Calculus

Problem 17501

Calculate the average value fave f_{\text {ave }} of the function f(x)=3x2+4xf(x)=3 x^{2}+4 x over the interval [1,5][-1,5].

See Solution

Problem 17502

Quelle est la forme de la solution particulière ypy_{p} pour l'équation y(n)+an1y(n1)++a0y=4xe2xcos(3x)y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=4 x e^{2 x} \cos (3 x)?

See Solution

Problem 17503

Calculate the average value gave g_{\text {ave }} of the function g(t)=31+t2g(t)=\frac{3}{1+t^{2}} over the interval [0,5][0,5].

See Solution

Problem 17504

Calculate the average value haveh_{\text{ave}} of the function h(x)=7cos4(x)sin(x)h(x)=7 \cos^{4}(x) \sin(x) over the interval [0,π][0, \pi].

See Solution

Problem 17505

Evaluate the integral: sin(28x)1+cos2(28x)dx\int \frac{\sin (28 x)}{1+\cos ^{2}(28 x)} d x (Use CC for the constant).

See Solution

Problem 17506

Déterminez le domaine de la fonction f(x,y)=ln(2x2+3y2)f(x, y)=\ln(2x^{2}+3y^{2}).

See Solution

Problem 17507

Trouver la forme de la solution particulière ypy_{p} pour l'équation y(n)+an1y(n1)++a0y=r(x)y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=r(x) avec r(x)=4xe2xcos(3x)r(x)=4 x e^{2 x} \cos (3 x).

See Solution

Problem 17508

Trouver la forme de la solution particulière ypy_{p} pour l'équation y(n)+an1y(n1)++a0y=r(x)y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=r(x).

See Solution

Problem 17509

Evaluate the integral: 016x1+5xdx\int_{0}^{16} \frac{x}{\sqrt{1+5 x}} d x

See Solution

Problem 17510

Équation différentielle avec polynôme p(λ)=(λ1)(λ+1)2(λ2+9)p(\lambda)=(\lambda-1)(\lambda+1)^{2}(\lambda^{2}+9), trouver ypy_{p}.

See Solution

Problem 17511

Trouvez α\alpha, β\beta, C1C_{1} et C2C_{2} pour que y=eαx(C1cos(βx)+C2sin(βx))y=e^{\alpha x}(C_{1} \cos (\beta x)+C_{2} \sin (\beta x)) soit solution de y+16y=0y^{\prime \prime}+16 y=0 avec y(π/16)=22y(\pi / 16)=-2 \sqrt{2} et y(π/16)=122y^{\prime}(\pi / 16)=12 \sqrt{2}.

See Solution

Problem 17512

Quelle forme de solution particulière ypy_{p} utiliser pour l'équation y(n)+an1y(n1)++a0y=r(x)y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_{0} y = r(x)?

See Solution

Problem 17513

Trouver la forme de la solution particulière ypy_{p} pour l'équation différentielle donnée avec r(x)=ex+ex(cos(3x)2sin(3x))r(x)=e^{x}+e^{-x}(\cos(3x)-2\sin(3x)).

See Solution

Problem 17514

Identifiez les solutions d'une équation différentielle avec racine double 1 et racines simples 2±i-2 \pm i.

See Solution

Problem 17515

Evaluate the integral: 5t3t+1dt\int \frac{5 t-3}{t+1} d t (include absolute values and use constant CC).

See Solution

Problem 17516

Evaluate the integral from 0 to 2: 02x2+x+1(x+1)2(x+2)dx\int_{0}^{2} \frac{x^{2}+x+1}{(x+1)^{2}(x+2)} d x

See Solution

Problem 17517

A 2500-kg rocket's velocity v(m)v(m) as mass mm changes. Find v(1849)v(1849) if dvdm=60 m1/2\frac{d v}{d m}=-60 \mathrm{~m}^{-1/2} and v(2500)=0v(2500)=0.

See Solution

Problem 17518

Find ff^{\prime} and ff given f(x)=cos(x)f^{\prime \prime}(x)=\cos(x), f(π2)=13f^{\prime}\left(\frac{\pi}{2}\right)=13, f(π2)=14f\left(\frac{\pi}{2}\right)=14.

See Solution

Problem 17519

Quel est le domaine de la fonction f(x,y)=ln(x+y)f(x, y)=\ln (x+y) ? Choisissez parmi les options suivantes.

See Solution

Problem 17520

Quelle est la forme de la solution particulière ypy_{p} pour l'équation y(n)+an1y(n1)++a0y=r(x)y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=r(x) avec r(x)=4xe2xcos(3x)r(x)=4 x e^{2 x} \cos (3 x) ?

See Solution

Problem 17521

Trouver les solutions d'une équation différentielle avec racines 11 (double) et 2±i-2 \pm i (simples) parmi les fonctions données.

See Solution

Problem 17522

Find the particular solution form ypy_{p} for the equation y(n)+an1y(n1)++a0y=r(x)y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=r(x) with r(x)=ex+ex(cos(3x)2sin(3x))r(x)=e^{x}+e^{-x}(\cos(3x)-2\sin(3x)). Which option fits?

See Solution

Problem 17523

Calculate the integral 333dxx2+1\int_{\frac{\sqrt{3}}{3}}^{\sqrt{3}} \frac{d x}{x^{2}+1}.

See Solution

Problem 17524

Evaluate the integral 2x14t+1dt\int_{2}^{\sqrt{x}} \frac{1}{4 t+1} d t.

See Solution

Problem 17525

Trouver la forme de la solution particulière ypy_{p} pour l'équation y(n)+an1y(n1)++a0y=r(x)y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=r(x) avec r(x)=ex+ex(cos(3x)2sin(3x))r(x)=e^{x}+e^{-x}(\cos(3x)-2\sin(3x)).

See Solution

Problem 17526

Trouver α\alpha, β\beta, C1C_{1} et C2C_{2} pour que y=eαx(C1cos(βx)+C2sin(βx))y=e^{\alpha x}(C_{1} \cos (\beta x)+C_{2} \sin (\beta x)) soit solution de y+16y=0y^{\prime \prime}+16 y=0 avec y(π/16)=22y(\pi / 16)=2 \sqrt{2} et y(π/16)=122y^{\prime}(\pi / 16)=12 \sqrt{2}.

See Solution

Problem 17527

Write the integral I=06x24dxI=\int_{0}^{6}\left|x^{2}-4\right| dx as a sum of integrals and evaluate.

See Solution

Problem 17528

Differentiate the integral u8ux2+3dx\int_{-u}^{8 u} \sqrt{x^{2}+3} \, dx with respect to uu.

See Solution

Problem 17529

Find the area under f(x)=12cos(x)f(x)=12 \cos (x) from 00 to π2\frac{\pi}{2} using the Fundamental Theorem of Calculus, Part I.

See Solution

Problem 17530

Rewrite the integral without absolute values and evaluate: π/13πcos(x)dx\int_{\pi / 13}^{\pi}|\cos (x)| d x \approx

See Solution

Problem 17531

Find the area under the curve of f(x)=4x2f(x)=4 x^{2} from x=0x=0 to x=5x=5 using the Fundamental Theorem of Calculus.

See Solution

Problem 17532

Find the differential of y=(2+2r)4y=(-2+2 r)^{-4}. What is dy\mathrm{d} y in terms of dr\mathrm{d} r?

See Solution

Problem 17533

Find the differential dyd y for the function y=x94xy=x^{9}-4 \sqrt{x} in terms of xx and dxdx.

See Solution

Problem 17534

Find the differential of y=2+t2y=\sqrt{2+t^{2}}. What is dy\mathrm{d} y in terms of dt\mathrm{d} t?

See Solution

Problem 17535

Find the derivative dy/dxd y / d x using implicit differentiation for x2y2+xsiny=4x^{2} y^{2}+x \sin y=4.

See Solution

Problem 17536

Find dyd y for y=tan(3x+6)y=\tan(3x+6) at x=1x=1 with dx=0.3d x=0.3 and dx=0.6d x=0.6.

See Solution

Problem 17537

Find the tangent line equation y=mx+by=m x+b to the curve y=11xexy=11 x e^{x} at (0,0(0,0. Determine mm and bb.

See Solution

Problem 17538

Approximate f(4.3)f^{\prime}(-4.3) using f(4.3)=5.2f(-4.3)=-5.2 and f(3.8)=3.7f(-3.8)=3.7. f(4.3)f^{\prime}(-4.3) \approx

See Solution

Problem 17539

Find the linearization L(x)L(x) of f(x)=ln(x)f(x)=\ln(x) at the point a=1a=1. What is L(x)L(x)?

See Solution

Problem 17540

Find the linearization of f(x)=2+7xf(x)=\sqrt{2+7 x} at a=0a=0. Determine AA and BB in L(x)=A+BxL(x)=A+B x.

See Solution

Problem 17541

Find the differential dyd y for y=ln(3+x8)y=\ln(3+x^{8}) in terms of xx and dxdx. Enter dxdx as dxdx. dy= d y=

See Solution

Problem 17542

Approximate 81.3\sqrt{81.3} using local linearization of f(x)=xf(x)=\sqrt{x} at x=81x=81: find L81(x)L_{81}(x) and compute L81(81.3)L_{81}(81.3).

See Solution

Problem 17543

Find the critical point cc of f(x)=x210x+3f(x)=x^{2}-10x+3, compute f(c)f(c), and determine min/max on [0,10][0,10] and [0,1][0,1].

See Solution

Problem 17544

Déterminez l'ensemble image de la fonction f(x,y)=1ln(1x2y2)f(x, y)=1-\ln(1-x^{2}-y^{2}). Choisissez la bonne réponse parmi : A, B, C, D, E.

See Solution

Problem 17545

Find the three critical numbers of the function F(x)=x4/5(8x32)2F(x)=x^{4/5}(8x-32)^{2} in increasing order.

See Solution

Problem 17546

Find dyd y for y=2x2+2x+3y=2 x^{2}+2 x+3 at x=3x=3 for dx=0.1d x=0.1 and dx=0.2d x=0.2.

See Solution

Problem 17547

Find f(1)f^{\prime}(1) if 2+f(x)+x2(f(x))3=02 + f(x) + x^{2}(f(x))^{3} = 0 and f(1)=1f(1) = -1.

See Solution

Problem 17548

Déterminez l'ensemble image de la fonction f(x,y)=1ln(1x2y2)f(x, y)=1-\ln \left(1-x^{2}-y^{2}\right).

See Solution

Problem 17549

Find the number cc that meets the Mean Value Theorem for f(x)=2x3+2x14f(x)=2x^{3}+2x-14 on the interval [0,2][0,2].

See Solution

Problem 17550

Find the tangent line equation to the hyperbola 4x2+4xyy22x=1544 x^{2}+4 x y-y^{2}-2 x=154 at the point (5,4)(5,4).

See Solution

Problem 17551

Identifiez l'équation du plan tangent à z=4x2yz=4 x^{2} y au point (1,3,12)(-1,-3,-12) parmi les options suivantes.

See Solution

Problem 17552

Find the number cc that meets the Mean Value Theorem for f(x)=e9xf(x)=e^{-9x} on the interval [0,3][0,3].

See Solution

Problem 17553

Les racines du polynôme caractéristique d'une équation différentielle d'ordre 2 sont λ1=7\lambda_{1}=7 et λ2=0\lambda_{2}=0. Quelle équation parmi les suivantes peut avoir une solution particulière de la forme yp=Axy_{p}=A x? A. yy=3xy^{\prime \prime}-y^{\prime}=3 x B. yy=3y^{\prime \prime}-y^{\prime}=3 C. y7y=3y^{\prime \prime}-7 y^{\prime}=3 D. y7y=3xy^{\prime \prime}-7 y^{\prime}=3 x

See Solution

Problem 17554

Déterminez l'ensemble image de la fonction f(x,y)=1ln(1x2y2)f(x, y)=1-\ln(1-x^{2}-y^{2}) parmi les choix suivants : A. ]0,1]]0,1], B. ]1,+[]1,+\infty[, C. [1,+[[1,+\infty[, D. ,1]-\infty, 1], E. Aucun.

See Solution

Problem 17555

Quelle est la forme d'une solution particulière de l'équation y6y+13y=2xe3xcos(2x)y^{\prime \prime}-6 y^{\prime}+13 y=2 x e^{3 x} \cos (2 x) ?

See Solution

Problem 17556

Déterminez l'ensemble image de la fonction f(x,y)=1ln(1x2y2)f(x, y)=1-\ln(1-x^{2}-y^{2}) parmi les choix suivants : A. 0,1]\bigcirc 0,1], B. 1,+[\bigcirc 1,+\infty[, C. [1,+[\bigcirc[1,+\infty[, D. ],1]]-\infty, 1], E. Aucun.

See Solution

Problem 17557

Les racines du polynôme caractéristique sont λ1=7\lambda_{1}=7 et λ2=0\lambda_{2}=0. Quelle équation différentielle pourrait avoir yp=Axy_{p}=A x ? A. 7yy=3x7 y^{\prime \prime}-y^{\prime}=3 x B. yy=3y^{\prime \prime}-y^{\prime}=3 C. y7y=3y^{\prime \prime}-7 y^{\prime}=3 D. y7y=3xy^{\prime \prime}-7 y^{\prime}=3 x

See Solution

Problem 17558

Identifiez l'équation du plan tangent à z=4x2yz=4 x^{2} y au point (1,3,12)(-1,-3,-12) parmi les choix suivants.

See Solution

Problem 17559

Trouver la solution particulière d'une équation différentielle avec r(x)=3ex+x2r(x)=3 \mathrm{e}^{x}+x^{2} et P(λ)=(λ21)λ2(λ+1)2P(\lambda)=\left(\lambda^{2}-1\right) \lambda^{2}(\lambda+1)^{2}. Choisissez une réponse : A, B, C, D, E, F, G.

See Solution

Problem 17560

Trouvez l'équation du plan tangent à z=4x2yz=4 x^{2} y au point (1,3,12)(-1,-3,-12).

See Solution

Problem 17561

Find the position of a particle, s(t)s(t), given a(t)=2t+7a(t)=2t+7, s(0)=7s(0)=7, and v(0)=5v(0)=-5.

See Solution

Problem 17562

Trouver la valeur de aa pour l'équation différentielle y(7)ay=4e3xy^{(7)}-a y=4 e^{3 x} sans solution particulière de la forme y=Ae3xy=A e^{3 x}.

See Solution

Problem 17563

Trouver la solution particulière d'une équation différentielle avec r(x)=3ex+x2r(x)=3 e^{x}+x^{2} et P(Λ)=(λ21)Λ2(λ+1)2P(\Lambda)=\left(\lambda^{2}-1\right) \Lambda^{2}(\lambda+1)^{2}.

See Solution

Problem 17564

A stone is dropped from a 550 m tower.
(a) Initial velocity v(0)=0v(0)=0 m/s and distance s(0)=550s(0)=550 m. Find v(t)v(t) and s(t)s(t).
(b) Time to reach ground? Round to 2 decimal places.
(c) Impact velocity? Round to 1 decimal place.
(d) If thrown down at 4 m/s, time to reach ground? Round to 2 decimal places.

See Solution

Problem 17565

Determine if the series n=1(2)nen+1\sum_{n=1}^{\infty} \frac{(-2)^{n}}{e^{n+1}} converges or diverges and find its sum if it converges.

See Solution

Problem 17566

Determine convergence/divergence of the series and find the sum if possible: n=1(45)n\sum_{n=1}^{\infty}\left(\frac{4}{5}\right)^{n}

See Solution

Problem 17567

Differentiate the function y=ln(x+11+x2)y=\ln \left(x+\sqrt{11+x^{2}}\right) after simplifying it using logarithm properties.

See Solution

Problem 17568

Find the percentage of a brand of computer chips expected to be usable after 4 years using P(t)=100(1e0.07t)P(t)=100(1-e^{-0.07 t}).

See Solution

Problem 17569

Berechnen Sie alle positiven Werte von kk für die Gleichung 0k(0,25x+2)dx=4,5\int_{0}^{k}(0,25 x+2) d x=4,5.

See Solution

Problem 17570

A child flies a kite at a height of aa ft, moving horizontally at 30ft/sec30 \mathrm{ft/sec}. How fast to let out string when kite is 150ft150 \mathrm{ft} away?

See Solution

Problem 17571

Find the rate of decrease of ice thickness and outer surface area when the ice is 5 inches thick, melting at 14 in³/min.

See Solution

Problem 17572

Calculate the total amount after 6 years for an investment of \$2500 at a continuous compound interest rate of 4\% per year.

See Solution

Problem 17573

Find the limit as xx approaches ±\pm \infty for the expression 8xx2x2x6\frac{8-x-x^{2}}{x^{2}-x-6}.

See Solution

Problem 17574

Coffee is draining from a cone into a cylinder at 5in3/min5 \, \text{in}^3/\text{min}. The cone's base diameter is 4 inches.
a. Find the pot's rising level speed when the cone's coffee is 5 inches deep.
b. Find the cone's falling level speed when the coffee is 5 inches deep.

See Solution

Problem 17575

Calculate the derivative of the function y=7+3x6xxy=\frac{7+3x-6\sqrt{x}}{x}. What is y=y'=\square?

See Solution

Problem 17576

Find the derivative of y=(5t1)(4t3)1y=(5 t-1)(4 t-3)^{-1}. What is dydt\frac{\mathrm{dy}}{\mathrm{dt}}?

See Solution

Problem 17577

Gegeben ist die Funktion f(x)=1x292f(x)=\frac{1}{x^{2}-9}-2.
a) Zeigen Sie f(x)=f(x)f(-x)=f(x) und interpretieren Sie. b) Zeigen Sie die Nullstellen x1=9,5x_{1}=-\sqrt{9,5}, x2=9,5x_{2}=\sqrt{9,5} und dass P(0219)P\left(0 \mid-2 \frac{1}{9}\right) auf GfG_{f} liegt. c) Bestimmen Sie limxf(x)\lim _{x \rightarrow-\infty} f(x) und limx+f(x)\lim _{x \rightarrow+\infty} f(x). d) Bestimmen Sie die einseitigen Grenzwerte bei x=3x=-3 und x=3x=3. e) Welcher Graph gehört zu ff?

See Solution

Problem 17578

Find the derivative of y=7+2x6xxy=\frac{7+2x-6\sqrt{x}}{x}. What is y=y'=\square?

See Solution

Problem 17579

Find all derivatives of the function y=(x4)(x+2)(x+4)y=(x-4)(x+2)(x+4). What is yy^{\prime}?

See Solution

Problem 17580

Find the first and second derivatives of y=4x3+5xy=\frac{4 x^{3}+5}{x}. What is yy^{\prime}?

See Solution

Problem 17581

Find the integral of sin(3x)cos2(x)\sin(3x) \cos^2(x) with respect to xx: sin(3x)cos2(x)dx\int \sin(3x) \cos^2(x) \, dx.

See Solution

Problem 17582

Find the body's velocity, speed, acceleration, and jerk at t=π4t=\frac{\pi}{4} sec for s=9sint+14costs=9 \sin t + 14 \cos t.

See Solution

Problem 17583

Find the limit: limΔx02(x+Δx)2+2x2Δx\lim _{\Delta x \rightarrow 0} \frac{-2(x+\Delta x)^{2}+2 x^{2}}{\Delta x}.

See Solution

Problem 17584

Find all derivatives of the function y=(x2)(x+1)(x+2)y=(x-2)(x+1)(x+2). What is y=y^{\prime}=\square?

See Solution

Problem 17585

Find the derivative dydx\frac{d y}{d x} for the function y=9x5sinxcosxy=9 x^{5} \sin x \cos x.

See Solution

Problem 17586

Find the derivative of y=(cscx+cotx)1y=(\csc x+\cot x)^{-1}. What is dydx\frac{d y}{d x}?

See Solution

Problem 17587

Find critical numbers, max and min of f(x)=2x3+3x272xf(x)=2 x^{3}+3 x^{2}-72 x on [5,4][-5,4].

See Solution

Problem 17588

Find the limit: limx11xx+32x\lim _{x \rightarrow 1} \frac{1-x}{\sqrt{x+3}-2 x}.

See Solution

Problem 17589

Find the limit as xx approaches -5 for the expression 2x250x+5\frac{2 x^{2}-50}{x+5}.

See Solution

Problem 17590

Untersuchen Sie die Folgen auf Konvergenz, Grenzwert, Häufungspunkte, Limes superior und Limes inferior:
(a) an=36n3924n2+12na_{n}=\frac{36 n^{3}-9}{24 n^{2}+12 \sqrt{n}} (b) an=(1)n2n3n2n+cos(n)na_{n}=(-1)^{n} \sqrt[n]{\frac{2 n}{3^{n^{2}}}}+\frac{\cos (n)}{n} (c) an=Re(2n(1i3)n)a_{n}=\operatorname{Re}\left(2^{-n}(-1-\mathrm{i} \sqrt{3})^{n}\right) (d) an=k=0n2k+(1)k5ka_{n}=\sum_{k=0}^{n} \frac{2^{k}+(-1)^{k}}{5^{k}}

See Solution

Problem 17591

Find the limit as xx approaches -2 for the expression 2x+1x+3x+2\frac{\frac{2}{x}+\frac{1}{x+3}}{x+2}.

See Solution

Problem 17592

Given y=x2+5y = x^2 + 5 and dxdt=4\frac{dx}{dt} = 4 when x=5x = 5, find dydt\frac{dy}{dt} at x=5x = 5.

See Solution

Problem 17593

Find the limit: limx26xxx2\lim _{x \rightarrow 2} \frac{\sqrt{6-x}-x}{x-2}.

See Solution

Problem 17594

Given y=x2+5y=x^{2}+5 and dxdt=4\frac{d x}{d t}=4 at x=5x=5, find dydt\frac{d y}{d t} when x=5x=5.

See Solution

Problem 17595

Find the relationship between dAdt\frac{d A}{d t} and dxdt\frac{d x}{d t} if A=11x2A=11 x^{2}. dAdt=dxdt \frac{d A}{d t}=\square \frac{d x}{d t}

See Solution

Problem 17596

A rectangle's length \ell decreases at 2 cm/s2 \mathrm{~cm/s} and width ww increases at 2 cm/s2 \mathrm{~cm/s}. Find the rates of change of area, perimeter, and diagonal lengths when =15 cm\ell=15 \mathrm{~cm} and w=8 cmw=8 \mathrm{~cm}.

See Solution

Problem 17597

A balloon rises at 5ft/sec5 \mathrm{ft/sec} and a bike moves at 16ft/sec16 \mathrm{ft/sec}. Find how fast distance s(t)s(t) increases after 6 sec.

See Solution

Problem 17598

Coffee drains into a cylindrical pot at 6in.3/min6 \, \text{in.}^{3}/\text{min} with radius 4in.4 \, \text{in.}. Find the rise rate when the cone is 7in.7 \, \text{in.} deep. Round to three decimal places.

See Solution

Problem 17599

A rectangle's length \ell increases at 2 cm/sec2 \mathrm{~cm/sec} and width ww decreases at 2 cm/sec2 \mathrm{~cm/sec}. Find the rates of change of area, perimeter, and diagonals when =24 cm\ell=24 \mathrm{~cm} and w=7 cmw=7 \mathrm{~cm}.

See Solution

Problem 17600

Coffee drains from a conical filter into a cylindrical pot at 6 in.3^{3}/min. Both have a radius of 4 in.
(a) Find the rise rate in the pot when the cone is 7 in. deep. Answer: 0.1190.119 in./min.
(b) Find the fall rate in the cone.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord