Calculus

Problem 27101

Find the derivatives of the following functions: a. y=2ex3y=2 e^{x^{3}}, b. y=xe3xy=x e^{3 x}, c. f(x)=ex3xf(x)=\frac{e^{-x^{3}}}{x}, d. f(x)=xexf(x)=\sqrt{x} e^{x}, e. h(t)=et2+3eth(t)=e t^{2}+3 e^{-t}, f. g(t)=e2t1+e2tg(t)=\frac{e^{2 t}}{1+e^{2 t}}.

See Solution

Problem 27102

Find the derivative of f(x)=x2+53xf(x)=\frac{x^{2}+5}{3 \sqrt{x}} and show your work.

See Solution

Problem 27103

For the polynomial gg, if the rate of change increases for x<2x<2 and decreases for x>2x>2, what is true about gg at x=2x=2?

See Solution

Problem 27104

Find the average rate of change of y=x3y=x^{3} from x=1x=1 to x=4x=4. Options: 13, 21, 28, 14.

See Solution

Problem 27105

Find the average rate of change (AROC) of f(x)=2x3x+3f(x)=\frac{2 x-3}{x+3} from x=1x=1 to x=6x=6.

See Solution

Problem 27106

Find the derivative f(4)f^{\prime}(4) for the function f(x)=6sinxf(x)=6^{\sin x}. Options: A. -3.922 B. -302 C. 3.922 D. 4.545 E. does not exist.

See Solution

Problem 27107

Find the slope of the tangent to the particle's path at t=2t=2 given x(t)=13t2x(t) = \frac{1}{3}t - 2, y(t)=2t+1y(t) = -2t + 1. Options: (A) 94\frac{9}{4}, (B) 16-\frac{1}{6}, (C) 2-2, (D) 6-6.

See Solution

Problem 27108

Find the population of a town after 10 years if it grows at 1.4%1.4\% annually from a current population of 2000.

See Solution

Problem 27109

Find the average rate of change of the ball's height s(t)=5t2+20ts(t)=-5 t^{2}+20 t between t=0t=0 and t=0.9t=0.9.

See Solution

Problem 27110

Find the value of 12xf(x)dx\int_{1}^{2} x f''(x) dx given f(1)=2f(1)=-2, f(2)=1f(2)=1, f(3)=6f(3)=6, f(4)=3f(4)=3. Choices: (A) 3, (B) 4, (C) 7, (D) 9.

See Solution

Problem 27111

Find (f1)(4)\left(f^{-1}\right)^{\prime}(4) for the function f(x)=x32x2+2xf(x)=x^{3}-2 x^{2}+2 x given the point (2,4)(2,4).

See Solution

Problem 27112

Find the IROC of the temperature model T(t)=110t+700t+35T(t)=\frac{110 t+700}{t+35} at t=95t=95 seconds. Options: 0.91, 0.19 °C/min, °C/sec.

See Solution

Problem 27113

Find d2ydt2\frac{d^{2} y}{d t^{2}} if y=bsin(at)y=b \sin (a t). Choose from: A. bsin(at)-b \sin (a t) B. a2bsin(at)-a^{2} b \sin (a t) C. )2bsin(at))^{2} b \sin (a t) D. abcos(at)a b \cos (a t) E. sin(at)-\sin (a t).

See Solution

Problem 27114

Find f(14)f^{\prime}\left(\frac{1}{4}\right) if f(x)=arccos(2x)f(x)=\arccos(2x). Choices: A) 43\frac{4}{\sqrt{3}}, B) 22-2\sqrt{2}, C) 222\sqrt{2}, D) 83-\frac{8}{\sqrt{3}}, E) 43-\frac{4}{\sqrt{3}}.

See Solution

Problem 27115

A rock is thrown up with an initial speed of 80ft/sec80 \mathrm{ft} / \mathrm{sec}. What is its maximum height? (A) 200ft200 ft (B) 259ft259 ft (C) 100ft100 ft (D) 295ft295 ft

See Solution

Problem 27116

Find dydx\frac{d y}{d x} if y=arctan(2ex)y=\arctan \left(2 e^{x}\right). Options: A. 11+4e2x\frac{1}{1+4 e^{2 x}}, B. 2ex1+2e2x\frac{2 e^{x}}{1+2 e^{2 x}}, C. 11+2e2x\frac{1}{1+2 e^{2 x}}, D. 2ex1+4e2x\frac{2 e^{x}}{1+4 e^{2 x}}, E. 2ex1+2ex2\frac{2 e^{x}}{1+2 e^{x^{2}}}.

See Solution

Problem 27117

Find the derivative f(x)f'(x) for f(x)=x+p(q(x))f(x) = x + p(q(x)) using 2f(x)=1+p(q(x))q(x)2 f'(x) = 1 + p'(q(x)) q'(x). Use the table for values.

See Solution

Problem 27118

Find the derivative f(1)f^{\prime}(1) for the function f(x)=3xf(x)=3^{x}. A. 3 B. ln3\ln 3 C. ln27\ln 27 D. 3ln3\frac{3}{\ln 3} E) ln9\ln 9

See Solution

Problem 27119

Find the limit as vv approaches 44 from the right: limv4+4v4v\lim _{v \rightarrow 4^{+}} \frac{4-v}{|4-v|}.

See Solution

Problem 27120

Find the limit: limx0+arctan(1x)\lim _{x \rightarrow 0^{+}} \arctan \left(\frac{1}{x}\right).

See Solution

Problem 27121

Find the derivative of the function: 8x2+2x3+4+17x8x^{2} + 2x^{3} + 4 + 17x.

See Solution

Problem 27122

Two cars leave an intersection; one goes north at 20hm/h20 \mathrm{hm/h}, the other east at 50km/h50 \mathrm{km/h}. Find the distance change rate after 2 hours.

See Solution

Problem 27123

Given the demand function p=12003qp=1200-3q, find the Revenue Function R(q)R(q), the quantity for max revenue, and the max revenue amount.

See Solution

Problem 27124

Elena cuts squares of side length xx from a 11 in by 17 in paper to form a box. Find xx for max volume V(x)=x(112x)(172x)V(x)=x(11-2x)(17-2x).

See Solution

Problem 27125

Mr. Rooley's class studies bacteria growth with n(t)=975e0.46tn(t)=975 e^{0.46 t}. Find the growth rate and initial population.

See Solution

Problem 27126

Mr. Rooley's class measures bacteria growth: n(t)=975e0.46tn(t)=975 e^{0.46 t}. What is the relative growth rate in %?

See Solution

Problem 27127

Bestimmen Sie die Hoch- und Tiefpunkte der Funktionen ff durch die zweite Ableitung: a) f(x)=x22x+2f(x)=x^{2}-2 x+2, b) f(x)=x33x2+2f(x)=x^{3}-3 x^{2}+2, c) f(x)=13x352x2+6xf(x)=\frac{1}{3} x^{3}-\frac{5}{2} x^{2}+6 x.

See Solution

Problem 27128

Mr. Rooley's class swabs sinks for bacteria growth modeled by n(t)=975e0.46tn(t)=975 e^{0.46 t}. Find growth rate, initial pop, and n(4)n(4).

See Solution

Problem 27129

Trova i valori di αR\alpha \in \mathbb{R} per cui la funzione ff è derivabile in zero.

See Solution

Problem 27130

Trova l'espressione esplicita di f(x)f^{\prime}(x) per f(x)=3x27xet2 dtf(x)=\int_{3 x^{2}}^{7 x} e^{-t^{2}} \mathrm{~d} t.

See Solution

Problem 27131

Mr. Rooley's students swab sinks to measure bacteria growth with n(t)=930e0.47tn(t)=930 e^{0.47 t}. Find:
(a) Growth Rate = %\square \%
(b) Initial Population = \square cells
(c) Population after 6 hours = \square cells.

See Solution

Problem 27132

Finde die Hoch- und Tiefpunkte der Funktionen a) f(x)=8x36x2f(x)=8 x^{3}-6 x^{2}, b) f(x)=2x46f(x)=2 x^{4}-6, c) f(x)=18x413x3+1f(x)=-\frac{1}{8} x^{4}-\frac{1}{3} x^{3}+1 mit der zweiten Ableitung.

See Solution

Problem 27133

Mr. Rooley's students swab sinks for bacteria. Given n(t)=905e0.34tn(t)=905 e^{0.34 t}, find: (a) growth rate, (b) initial population, (c) population at t=3t=3.

See Solution

Problem 27134

Mr. Rooley's class measures bacteria growth with n(t)=1000e0.21tn(t)=1000 e^{0.21 t}.
(a) Find the growth rate: Growth Rate = %\square \% (b) Initial population at t=0t=0 = cells (c) Bacteria count after 5 hours =

See Solution

Problem 27135

Solve the equation: (x+y)dx+(x+y2)dy=0(x+y) dx + (x+y^2) dy = 0 using exact methods.

See Solution

Problem 27136

Find the limit: limx01x+11x\lim _{x \rightarrow 0} \frac{\frac{1}{\sqrt{x+1}}-1}{x}

See Solution

Problem 27137

Calculez la limite suivante : limx3ln(x294x12) \lim _{x \rightarrow 3} \ln \left(\frac{x^{2}-9}{4 x-12}\right)

See Solution

Problem 27138

Find the units xx (in hundreds) to maximize revenue given R(x)=40x2e0.4x+30R(x)=40 x^{2} e^{-0.4 x}+30 with a max of 800 units.

See Solution

Problem 27139

Find the number of items xx that maximize profit given P(x)=106[1+(x1)e0.001x]P(x)=10^{6}\left[1+(x-1) e^{-0.001 x}\right]. Max 2000 or 500 items.

See Solution

Problem 27140

Trova la derivata della funzione composta g(f)g(f) con f(x)=log(x)f(x)=\log(x) e g(y)=arctan(y)g(y)=\arctan(y). Qual è la risposta corretta?

See Solution

Problem 27141

Given a velocity-time graph with vi=4m/sv_i = 4 \, \text{m/s} at ti=0t_i = 0 s and vf=10m/sv_f = 10 \, \text{m/s} at tf=12t_f = 12 s, find the displacement.

See Solution

Problem 27142

Find dydx\frac{d y}{d x} for these functions: a. y=sin2xy=\sin 2 x, b. y=2cos3xy=2 \cos 3 x, c. y=sin(x32x+4)y=\sin (x^{3}-2 x+4), f. y=2x+2sinx2cosxy=2^{x}+2 \sin x-2 \cos x, g. y=sin(ex)y=\sin (e^{x}), h. y=3sin(3x+2π)y=3 \sin (3 x+2 \pi).

See Solution

Problem 27143

Calcola la derivata della funzione composta g(f)g(f), dove f(x)=log(x)f(x)=\log(x) e g(y)=arctan(y)g(y)=\arctan(y).

See Solution

Problem 27144

Bestimme die Stammfunktion von fu(x)=(kx+2)euxf_{u}(x)=(k x+2) \cdot e^{u x}.

See Solution

Problem 27145

Find the tangent equations for these functions at the specified xx-coordinates: a. f(x)=sinx,x=π3f(x)=\sin x, x=\frac{\pi}{3} b. f(x)=x+sinx,x=0f(x)=x+\sin x, x=0 c. f(x)=cos(4x),x=π4f(x)=\cos(4x), x=\frac{\pi}{4} d. f(x)=sin(2x)+cosx,x=π2f(x)=\sin(2x)+\cos x, x=\frac{\pi}{2} e. f(x)=cos(2x+π3),x=π4f(x)=\cos(2x+\frac{\pi}{3}), x=\frac{\pi}{4} f. f(x)=2sinxcosx,x=π2f(x)=2\sin x \cos x, x=\frac{\pi}{2}

See Solution

Problem 27146

Bestimme die Stammfunktion von fa(x)=(ax+2)eaxf_{a}(x)=(a x+2) \cdot e^{a x}.

See Solution

Problem 27147

Find the convexity/concavity intervals and inflection points of y=x42x37y=x^{4}-2x^{3}-7.

See Solution

Problem 27148

Find the derivative f(π6)f^{\prime}\left(\frac{\pi}{6}\right) for f(x)=ln(cscx)f(x)=\ln (\csc x) and simplify.

See Solution

Problem 27149

Find where f(x)=6x+6xf(x)=6x+\frac{6}{x} is increasing, decreasing, and the xx-coordinates of relative maxima and minima.

See Solution

Problem 27150

Estimez 98\sqrt{98} en utilisant les différentielles.

See Solution

Problem 27151

A roller coaster starts at height 12m12\,m and descends to 4m4\,m. Find its speed at point CC assuming no friction.

See Solution

Problem 27152

Find the derivative dydx\frac{d y}{d x} for the function y=sin1(lnx)y=\sin^{-1}(\ln x).

See Solution

Problem 27153

Find the decay constant for Pu-239 (half-life 24,110 years), remaining amount after 5,000 years from 20g, and time to decay to 1g.

See Solution

Problem 27154

Evaluate the expression ey01yexydxe^{-y} \int_{0}^{\infty} \frac{1}{y} e^{-\frac{x}{y}} d x.

See Solution

Problem 27155

Trouvez l'équation de la tangente à y=sin(πx/27)y=\sin (\pi x / 27) en x=9x=9.

See Solution

Problem 27156

Find the limit: limx+ex2(11x)\lim _{x \rightarrow+\infty} e^{x^{2}\left(1-\frac{1}{x}\right)}.

See Solution

Problem 27157

Find the derivative of the function given by y=(arcsin(1x2))y=\left(\arcsin \left(1-x^{2}\right)\right).

See Solution

Problem 27158

Calculate the limit: limx02sin(2x)\lim _{x \rightarrow 0} \frac{2}{\sin (2 x)}.

See Solution

Problem 27159

¿Cuánto tiempo tarda un bolígrafo en alcanzar 19.62ms19.62 \frac{\mathrm{m}}{\mathrm{s}} al caer sin resistencia del aire?

See Solution

Problem 27160

1. For the curve xy2x3y=6x y^{2}-x^{3} y=6: a. Prove dydx=3x2yy22xyx3\frac{d y}{d x}=\frac{3 x^{2} y-y^{2}}{2 x y-x^{3}}. b. Find points with x=1x=1 and tangent line equations. c. Determine xx-coordinates where tangent lines are vertical.

See Solution

Problem 27161

Find the limit: limx(π2)+1tan(2x)\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{+}} \frac{1}{\tan (2 x)}.

See Solution

Problem 27162

16. Use Newton's cooling law T=Ts+(T0Ts)ektT=T_{s}+(T_{0}-T_{s}) e^{-kt} to find cooling times for coffee at 140°F in two scenarios.

See Solution

Problem 27163

Approximate the integral of y=0.5x33x2+4x+12y=0.5 x^{3}-3 x^{2}+4 x+12 from x=0x=0 to x=8x=8 using the Trapezium rule with step size 22.

See Solution

Problem 27164

Find the potential difference between points A and B if an electron speeds up from 6×105 m/s6 \times 10^{5} \mathrm{~m/s} to 12×105 m/s12 \times 10^{5} \mathrm{~m/s}.

See Solution

Problem 27165

Is h(x)=5x3h(x)=\frac{5}{x^{3}} concave down at x=4x=4? Use calculus to explain your reasoning.

See Solution

Problem 27166

Find critical points of the function t(x)=62x2t(x)=\frac{6}{\sqrt{2x-2}}.

See Solution

Problem 27167

Approximate the area under y=0.5x33x2+4x+12y=0.5 x^{3}-3 x^{2}+4 x+12 from x=0x=0 to x=8x=8 using the Trapezium rule with step size 1.

See Solution

Problem 27168

Differentiate y=6(x+4)y=\frac{6}{(x+4)} to find dydx=a(x2+bx+c)\frac{d y}{d x}=\frac{a}{(x^{2}+b x+c)}. Find values of aa, bb, and cc.

See Solution

Problem 27169

Differentiate y=x2(4x6)y=\frac{x^{2}}{(4 x-6)} and express as dydx=(ax2+bx)(cx2+dx+e)\frac{d y}{d x}=\frac{(a x^{2}+b x)}{(c x^{2}+d x+e)}. Find aa, bb, cc, dd, and ee.

See Solution

Problem 27170

Differentiate and simplify y=4x2+33x5y=\frac{4 x^{2}+3}{3 x-5} to find aa, bb, cc, dd, and ee in dydx=(ax2+bx+c)(dx2+ex+f)\frac{d y}{d x}=\frac{(a x^{2}+b x+c)}{(d x^{2}+e x+f)}.

See Solution

Problem 27171

Find the derivative f(x)f'(x) of the function f(x)=x24x6f(x) = \frac{x^2}{4x - 6} and evaluate it at x=2x = 2.

See Solution

Problem 27172

Find the derivative of y=4x2+33x5y = 4x^2 + \frac{3}{3x-5} at x=2x=2 and x=2x=-2.

See Solution

Problem 27173

Find the derivative values at x=2x=2 and x=2x=-2 for the function y=4x2+33x5y=\frac{4x^2+3}{3x-5}.

See Solution

Problem 27174

Find the derivative of y=4x2+33x5y = \frac{4x^2 + 3}{3x - 5} at x=2x = 2 and x=2x = -2.

See Solution

Problem 27175

Approximate the area under y=x44x3+6x+13y=x^{4}-4 x^{3}+6 x+13 from x=2x=-2 to x=4x=4 using Mid-Ordinate rule (step size 2).

See Solution

Problem 27176

Find the critical points of the function f(x)=x13(x6)2f(x) = x^{\frac{1}{3}}(x - 6)^2 by solving f(x)=0f'(x) = 0 or when f(x)f'(x) is undefined.

See Solution

Problem 27177

Approximate the area under y=x44x3+6x+13y=x^{4}-4 x^{3}+6 x+13 from x=2x=-2 to x=4x=4 using Mid-Ordinate and Simpson's rules.

See Solution

Problem 27178

Differentiate y=6(x+4)y=\frac{6}{(x+4)} and express as dydx=a(x2+bx+c)\frac{d y}{d x}=\frac{a}{(x^{2}+b x+c)}. Find aa, bb, and cc.

See Solution

Problem 27179

Approximate the area under y=x44x3+6x+13y=x^{4}-4x^{3}+6x+13 from x=2x=-2 to x=4x=4 using the Mid-Ordinate rule with step size 2.

See Solution

Problem 27180

Approximate the area under y=0.5x33x2+4x+12y=0.5 x^{3}-3 x^{2}+4 x+12 from x=0x=0 to x=8x=8 using the Trapezium rule with step size 2.

See Solution

Problem 27181

A well produces 50,000 liters/week and drops by 5%5\% per year. How many liters can it produce before going dry?

See Solution

Problem 27182

Approximate the area under y=0.5x33x2+5x+13y=0.5 x^{3}-3 x^{2}+5 x+13 from x=0x=0 to x=8x=8 using the Trapezium rule with step size 2.

See Solution

Problem 27183

Approximate the area under y=0.5x33x2+5x+13y=0.5 x^{3}-3 x^{2}+5 x+13 from x=0x=0 to x=8x=8 using the Trapezium rule with step size 2. What is the integral's value?

See Solution

Problem 27184

Approximate the area under y=0.5x33x2+5x+13y=0.5 x^{3}-3 x^{2}+5 x+13 from x=0x=0 to x=8x=8 using the Trapezium rule with step size 2. What is the integral value? (1 decimal place)
Then, do the same with step size 1. What is the integral value? (1 decimal place)

See Solution

Problem 27185

Find the average value of the function Y=x44x3+9x+12Y=x^4-4x^3+9x+12 from x=2x=-2 to x=4x=4 using integration.

See Solution

Problem 27186

Approximate the area under f(x)=x44x3+9x+12f(x) = x^4 - 4x^3 + 9x + 12 from x=2x = -2 to x=4x = 4 using Simpson's rule with step size 1.

See Solution

Problem 27187

Integrate f(x)=x44x3+9x+12f(x) = x^4 - 4x^3 + 9x + 12 to find the area from x=2x = -2 to x=4x = 4. What is the area?

See Solution

Problem 27188

Approximate the area under y=0.5x33x2+4x+9y=0.5 x^{3}-3 x^{2}+4 x+9 from x=0x=0 to x=8x=8 using the Trapezium rule with step size 2.

See Solution

Problem 27189

Given the curve y+cosy=x+1y+\cos y=x+1 for 0y2π0 \leq y \leq 2 \pi: a. Find dydx\frac{d y}{d x} in terms of yy. b. Find equations for vertical tangent lines. c. Find d2ydx2\frac{d^{2} y}{d x^{2}} in terms of yy.

See Solution

Problem 27190

Approximate the area under y=x44x3+9x+12y=x^{4}-4 x^{3}+9 x+12 from x=2x=-2 to x=4x=4 using the Mid-Ordinate rule with step size 22.

See Solution

Problem 27191

Find the average of f(x)=x44x3+9x+12f(x) = x^4 - 4x^3 + 9x + 12 from x=2x = -2 to x=4x = 4.

See Solution

Problem 27192

Find the average value of the function y=0.5x33x2+5x+13y=0.5x^3-3x^2+5x+13 from x=0x=0 to x=8x=8.

See Solution

Problem 27193

Approximate the area under y=x44x3+9x+12y=x^{4}-4 x^{3}+9 x+12 from x=2x=-2 to x=4x=4 using the Mid-Ordinate rule (step size 1).

See Solution

Problem 27194

Find the rate of change of revenue R=1200xx2R=1200x-x^2 when 210 units are sold, with sales increasing at 18 units/day.

See Solution

Problem 27195

Approximate the area under y=0.5x33x2+4x+9y=0.5 x^{3}-3 x^{2}+4 x+9 from x=0x=0 to x=8x=8 using the Trapezium rule with step size 1. What is the integral value? (1 decimal place)

See Solution

Problem 27196

Find critical points, increasing/decreasing intervals, relative extrema, concavity, and inflection points for y=5x3+2x23xy=5 x^{3}+2 x^{2}-3 x.

See Solution

Problem 27197

Find the average value of y=0.5x33x2+4x+9y = 0.5x^3 - 3x^2 + 4x + 9 from x=0x = 0 to x=8x = 8.

See Solution

Problem 27198

Use the Trapezium rule with step size 1 to estimate the area under f(x)=0.5x33x2+4x+9f(x) = 0.5x^3 - 3x^2 + 4x + 9 from x=0x=0 to x=8x=8. What is the approximate integral value?

See Solution

Problem 27199

Integrate f(x)=0.5x33x2+4x+9f(x) = 0.5x^3 - 3x^2 + 4x + 9 to find the area from x=0x=0 to x=8x=8. What is this area?

See Solution

Problem 27200

Find the average value of the function y=0.5x33x2+4x+9y = 0.5x^3 - 3x^2 + 4x + 9 from x=0x=0 to x=8x=8.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord