa to mm.

See Solution

Problem 4105

Find the derivative of the function defined by 2x4+5xy4y3=1692 x^{4}+5 x y-4 y^{3}=169. Identify coefficients in the expression for ddxy\frac{d}{d x} y.

See Solution

Problem 4106

Find A(2)A^{\prime}(-2) if A=g(x)A=\sqrt{g(x)} and use the values from the table for gg and gg^{\prime}.

See Solution

Problem 4107

Find A(2)A^{\prime}(-2) if A=g(x)A=\sqrt{g(x)} and use values from the table for gg and its derivative.

See Solution

Problem 4108

Find z(1)z(1), z(1)z'(1), z(1)z''(1), and x(3)x'(3) for the equation x3z4=81x^{-3} z^4 = 81. Round to two digits.

See Solution

Problem 4109

Bestimmen Sie die Grenzwerte für die folgenden Ausdrücke: a) limn2n12n\lim _{n \rightarrow \infty} \frac{2^{n}-1}{2^{n}} b) limn2n12n1\lim _{n \rightarrow \infty} \frac{2^{n}-1}{2^{n-1}} c) limn2n1+4n\lim _{n \rightarrow \infty} \frac{2^{n}}{1+4^{n}} d) limn2n3n2n+3n\lim _{n \rightarrow \infty} \frac{2^{n}-3^{n}}{2^{n}+3^{n}} e) limn2n+3n+123n\lim _{n \rightarrow \infty} \frac{2^{n}+3^{n+1}}{2 \cdot 3^{n}}

See Solution

Problem 4110

Find the average rate of change AV=s(1)s(0.5)10.5A V=\frac{s(1)-s(0.5)}{1-0.5} for s(t)=6416(t1)2s(t)=64-16(t-1)^{2}. What are its units and geometric meaning?

See Solution

Problem 4111

Find three positive numbers that sum to 200 and maximize their product using Lagrange multipliers.

See Solution

Problem 4112

Maximize the product of three positive numbers that sum to 200 using Lagrange multipliers.

See Solution

Problem 4113

Find the derivative of y=3x3+5x21y=-3 x^{3}+5 x^{2}-1 using first principles.

See Solution

Problem 4114

Bestimme die möglichen Extremstellen der Funktion f(x)=14x416x3+7x2f(x)=-\frac{1}{4} x^{4}-\frac{1}{6} x^{3}+7 x^{2}.

See Solution

Problem 4115

Evaluate the double integral 023y26y2yy23ydxdy\int_{0}^{2} \int_{3 y^{2}-6 y}^{2 y-y^{2}} 3 y \, dx \, dy.

See Solution

Problem 4116

Find the integral x5+x1x4x3x\int \frac{x^{5}+x-1}{x^{4}-x^{3}} \partial x using partial fractions.

See Solution

Problem 4117

Bestimmen Sie die Tangenten- und Normalengleichung von f(x)=12x2f(x)=\frac{1}{2} x^{2} am Punkt (1f(1))(1 \mid f(1)) und den Steigungswinkel.

See Solution

Problem 4118

Bestimmen Sie die ersten beiden Ableitungen von f(x)=x+1f(x) = \sqrt{x} + 1.

See Solution

Problem 4119

Berechne die ersten zwei Ableitungen von f(x)=x2exf(x)=x^{2} \cdot e^{x}.

See Solution

Problem 4120

Bestimmen Sie die Ableitung von f(x)=e2x+3f(x) = e^{2x + 3} mit der Kettenregel.

See Solution

Problem 4121

Untersuche die Funktion f(x)=14x4+4f(x)=\frac{1}{4} x^{4}+4 auf Extrem- und Sattelpunkte mittels erster und zweiter Ableitung.

See Solution

Problem 4122

Berechnen Sie die Integrale: a) 13(x+1)dx\int_{1}^{3}(x+1) d x, b) 22(4x2)dx\int_{-2}^{2}(4-x^{2}) d x, e) 04(4x)dx\int_{0}^{4}(4-x) d x, f) 13(0,5x1)2dx\int_{1}^{3}(0,5 x-1)^{2} d x.

See Solution

Problem 4123

Find where the gradient is zero on the curve y=(n2)2(2n+3)y=(n-2)^{2}(2n+3).

See Solution

Problem 4124

Berechnen Sie das bestimmte Integral 3(x+1)dx\int^{3}(x+1) d x.

See Solution

Problem 4125

Bestimme die Steigung von f\mathrm{f} an x0\mathrm{x}_{0}: a) f(x)=12x22f(x)=\frac{1}{2} x^{2}-2, x0=2x_{0}=2; b) f(x)=42xf(x)=4-2 x, x0=3x_{0}=3.

See Solution

Problem 4126

Find the derivative of f(x)=18(12x2)7f(x)=\frac{1}{8} \cdot\left(\frac{1}{2}-x^{2}\right)^{7}.

See Solution

Problem 4127

Find the derivative of y=7x333y=\sqrt[3]{7 x^{3}-3} using only positive, negative, and fractional exponents.

See Solution

Problem 4128

Find the derivative of g(t)=2(t42)1/2g(t)=\frac{2}{(t^{4}-2)^{1/2}} using positive, negative, and fractional exponents.

See Solution

Problem 4129

Find the derivative of g(t)=7(t35)1/2g(t)=\frac{7}{(t^{3}-5)^{1/2}} using positive, negative, and fractional exponents.

See Solution

Problem 4130

Find h(7)h^{\prime}(7) if f(7)=9f(7)=9 and f(7)=5f^{\prime}(7)=5 for h(x)=(f(x))3h(x)=(f(x))^{3}.

See Solution

Problem 4131

Find the population change rate in 8 years for P(t)=20(65+5t)21400tP(t)=20(65+5t)^{2}-1400t.

See Solution

Problem 4132

Find dydx\frac{d y}{d x} at x=2x=2 for y=u32u+8y=u^{3}-2 u+8 with u=5x2+6x+8u=5 x^{2}+6 x+8.

See Solution

Problem 4133

Find the derivative of g(x)=8x3x2g(x)=\frac{-8 x}{3 x-2} using the Product or Quotient Rule.

See Solution

Problem 4134

Find the derivative of f(x)=x5(5x2+5)f(x)=x^{5}(5x^{2}+5) using the Product or Quotient Rule.

See Solution

Problem 4135

Find the derivative of f(x)=(5x+5)(4x210)f(x)=(5x+5)\left(-4x^{-2}-10\right) using the Product or Quotient Rule.

See Solution

Problem 4136

Find the marginal revenue for the demand function D(x)=1713x+10D(x)=\frac{171}{3 x+10} at x=5x=5. Round to the nearest cent.

See Solution

Problem 4137

Find the derivative of h(x)=x12f(x)h(x) = x^{12} f(x), using FF for f(x)f'(x). What is h(x)h'(x)?

See Solution

Problem 4138

Calculate the derivative h(2)h^{\prime}(2) for h(x)=xf(x)+4g(x)h(x)=x f(x)+4 g(x) using values from the given table.

See Solution

Problem 4139

Find the derivative h(x)h'(x) of the function h(x)=f(x)g(x)3h(x) = \frac{f(x) g(x)}{3}, using FF for ff' and GG for gg'.

See Solution

Problem 4140

Find the rate of change of force F=GmMd2F=\frac{G m M}{d^{2}} with respect to distance dd and evaluate for G=6.67×1011G=6.67 \times 10^{-11}, m=M=100m=M=100 kg, d=25d=25 m. Answer in scientific notation.

See Solution

Problem 4141

Find the rate of change of force FF with G=6.67×1011Nm2/kg2G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} for 100 kg bodies 25 m apart. Answer in scientific notation, 2 decimal places.

See Solution

Problem 4142

Find the line equation through point P(6,3)P(6,-3) that is tangent to f(x)=12x1f(x)=\frac{12}{x-1} for x>1x>1.

See Solution

Problem 4143

Find the tangent line equation for f(x)=3x3+3x2+2x+5f(x)=3 x^{3}+3 x^{2}+2 x+5 at x=1x=1. y=y=

See Solution

Problem 4144

Find the line's equation that passes through P(6,3)P(6,-3) and is tangent to f(x)=12x1f(x)=\frac{12}{x-1} for x>1x>1.

See Solution

Problem 4145

Calculate the integral 220.25x3dx\int_{-2}^{2} 0.25 x^{3} \, dx.

See Solution

Problem 4146

Find the line equation through point P(6,3)P(6,-3) that is tangent to f(x)=12x1f(x)=\frac{12}{x-1} for x>1x>1.

See Solution

Problem 4147

Find f(0)f^{\prime}(0) for f(x)=x22xf(x)=x^{2}-2x, then graph f(x)f(x) and its tangent line at x=0x=0.

See Solution

Problem 4148

Calculate the integral: 22(4x2)dx\int_{-2}^{2}\left(4-x^{2}\right) d x

See Solution

Problem 4149

Berechnen Sie das Integral 14(3x24x+1)dx\int_{-1}^{4}\left(3 x^{2}-4 x+1\right) d x.

See Solution

Problem 4150

Find the derivative of f(x)=3x(2x)f(x)=3x(2-x).

See Solution

Problem 4151

Find dydx\frac{d y}{d x} for x3xy+y4=37x^{3}-x y+y^{4}=37 and the tangent line at (3,2)(3,2).

See Solution

Problem 4152

Berechnen Sie die Integrale: a) 124x3dx\int_{1}^{2} 4 x^{3} dx b) 11(9x21)dx\int_{-1}^{1}(9 x^{2}-1) dx

See Solution

Problem 4153

A ball dropped from a building takes 4 s to hit the ground. What is the height of the building? Use h=12gt2h = \frac{1}{2} g t^2.

See Solution

Problem 4154

Trova il valore di a tale che limx0ln(3x)ln3ax=16\lim _{x \rightarrow 0} \frac{\ln (3-x)-\ln 3}{a x}=-\frac{1}{6}.

See Solution

Problem 4155

Find the derivative of f(x)=4(2x)2f(x)=\frac{4}{(2-x)^{2}}.

See Solution

Problem 4156

Wachstumsgeschwindigkeit eines Baumes: a) Was bedeutet 1050v(t)dt\int_{10}^{50} v(t) d t? Berechne das Integral. b) Höhe eines 10 Jahre alten Baumes nach 10 Jahren?

See Solution

Problem 4157

Find dydx\frac{d y}{d x} for x3xy+y4=37x^{3}-x y+y^{4}=37 and the tangent line at (3,2)(3,2). Show your work.

See Solution

Problem 4158

Find the limit: limx01cos22xxsinx\lim _{x \rightarrow 0} \frac{1-\cos ^{2} 2 x}{x \sin x}

See Solution

Problem 4159

Find z(1)z(1), z(1)z'(1), z(1)z''(1), and x(7)x'(7) for the function defined by x4z2=49x^{-4} \cdot z^{2}=49. Round to two digits.

See Solution

Problem 4160

Find the derivative of f(x)=sin(2x)+4cos(3x)+2tan(5x)f(x)=\sin (2 x)+4 \cos (3 x)+2 \tan (5 x).

See Solution

Problem 4161

Find the derivative of yy from the equation 4x3+6xy7y3=2354 x^{3}+6 x y-7 y^{3}=235 and identify coefficients aa to mm.

See Solution

Problem 4162

Find the derivative dkdl\frac{dk}{dl} from k9+l9=Wk^9 + l^9 = W and express it as ddlk=A(kl)a+B(kl)b+C\frac{d}{dl} k = A\left(\frac{k}{l}\right)^{a}+B(k \cdot l)^{b}+C. Determine coefficients AA, aa, BB, bb, and CC.

See Solution

Problem 4163

Find z(1)z(1), z(1)z'(1), z(1)z''(1), and x(3)x'(3) for the function defined by x2z3=27x^{-2} \cdot z^{3}=27. Round to two digits.

See Solution

Problem 4164

Berechnen Sie die Flächeninhalte zwischen den Funktionen in den angegebenen Intervallen: a) f(x)=x3,g(x)=x,I=[2,5]f(x)=x^{3}, g(x)=x, I=[-2, 5]; b) f(x)=x3+x,g(x)=x2+1,I=[0,2]f(x)=x^{3}+x, g(x)=x^{2}+1, I=[0, 2]; c) f(x)=ex,g(x)=x,I=[0,ln2]f(x)=e^{x}, g(x)=x, I=[0, \ln 2]; d) f(x)=12sin(x),g(x)=cos(x),I=[0,π]f(x)=\frac{1}{2} \sin (x), g(x)=-\cos (x), I=[0, \pi]; e) f(x)=1x2,g(x)=174x2,I=[1,3]f(x)=\frac{1}{x^{2}}, g(x)=\frac{17}{4}-x^{2}, I=[1, 3]; f) f(x)=x+1,g(x)=ex,I=[1,1]f(x)=x+1, g(x)=e^{-x}, I=[-1, 1].

See Solution

Problem 4165

Evaluate the integral: 2x25x264dx\int \frac{2}{x \sqrt{25 x^{2}-64}} d x

See Solution

Problem 4166

Find the limit as xx approaches -\infty: limx9x15x3+15x15\lim _{x \rightarrow-\infty} \frac{9 x-15}{x^{3}+15 x-15}.

See Solution

Problem 4167

Find first and second order approximations of f(x)=9x5f(x)=9 x^{5} around x0=1x_{0}=-1. Determine coefficients aa, bb, and cc.

See Solution

Problem 4168

Bestimme die Stellen, an denen die Funktion f(x)=x3+52x2+1f(x)=x^{3}+\frac{5}{2} x^{2}+1 eine horizontale Tangente (mt=0m_{t}=0) hat.

See Solution

Problem 4169

Find the marginal cost function for C(x)=170+5.3x0.01x2C(x)=170+5.3 x-0.01 x^{2}. What is C(x)=?C^{\prime}(x)=?

See Solution

Problem 4170

Find the marginal revenue function for R(x)=x(260.04x)R(x)=x(26-0.04 x). What is R(x)R^{\prime}(x)?

See Solution

Problem 4171

Set up an integral for the arc length of y=x5y=x^{5} from x=2x=2 to x=3x=3. Do not evaluate it.

See Solution

Problem 4172

Find x^0\hat{x}_{0} and x~0\tilde{x}_{0} where L(x)=8x+15L(x)=8x+15 approximates f(x)=9x2+26x+24f(x)=9x^2+26x+24 and g(x)=5ln(5x)17x+20g(x)=5\ln(5x)-17x+20.

See Solution

Problem 4173

Berechnen Sie die ersten 2 Ableitungen der Funktion f(t)=5+20te0,2tf(t)=5+20 t \cdot e^{-0,2 t} zur Medikamenteneinstellung.

See Solution

Problem 4174

Set up an integral for the surface area of y=x5y=x^{5} from x=2x=2 to x=3x=3 when revolved around the x-axis.

See Solution

Problem 4175

Find the limit: limx2+x2+5x+6x24\lim _{x \rightarrow 2^{+}} \frac{x^{2}+5 x+6}{x^{2}-4}

See Solution

Problem 4176

Find the linear approximation for f(x)=xmf(x)=x^{m} near x0=1x_{0}=1. Use it to estimate (a) 0.98260.98^{26} and (b) 1.086\sqrt[6]{1.08}. Round to two digits.

See Solution

Problem 4177

Welche Stammfunktion von f(x)=x2f(x)=x^{2} verläuft durch den Punkt P(1,1)P(1, 1)?

See Solution

Problem 4178

Sketch the area between y=e2xy=e^{2 x}, y=1xy=1-x, x=1x=-1, and x=1x=1, then find the exact area without rounding.

See Solution

Problem 4179

Gegeben ist die Funktion f(t)=5+20te0,2tf(t)=5+20 t \cdot e^{-0,2 t}.
1. Berechne die ersten 2 Ableitungen f(t)f'(t) und f(t)f''(t).
2. Bestimme die Anfangskonzentration.
3. Finde den Zeitraum, in dem die Konzentration 10mg10 \mathrm{mg}/L erreicht.
4. Zeige, dass die Konzentration langfristig bei 5mg5 \mathrm{mg}/L stabilisiert.
5. Berechne Zeitpunkt und Höhe der maximalen Konzentration.
6. Zeige, dass die größte Abnahme der Konzentration nach 10 Stunden erfolgt.
7. Bestimme die Stunde, in der die Konzentration um 1mg1 \mathrm{mg} abnimmt.
8. Finde die Konzentrationsveränderungsrate nach 2 Stunden.
9. Zeige, dass die Zunahme der Konzentration bis zum Maximum abnimmt.

See Solution

Problem 4180

Calculate the integral: 3sin(3x)dx\int 3 \cdot \sin (3 x) \, dx

See Solution

Problem 4181

Bestimme die Stammfunktion von f(x)=x2f(x)=x^{2}, die durch P(11)P(1 \mid 1) geht. Wo schneidet f(x)=1x2f(x)=1-x^{2} die yy-Achse?

See Solution

Problem 4182

Finde die Stammfunktion von f(x)=1x2f(x)=1-x^{2}, die die yy-Achse bei y=4y=4 schneidet.

See Solution

Problem 4183

Find the volume when the area between y=2xy=2x, x=0x=0, and y=4y=4 is rotated around the xx-axis.

See Solution

Problem 4184

Gegeben ist die Funktion f(t)=5+20te0,2tf(t) = 5+20t \cdot e^{-0,2t}.
1. Berechne die ersten 2 Ableitungen von ff.
2. Bestimme die Anfangskonzentration.
3. Bestimme den Zeitraum, in dem die Konzentration 10mg10 \mathrm{mg}/L erreicht.
4. Zeige, dass die Konzentration langfristig bei 5 mg/L bleibt.
5. Berechne Zeitpunkt und Menge der höchsten Konzentration.
6. Nachweis: stärkste Abnahme 10 Stunden nach Einnahme.
7. Bestimme die Stunde, in der die Konzentration um 1mg1 \mathrm{mg} abnimmt.
8. Berechne die Konzentrationsrate 2 Stunden nach Einnahme.
9. Zeige, dass die Zunahme bis zum Maximum abnimmt.

See Solution

Problem 4185

Find the limit: limx2x3+3x24x24 \lim _{x \rightarrow-2} \frac{x^{3}+3 x^{2}-4}{x^{2}-4} using long division.

See Solution

Problem 4186

Finde die Stammfunktion von f(x)=2+xf(x)=2+x, die bei x=1x=1 eine Nullstelle hat.

See Solution

Problem 4187

Total cost for xx frames is C(x)=70,000+800xC(x)=70,000+800 x. Find average cost for 500 frames, marginal cost at 500, and estimate for 501 frames.

See Solution

Problem 4188

Find dydx\frac{d y}{d x} for x3xy+y4=37x^{3}-x y+y^{4}=37 and the tangent line at (3,2)(3,2). Show work using implicit differentiation.

See Solution

Problem 4189

Find the xx-coordinates where the tangent line to f(x)=x2+10x+26f(x)=\sqrt{x^{2}+10 x+26} is horizontal.

See Solution

Problem 4190

Find the x\mathrm{x}-coordinates where the tangent line to f(x)=x2+10x+26f(x)=\sqrt{x^{2}+10 x+26} is horizontal.

See Solution

Problem 4191

Find limx4f(x)\lim_{x \to 4} f(x) for the piecewise function f(x)={2x,x>4;5,x=4;x28,x<4}f(x)=\{2x, x>4; 5, x=4; x^2-8, x<4\}.

See Solution

Problem 4192

Find the integral for the volume of the solid formed by revolving the region bounded by y=x,y=x+4,x=0y=\sqrt{x}, y=x+4, x=0, and x=1x=1 around x=2x=2. Specify disk or shell method. No evaluation needed.

See Solution

Problem 4193

Find the integral of the function x+3x2x + \frac{3}{x^{2}}.

See Solution

Problem 4194

Determine if these functions are continuous and identify any discontinuities:
a. f(x)={5xx<27x=2x25x>2f(x)=\left\{\begin{array}{cc}5-x & x<-2 \\ 7 & x=-2 \\ x^{2}-5 & x>-2\end{array}\right. b. f(x)={x2, if x<1x+2, if x>1f(x)=\left\{\begin{array}{cc}x^{2}, & \text { if } x<-1 \\ x+2, & \text { if } x>-1\end{array}\right. c. f(x)={5+x,x<14x,1<x<02x,0x24xx3,x>2f(x)=\left\{\begin{array}{lr}5+x, & x<-1 \\ 4 x, & -1<x<0 \\ 2 x, & 0 \leq x \leq 2 \\ \frac{4 x}{x-3}, & x>2\end{array}\right.

See Solution

Problem 4195

A jolly jumper with a 10 kg10 \mathrm{~kg} baby stretches a spring by 0.30 m0.30 \mathrm{~m}. Find the speed at equilibrium after an extra 0.45 m0.45 \mathrm{~m} drop.

See Solution

Problem 4196

Calculate the integral of the function exex+2e^{x} e^{x+2}.

See Solution

Problem 4197

Find the volume of the solid formed by rotating the area between the xx-axis and y=11+x2y=\frac{1}{1+x^{2}}, x=0x=0, x=8x=8 around the yy-axis.

See Solution

Problem 4198

Find the volume when the area between y=5x3y=5 x^{3}, y=0y=0, and x=3x=3 is rotated around the yy-axis.

See Solution

Problem 4199

Calculate the integral: 4exdx\int \frac{4}{e^{x}} d x

See Solution

Problem 4200

Estimate y(1)y(1) using Euler's method with step size 0.2 for y=x2y12y2y^{\prime}=x^{2} y-\frac{1}{2} y^{2}, y(0)=1y(0)=1.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord