Calculus

Problem 20001

Evaluate 10(99x2)dx\int_{1}^{0} (9 - 9x^{2}) \, dx using 01x2dx=13\int_{0}^{1} x^{2} \, dx = \frac{1}{3}.

See Solution

Problem 20002

Calculate the average value of f(x)=8xf(x)=\frac{8}{x} over the interval [1,9][1,9].

See Solution

Problem 20003

Find f(8)f(-8) given that f(x)f^{\prime}(x) is continuous, f(5)=14f(-5)=14, and 58f(x)dx=8\int_{-5}^{-8} f^{\prime}(x) dx=-8.

See Solution

Problem 20004

Find the derivative of f(x)=4x28x+9f(x) = 4x^{2}-8x+9 and use Rolle's theorem to find cc in (1,3)(-1,3) where f(c)=0f^{\prime}(c)=0.

See Solution

Problem 20005

Bestimmen Sie die Folgenglieder ana_n, Häufungspunkte, lim\varlimsup, sup\sup, lim\varliminf und die Konvergenz.

See Solution

Problem 20006

Find the number cc in (1,3)(-1,3) such that f(c)=0f^{\prime}(c)=0 for f(x)=4x28x+9f(x)=4x^{2}-8x+9. Solve 8c8=08c-8=0.

See Solution

Problem 20007

Find the average value of f(x)=1x2f(x)=\frac{1}{x^{2}} on the interval [1,9][1,9].

See Solution

Problem 20008

Calculer l'intégrale 22x2+2x3+3x29x27dx\int_{-2}^{2} \frac{x^{2}+2}{x^{3}+3 x^{2}-9 x-27} d x après avoir factorisé le dénominateur.

See Solution

Problem 20009

Evaluate the integrals given 04f(x)dx=1\int_{0}^{4} f(x) dx=1, 45g(x)dx=8\int_{4}^{5} g(x) dx=8, 45h(x)dx=5\int_{4}^{5} h(x) dx=-5:
(a) 40f(x)dx=\int_{4}^{0} f(x) dx= (b) 454h(x)g(x)2dx=\int_{4}^{5} \frac{4 h(x)-g(x)}{2} dx= (c) 50r(x)dx=\int_{5}^{0} r(x) dx=

See Solution

Problem 20010

Calculez l'intégrale 132x+2x3+6xdx\int_{1}^{3} \frac{2 x+2}{x^{3}+6 x} d x en trouvant A,B,CA, B, C dans 2x+2x3+6x=Ax+Bx+Cx2+6\frac{2 x+2}{x^{3}+6 x}=\frac{A}{x}+\frac{B x+C}{x^{2}+6}. Ensuite, donnez l'intégrale avec trois décimales.

See Solution

Problem 20011

Find the limit: limxx4+142x+3\lim _{x \rightarrow-\infty} \frac{\sqrt[4]{x^{4}+1}}{2 x+3}.

See Solution

Problem 20012

Calculez les valeurs exactes de A,BA, B et CC dans la décomposition 2x+2x3+6x=Ax+Bx+Cx2+6\frac{2 x+2}{x^{3}+6 x}=\frac{A}{x}+\frac{B x+C}{x^{2}+6}. Ensuite, trouvez l'intégrale 132x+2x3+6x dx\int_{1}^{3} \frac{2 x+2}{x^{3}+6 x} \mathrm{~d} x avec trois décimales.

See Solution

Problem 20013

Calculate the area using the integral: 13(x+5)dx=area\int_{1}^{3} (-x+5) \, dx = \text{area}. What is the area?

See Solution

Problem 20014

Evaluate the integrals: 2211/36x3dx+2225/3x+3dx+22(x+6)(x+3)2dx\int_{-2}^{2} \frac{11 / 36}{x-3} dx + \int_{-2}^{2} \frac{25 / 3}{x+3} dx + \int_{-2}^{2} \frac{(x+6)}{(x+3)^{2}} dx.

See Solution

Problem 20015

Calculez l'intégrale suivante :
22x2+2x3+3x29x27dx \int_{-2}^{2} \frac{x^{2}+2}{x^{3}+3 x^{2}-9 x-27} d x
(i) Factorisez le dénominateur : x3+3x29x27=(xa)(xb)2x^{3}+3 x^{2}-9 x-27=(x-a)(x-b)^{2}. Trouvez aa et bb.
(ii) Écrivez la fraction sous la forme :
x2+2x3+3x29x27=Axa+Bxb+C(xb)2 \frac{x^{2}+2}{x^{3}+3 x^{2}-9 x-27}=\frac{A}{x-a}+\frac{B}{x-b}+\frac{C}{(x-b)^{2}}
Trouvez AA, BB, et CC.
(iii) Calculez l'intégrale et donnez sa valeur approchée à 3 décimales près.

See Solution

Problem 20016

Find the angular velocity at the 2nd2^{\text{nd}} instant when angular acceleration is zero for θ=8t44t3\theta=8t^{4}-4t^{3}.

See Solution

Problem 20017

Find the derivative of y=2x2+5x10y=2 x^{2}+5 x-10 using first principles. Verify with (K/U=6)(K / U=6).

See Solution

Problem 20018

Calculate the integral cos3(x)esin(x)dx\int \cos^{3}(x) e^{\sin(x)} \mathrm{d} x using substitution and integration by parts.

See Solution

Problem 20019

Déterminez la fonction g(t)=t6tx2+1x+1dxg(t)=\int_{t}^{6t} \frac{x^{2}+1}{x+1} dx.

See Solution

Problem 20020

Find the derivatives of: a) f(x)=x2+1x1f(x)=\frac{x^{2}+1}{x-1} b) g(x)=(x2+3x5)23g(x)=\left(x^{2}+3x-5\right) \frac{2}{3}

See Solution

Problem 20021

Si g(u)=u8cos(x)dxg(u)=\int_{u}^{8} \cos (x) d x, calculez dgdu\frac{d g}{d u}. Pour g(t)=e2t8cos(x)dxg(t)=\int_{e^{2 t}}^{8} \cos (x) d x, montrez que dgdt=1\frac{d g}{d t}=1.

See Solution

Problem 20022

Simplifiez f(x)=3x3+10x4x3f(x)=\frac{3 x^{3}+10 x^{-4}}{x^{3}} en somme de la forme axba x^{b} et trouvez la primitive F(x)F(x).

See Solution

Problem 20023

Avec u=cos(3x)u=\cos (3 x), trouvez sin(3x)cos5(3x)dx\int \frac{\sin (3 x)}{\cos ^{5}(3 x)} \mathrm{d} x en termes de uu.

See Solution

Problem 20024

Trouvez la primitive F(x)F(x) de f(x)=3x3+10x4x3f(x)=\frac{3 x^{3}+10 x^{-4}}{x^{3}} avec x0x \neq 0. Simplifiez f(x)f(x) d'abord.

See Solution

Problem 20025

Compute the integral π/60sin4(3x)cos7(3x)dx\int_{-\pi / 6}^{0} \sin^{4}(3x) \cos^{7}(3x) \, dx using substitution u=u=. Rewrite as abF(u)du\int_{a}^{b} F(u) \, du and find the value of π/60sin4(3x)cos7(3x)dx\int_{-\pi / 6}^{0} \sin^{4}(3x) \cos^{7}(3x) \, dx.

See Solution

Problem 20026

Find the max and min of h(t)=4ttan2th(t)=4t-\tan^2 t on the interval [π4,π3][-\frac{\pi}{4}, \frac{\pi}{3}].

See Solution

Problem 20027

Calculate the integrals of the function f(x)f(x) defined by points (-2,-5), (-2,-3), (0,2), (1,-1), (3,-1), (5,-2):
(a) 50f(x)dx=\int_{-5}^{0} f(x) dx=
(b) 05f(x)dx=\int_{0}^{5} f(x) dx=
(c) 55f(x)dx=\int_{-5}^{5} f(x) dx=

See Solution

Problem 20028

A 15-ft pole casts a shadow. A 6-ft man walks away at 7 ft/s. Find the shadow's tip speed when he's 30 ft from the pole.

See Solution

Problem 20029

Calculez l'intégrale 0π2sin(x)ecos(x)dx\int_{0}^{-\frac{\pi}{2}} \sin (x) e^{\cos (x)} \mathrm{d} x en utilisant u=cos(x)u=\cos (x).

See Solution

Problem 20030

Find the derivative of f(x)=2x3+3x2f(x)=2 x^{3}+3 x^{2} and where the tangent slope equals 36. (K/U=3)(K / U=3)

See Solution

Problem 20031

Calculez l'intégrale 0π2sin(x)ecos(x)dx\int_{0}^{-\frac{\pi}{2}} \sin (x) e^{\cos (x)} \mathrm{d} x avec la substitution u=cos(x)u=\cos (x).

See Solution

Problem 20032

Find the tangent line equation to f(x)=x(x+1)2f(x)=\frac{-x}{(x+1)^{2}} at x=2x=-2.

See Solution

Problem 20033

Find points on the curve y=21xy=2-\frac{1}{x} where the tangent slope is 14\frac{1}{4}.

See Solution

Problem 20034

Calculez l'intégrale 0814+4xdx\int_{0}^{8} \frac{1}{\sqrt{4+4 x}} d x et donnez sa valeur exacte.

See Solution

Problem 20035

How old is a wooden artifact with 21% carbon-14 remaining? (Half-life of carbon-14 is 5730 years.) years

See Solution

Problem 20036

1. What does the derivative of a function represent?
2. How can the product rule replace the quotient rule for y=(3+x)(2x9)y=\frac{(3+x)}{(2 x-9)}?

See Solution

Problem 20037

Find the limit as xx approaches 0 from the right: limx0+xesin(π/x)\lim _{x \rightarrow 0^{+}} \sqrt{x} e^{\sin (\pi / x)}.

See Solution

Problem 20038

Find the normal line equation to the curve y=3x(x21)y=\frac{3 x}{\left(x^{2}-1\right)} at x=3x=3.

See Solution

Problem 20039

Evaluate these limits: a) limx4x2+12x+32x+4\lim _{x \rightarrow-4} \frac{x^{2}+12 x+32}{x+4} b) limx4412+xx4\lim _{x \rightarrow 4} \frac{4-\sqrt{12+x}}{x-4}

See Solution

Problem 20040

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=3x2+6f(x)=3x^{2}+6 and simplify your answer.

See Solution

Problem 20041

Find the third-order Taylor polynomial for ff at 0 using f(0)=2f(0)=2, f(0)=2f'(0)=2, f(0)=4f''(0)=4, f(3)(0)=6f^{(3)}(0)=6 and approximate f(0.1)f(0.1).

See Solution

Problem 20042

Analyze the function y=5xx29y=\frac{5 x}{x^{2}-9}. Find intercepts, extrema, inflection points, and asymptotes.

See Solution

Problem 20043

Evaluate the limits: a) limx4x2+12x+32x+4\lim _{x \rightarrow-4} \frac{x^{2}+12 x+32}{x+4}, b) limx4412+xx4\lim _{x \rightarrow 4} \frac{4-\sqrt{12+x}}{x-4}.

See Solution

Problem 20044

Find the third-order Taylor polynomial for ff at 9 using f(9)=3f(9)=3, f(9)=1f'(9)=1, f(9)=0f''(9)=0, f(3)(9)=6f^{(3)}(9)=6. Approximate f(8.8)f(8.8).

See Solution

Problem 20045

Homer throws a bowling ball up; its height h=4.9t2+19.6th=-4.9 t^{2}+19.6 t. Find: a) landing time, b) impact velocity, c) peak acceleration.

See Solution

Problem 20046

Find the linear and quadratic approximating polynomials for f(x)=1xf(x)=-\frac{1}{x} at a=1a=1 and use them to estimate 10.91-\frac{1}{0.91}.

See Solution

Problem 20047

Find dSdPt=1\left.\frac{d S}{d P}\right|_{t=1} using P(t)=6t2+27t+10P(t)=-6 t^{2}+27 t+10 and S(t)=4t2+4t+11S(t)=-4 t^{2}+4 t+11. Round to 1 decimal place.

See Solution

Problem 20048

Find the Taylor polynomials p1,,p4p_{1}, \ldots, p_{4} at a=0a=0 for f(x)=3cos(2x)f(x)=3 \cos (-2 x). What is p1(x)=p_{1}(x)=\square?

See Solution

Problem 20049

Find the average value fave f_{\text {ave }} of f(x)=4x2f(x)=\sqrt{4-x^{2}} from 0 to 2, and a cc in [0,2][0,2] where f(c)=fave f(c)=f_{\text {ave }}.

See Solution

Problem 20050

Alice the Amoeba's displacement is s=t36t2+9t+1s=t^{3}-6 t^{2}+9 t+1.
a) Find her velocity at t=3t=3 seconds. b) When is her acceleration 0 m/S20 \mathrm{~m} / \mathrm{S}^{2}? c) When is she at rest? d) When is she moving backwards? e) Graph her distance for the first 6 seconds.

See Solution

Problem 20051

Find the third-order Taylor polynomial p3(x)p_{3}(x) for ff at 0 using f(0)=4,f(0)=0,f(0)=8,f(3)(0)=12f(0)=4, f'(0)=0, f''(0)=8, f^{(3)}(0)=12 and approximate f(0.2)f(0.2).

See Solution

Problem 20052

Find the Taylor polynomials p1,,p4p_{1}, \ldots, p_{4} at a=0a=0 for f(x)=3cos(4x)f(x)=3 \cos (4 x). What is p1(x)=p_{1}(x)=\square?

See Solution

Problem 20053

Calculate dydx\frac{d y}{d x} for P=x0.7y0.3P=x^{0.7} y^{0.3} at x=100x=100, y=300,000y=300,000. Interpret the result.

See Solution

Problem 20054

Find the Taylor polynomials p1,p2,p3,p4p_{1}, p_{2}, p_{3}, p_{4} at a=0a=0 for f(x)=3cos(4x)f(x)=3 \cos (4 x).

See Solution

Problem 20055

Find the second derivative of f(x)=4x2x29f(x)=\frac{4 x^{2}}{x^{2}-9}. Identify intervals of concavity (up and down).

See Solution

Problem 20056

Find the Taylor polynomials p1,,p4p_{1}, \ldots, p_{4} at a=0a=0 for f(x)=cos(2x)f(x)=\cos(-2x). What is p1(x)p_{1}(x)?

See Solution

Problem 20057

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the equation x4+7y4=10x^{4}+7 y^{4}=10.

See Solution

Problem 20058

Find the half-life of a radioactive substance with a decay rate of 8.4%8.4\% per day. Round to the nearest hundredth.

See Solution

Problem 20059

Find the function g(x)g(x) where g(x)=4096x3g'(x)=-4096-x^3 and the maximum value is -5. What is g(x)g(x)?

See Solution

Problem 20060

Find the Taylor polynomials p1,,p4p_{1}, \ldots, p_{4} at a=0a=0 for f(x)=cos(2x)f(x)=\cos(-2x). Given p1(x)=1p_{1}(x)=1, find p2(x)p_{2}(x).

See Solution

Problem 20061

Find Taylor polynomials p1,,p5p_{1}, \ldots, p_{5} at a=0a=0 for f(x)=2exf(x)=2 e^{-x}. What is p1(x)p_{1}(x)?

See Solution

Problem 20062

Find the function g(x)g(x) such that g(x)=1000x3g^{\prime}(x)=-1000-x^{3} and its maximum value is -7. g(x)=g(x)=\square

See Solution

Problem 20063

Evaluate the limit: limx7(1x17x7)=limx7=\lim _{x \rightarrow 7}\left(\frac{\frac{1}{x}-\frac{1}{7}}{x-7}\right)=\lim _{x \rightarrow 7} \square=\square.

See Solution

Problem 20064

You received 15 mg of dye; after 12 min, 4.5 mg remain. When will it drop below 2 mg? Answer in minutes.

See Solution

Problem 20065

Trouvez la dérivée seconde de la fonction f(x)=xx24f(x)=\frac{x}{x^{2}-4}.

See Solution

Problem 20066

How long for \$ 9,000 to grow to \$ 45,000 at 5\% continuous compounding? Round to the nearest tenth of a year.

See Solution

Problem 20067

Calculate the integral L=0π3sinx(cosx)5dxL=\int_{0}^{\frac{\pi}{3}} \frac{\sin x}{(\cos x)^{5}} d x.

See Solution

Problem 20068

Berechne den Differenzialquotienten von f(x)=1xf(x)=\frac{1}{x} bei x=2x=-2.

See Solution

Problem 20069

Evaluate the sum i=110(i24)\sum_{i=1}^{10}(i^{2}-4) using summation properties and verify with a graphing utility.

See Solution

Problem 20070

Bestimmen Sie die Ableitung der Funktion f(x)=1xf(x)=\frac{1}{x}.

See Solution

Problem 20071

Calculate the sum k=151k2+3\sum_{k=1}^{5} \frac{1}{k^{2}+3} and round your answer to four decimal places. Use a graphing utility to verify.

See Solution

Problem 20072

A turkey cools from 185185^{\circ}F to 149149^{\circ}F in 30 min. Find its temp after 45 min and when it reaches 100100^{\circ}F.

See Solution

Problem 20073

Find the temperature formula F(t)F(t) for an object cooling from 160F160^{\circ} \mathrm{F} in 50F50^{\circ} \mathrm{F} water with k=0.4k=0.4.

See Solution

Problem 20074

In a community of 4000, a flu spreads as A=40001+3999e0.75tA=\frac{4000}{1+3999 e^{-0.75 t}}. Find: (a) AA after 7 days, (b) carrying capacity, (c) days for 300 cases.

See Solution

Problem 20075

Approximate the area under f(x)=2x+1f(x)=2x+1 from x=0x=0 to x=2x=2 using 4 rectangles and right endpoints (Riemann sums).

See Solution

Problem 20076

Find the area under f(x)=2x+6f(x)=2x+6 on [0,2][0,2] using 4 rectangles.

See Solution

Problem 20077

Find the area between the graph of f(y)=9yf(y)=9y and the yy-axis for 0y20 \leq y \leq 2. Sketch the region.

See Solution

Problem 20078

Estimate the area under f(x)=3x+2f(x)=3x+2 from x=0x=0 to x=3x=3 using 6 rectangles and right endpoints. Round to 2 decimals.

See Solution

Problem 20079

Find the area under f(x)=2x+6f(x)=2x+6 on [0,2][0,2] using 4 rectangles.

See Solution

Problem 20080

Graph f(x)=1051+3e3xf(x)=\frac{105}{1+3 e^{-3 x}} for x=0x=0 to x=10x=10. Find f(0)f(0), f(10)f(10), its behavior, and limiting value.

See Solution

Problem 20081

Calculate the integral 28(x17)dx\int_{2}^{8} (x - 17) \, dx using given values: 28x3dx=1020\int_{2}^{8} x^{3} \, dx = 1020, 28xdx=30\int_{2}^{8} x \, dx = 30, 28dx=6\int_{2}^{8} \, dx = 6.

See Solution

Problem 20082

A virus spread in a school is modeled by y=56001+799e0.9xy=\frac{5600}{1+799 e^{-0.9 x}}.
(a) Graph for 0x150 \leq x \leq 15. (b) Find initial infections. (c) Determine the max infections.

See Solution

Problem 20083

Find the rate of area increase for region AA when k=π6k=\frac{\pi}{6}, given dkdt=π4\frac{dk}{dt}=\frac{\pi}{4}. Area: A=0ksinxxA=\int_{0}^{k} \frac{\sin x}{x}.

See Solution

Problem 20084

A turkey cools from 185185^{\circ}F to 7575^{\circ}F. Find its temp after 45 min and when it hits 100100^{\circ}F using Newton's Law.

See Solution

Problem 20085

Evaluate the integral 28(9x110x3)dx\int_{2}^{8}\left(9 x-\frac{1}{10} x^{3}\right) d x using given values.

See Solution

Problem 20086

A turkey cools from 185185^{\circ}F to 7575^{\circ}F. Find its temp at 45 min if it's 149149^{\circ}F after 30 min. When is it 100100^{\circ}F?

See Solution

Problem 20087

Evaluate the following integrals given 05f(x)dx=20\int_{0}^{5} f(x) d x=20 and 57f(x)dx=12\int_{5}^{7} f(x) d x=12: (a) 07f(x)dx\int_{0}^{7} f(x) d x (b) 50f(x)dx\int_{5}^{0} f(x) d x (c) 55f(x)dx\int_{5}^{5} f(x) d x (d) 052f(x)dx\int_{0}^{5} 2 f(x) d x

See Solution

Problem 20088

A turkey cools from 185185^{\circ}F in a 7575^{\circ}F room.
(a) Find its temp after 45 min. (b) When will it reach 100100^{\circ}F? Use T(t)=Ta+(ToTa)ektT(t) = T_a + (T_o - T_a) e^{-kt}.

See Solution

Problem 20089

Calculate the integral from 12\frac{1}{2} to 11 of 1v5\frac{1}{v^{5}} with respect to vv.

See Solution

Problem 20090

A community of 4000 has a flu spread modeled by A=40001+3999e0.75tA=\frac{4000}{1+3999 e^{-0.75 t}}.
(a) Find AA after 7 days. (b) What is the carrying capacity? (c) How many days for 300 people to contract the flu?

See Solution

Problem 20091

A community of 4000 has a flu model A=40001+3999e0.75tA=\frac{4000}{1+3999 e^{-0.75 t}}. Find: (a) AA after 7 days, (b) carrying capacity, (c) days for 300 to contract.

See Solution

Problem 20092

A community of 4000 is affected by influenza. Use A=40001+3999e0.75tA=\frac{4000}{1+3999 e^{-0.75 t}} to find:
(a) Flu cases after 7 days. (b) Carrying capacity. (c) Days for 300 cases.

See Solution

Problem 20093

Find the tangent line equation to the curve 5x2+y4=6xy5 x^{2}+y^{4}=6 x y at the point (1,1)(1,1).

See Solution

Problem 20094

Find the tangent line equation to the curve 5x2+y4=6xy5 x^{2}+y^{4}=6 x y at the point (1,1)(1,1).

See Solution

Problem 20095

Use the Limit Comparison Test for convergence/divergence of n=13n2+n+1n4+8n29\sum_{n=1}^{\infty} \frac{3n^{2}+n+1}{n^{4}+8n^{2}-9}. Choose bnb_{n} and fill in LL.

See Solution

Problem 20096

Use the Limit Comparison Test to check if the series converges: k=1k73k8+2\sum_{k=1}^{\infty} \frac{k^{7}-3}{k^{8}+2}.

See Solution

Problem 20097

Find the tangent line equation to 7x3+8y2=15xy7x^3 + 8y^2 = 15xy at (1,1)(1,1) using its derivative and point-slope form.

See Solution

Problem 20098

Use the Limit Comparison Test for n=10.0012n+8\sum_{n=1}^{\infty} \frac{0.0012}{n+8}. Find bnb_{n} and limit LL.

See Solution

Problem 20099

Determine if the series n=1nn2+9\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+9} converges using the Comparison or Limit Comparison Test.

See Solution

Problem 20100

Find the tangent line equation to the curve 5x2+4y4=9xy5 x^{2}+4 y^{4}=-9 x y at the point (1,1)(-1,1).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord