Calculus

Problem 27601

Differentiate: (i) 3x2x3 x^{2}-x (ii) 1x\frac{1}{x}. Find points on y=x3y=x^{3} where the gradient is 12.

See Solution

Problem 27602

Find the derivative of the curve y=3x212x+8y=3 x^{2}-12 x+8 and the point where the gradient is 18.

See Solution

Problem 27603

Determine if the expression P(x,y)dx+Q(x,y)dyP(x, y) \mathrm{d} x + Q(x, y) \mathrm{d} y is a total differential by testing PP and QQ.

See Solution

Problem 27604

Analyze a firm's short-run cost function: TC=2Q32Q2+Q+10TC=2Q^{3}-2Q^{2}+Q+10.
a) Find TFC & TVC. b) Derive AFC, AVC, AC, and MC. c) Determine output levels that minimize MC and AVC, and find their minimum values.

See Solution

Problem 27605

Определете вида на ЧдУ: x2uxx+2xyuxy+y2uyy=0x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=0. Направете смяна на променливите: ξ=yx,η=x\xi=\frac{y}{x}, \eta=x.

See Solution

Problem 27606

Given the curve y=x2+3xy=x^{2}+3x: (a) Find dy dx\frac{\mathrm{d} y}{\mathrm{~d} x}. (b) Determine the gradient at x=4x=-4. (c) Find the minimum point's coordinates.

See Solution

Problem 27607

Решете ОДУ от I ред: y=2x3yy=2x-3y, y(0)=1y(0)=1 с мрежа xi=ihx_{i}=ih, h=101h=10^{-1}. Напишете 3 стъпки с методите на Ойлер и Хойн.

See Solution

Problem 27608

Намери решението на задачата на Коши за уравнението utt=uxxu_{tt}=u_{xx} с φ(x)=x3\varphi(x)=x^{3}, ψ(x)=ex\psi(x)=e^{x}.

See Solution

Problem 27609

Graph the functions and find local max/min if they exist: 13. f(x)=9x6+20xf(x)=9 x^{6}+20 x, 14. f(x)=x34x2+x+1f(x)=x^{3}-4 x^{2}+x+1, 15. f(x)=x2+6x10f(x)=-x^{2}+6 x-10, 16. f(x)=5x2+7f(x)=-5 x^{2}+7.

See Solution

Problem 27610

Given f(1)=6f(1)=6, f(1)=2f^{\prime}(1)=-2, find h(1)h^{\prime}(1) for h(x)=xf(x)h(x)=\sqrt{x} f(x). Options: a. 0 b. None c. 1 d. -1

See Solution

Problem 27611

Differentiate the function f(x)=xekxf(x) = x \cdot e^{-kx} with respect to xx.

See Solution

Problem 27612

Find the derivative, turning point, and line of symmetry for the curve y=x24x+1y=x^{2}-4 x+1. Is the turning point max or min?

See Solution

Problem 27613

Find the gradient of the curve y=x35x2+8x7y=x^{3}-5 x^{2}+8 x-7 at the point (2,3)(2,-3).

See Solution

Problem 27614

Find the gradient of the curve y=x35x2+8x7y=x^{3}-5 x^{2}+8 x-7 at (2,3)(2,-3) and explain its significance. Also, for y=x2+16xy=x^{2}+\frac{16}{x}, find dydx\frac{d y}{d x} and the turning point coordinates.

See Solution

Problem 27615

Differentiate y=8x2+2xy=8 x^{2}+\frac{2}{x} and find its turning point coordinates.

See Solution

Problem 27616

What is the balance after 3 years for an investment of \$2,500 at 12\% annual interest, compounded continuously?

See Solution

Problem 27617

Find the derivative f(x)f^{\prime}(x) of the function f(x)=sinxxf(x)=\frac{\sin \sqrt{x}}{\sqrt{x}}.

See Solution

Problem 27618

Find g(2)g^{\prime}(2) for the function f(x)=2x4x3+xf(x)=2 x^{4}-x^{3}+x where g(x)=f1(x)g(x)=f^{-1}(x) and g(2)=1g(2)=1.

See Solution

Problem 27619

Find the partial derivatives fx(x,y)f_{x}(x, y) and fy(x,y)f_{y}(x, y) for the function f(x,y)=2x+3yf(x, y)=2 x+3 y.

See Solution

Problem 27620

Find limx0f(x)\lim _{x \rightarrow 0} f(x) given 3+xf(x)3cosx3+x \leq f(x) \leq 3 \cos x for all xx.

See Solution

Problem 27621

Calculate the limit: limn(e1)k=01ek(1+2n)n\lim _{n \rightarrow \infty} \frac{(e-1) \sum_{k=0}^{\infty} \frac{1}{e^{k}}}{\left(1+\frac{2}{n}\right)^{n}}

See Solution

Problem 27622

If limx2f(x)x=1\lim _{x \rightarrow-2} \frac{f(x)}{x}=-1, find limx2f(x)\lim _{x \rightarrow-2} f(x).

See Solution

Problem 27623

Find the inflection points of the function f(x)=x55x4+x+1f(x)=\frac{x^{5}}{5}-x^{4}+x+1. Choose the correct option.

See Solution

Problem 27624

Determine if the series n=1n!sin(1/n)nn\sum_{n=1}^{\infty} \frac{n ! \sin (1 / n)}{n^{n}} converges or diverges.

See Solution

Problem 27625

Find dxdt\frac{d x}{d t} at the point (2,12)(2, \sqrt{12}) on the circle x2+y2=16x^{2}+y^{2}=16 if dydt=3\frac{d y}{d t}=-3.

See Solution

Problem 27626

Find the volume of the solid formed by revolving the area between y=x2y=x^{2} and y=2xy=2x in the first quadrant around the yy-axis.

See Solution

Problem 27627

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} given that x2+y2=1x^{2}+y^{2}=1. Options: a. xy2\frac{-x}{y^{2}} b. 1y3\frac{-1}{y^{3}} c. None d. x2+y2y3\frac{x^{2}+y^{2}}{y^{3}}

See Solution

Problem 27628

Which statement about the function f(x)={2x0<x<14x=1x+31<x<2f(x)=\left\{\begin{array}{ll}2 x & 0<x<1 \\ 4 & x=1 \\ -x+3 & 1<x<2\end{array}\right. is false? A) limx2f(x)\lim _{x \rightarrow 2^{-}} f(x) exists B) limx0+f(x)\lim _{x \rightarrow 0^{+}} f(x) exists C) limx1f(x)\lim _{x \rightarrow 1} f(x) exists D) f(1)f(1) is not defined

See Solution

Problem 27629

Gegeben sind die Kostenfunktion K(x)=2x318x2+96x+80K(x) = 2x^3 - 18x^2 + 96x + 80 und die Preisabsatzfunktion p(x)=120e0,05xp(x) = 120e^{-0,05x}. Bestimmen Sie den Gewinnbereich und den maximalen Gewinn sowie den Preis für eine ME.

See Solution

Problem 27630

Which function has an absolute maximum on [0,4][0,4] by the Extreme Value Theorem? Options: y=sinxy=\sin x, y=sin1xy=\sin^{-1} x, y=tanxy=\tan x, y=x216x2+x20y=\frac{x^{2}-16}{x^{2}+x-20}.

See Solution

Problem 27631

Compare the rates of change for y=2x1y=2x-1. Choose: A. Equal, B. II > I, C. I > II.

See Solution

Problem 27632

Which function can't use the Second Derivative Test at x=4x=4 for relative extrema?
1. y=13x34x2+16xy=\frac{1}{3} x^{3}-4 x^{2}+16 x
2. y=xex4y=x e^{\frac{x}{4}}
3. y=cos(x4)y=-\cos (x-4)
4. y=x2+8xy=-x^{2}+8 x

See Solution

Problem 27633

Given f(x)=4x3+12x2f^{\prime}(x)=-4 x^{3}+12 x^{2}, find critical points, inflection points, and analyze ff on [2,4][2,4].

See Solution

Problem 27634

Find the value of c\mathbf{c} in Rolle's Theorem for f(x)=excosxf(x)=e^{x} \cos x on [0,π][0, \pi]. Options: a. π4\frac{\pi}{4} b. π2\frac{\pi}{2} c. 3π4\frac{3 \pi}{4} d. None.

See Solution

Problem 27635

A 1 kg block on a spring (100 N/m) is displaced 0.2 m. Find its velocity at the equilibrium point.

See Solution

Problem 27636

Find the volume of the solid formed by revolving the curve y=xy=\sqrt{x} from 00 to 44 around the x-axis.

See Solution

Problem 27637

Find the xx-values for points of inflection given f(x)=10x4+16x3f^{\prime}(x)=10 x^{4}+16 x^{3}.

See Solution

Problem 27638

Find intervals where ff is increasing and concave up given f(x)=4x3+12x2f^{\prime}(x)=4 x^{3}+12 x^{2}.

See Solution

Problem 27639

A pumpkin is dropped from a height of 440 m440 \mathrm{~m}. Find the free fall distance, max speed, and total time to hit the ground.

See Solution

Problem 27640

A student runs for 12s starting at 0m. Find position x(t)x(t) and acceleration a(t)a(t) from velocity v(t)=0.033t2+1.4tv(t)=0.033 t^{2}+1.4 t.

See Solution

Problem 27641

Find the intervals where ff is increasing and concave up given f(x)=4x3+12x2f'(x)=4x^3+12x^2.

See Solution

Problem 27642

A cannonball is fired up at 25.0 m/s25.0 \mathrm{~m/s} from 40.0 m40.0 \mathrm{~m}. Find max height, impact speed, and total flight time.

See Solution

Problem 27643

Find the number of inflection points of ff where f(x)=xcosxf^{\prime \prime}(x)=x \cos x in the interval (2π,π)(-2 \pi, \pi).

See Solution

Problem 27644

Find pp so that limx0f(x)\lim_{x \rightarrow 0} f(x) exists for f(x)={2x2,x0x+p,x<0f(x)=\left\{\begin{array}{ll}2-x^{2}, & x \geq 0 \\ x+p, & x<0\end{array}\right..

See Solution

Problem 27645

Find the value of kk so that the limit limx4h(x)\lim _{x \rightarrow 4} h(x) exists for the piecewise function:
h(x)={20x2k,x<4kx35,x4h(x)=\begin{cases} 20 x^{2}-k, & x<4 \\ k x^{3}-5, & x \geq 4 \end{cases}

See Solution

Problem 27646

Find the slope of the tangent line to cos(πx)=x7y2\cos (\pi x) = x^{7} y^{2} at the point (1,1)(-1, 1).

See Solution

Problem 27647

Given the temperature function f(t)f(t), answer these:
(a) What is the average rate of change of temperature from t=0t=0 to t=12t=12? (b) Approximate f(10)f^{\prime}(10) using the table data. (c) Is ff continuous on [0,24][0, 24]? Justify. (d) Find f(20)f^{\prime}(20).

See Solution

Problem 27648

The temperature function f(t)f(t) is defined in two parts.
(a) What is the average rate of change of ff from t=0t=0 to t=12t=12? (b) Estimate f(10)f^{\prime}(10) using the table data. (c) Is ff continuous on [0,24][0, 24]? Justify. (d) Calculate f(20)f^{\prime}(20).

See Solution

Problem 27649

Find the average rate of change of f(t)f(t) from t=0t=0 to t=12t=12, approximate f(10)f'(10), and check continuity for 0t240 \leq t \leq 24.

See Solution

Problem 27650

Find the average rate of change of f(t)f(t) from t=0t=0 to t=12t=12 and approximate f(10)f'(10) using g(t)g(t) values.

See Solution

Problem 27651

Given the piecewise function f(x)f(x), determine:
a) The value of kk for continuity at x=2x=-2. b) The type of discontinuity at x=0x=0 and why. c) All horizontal asymptotes of ff with justification.

See Solution

Problem 27652

Show that ddx(x4x2)=4(4x2)32\frac{d}{d x}\left(\frac{x}{\sqrt{4-x^{2}}}\right)=\frac{4}{\left(4-x^{2}\right)^{\frac{3}{2}}}. Then evaluate 018(4x2)3dx\int_{0}^{1} \frac{8}{\left(4-x^{2}\right)^{3}} d x. For part (b), find the volume generated by rotating the region under y=x4x2y=\frac{x}{\sqrt{4-x^{2}}} from x=1x=-1 to x=1x=1 about the xx-axis.

See Solution

Problem 27653

Find the limit: limx0x32x2+x2x3+x22x\lim _{x \rightarrow 0} \frac{x^{3}-2 x^{2}+x}{2 x^{3}+x^{2}-2 x}.

See Solution

Problem 27654

Find the integral of sin5xcos7xdx\frac{\sin ^{5} x}{\cos ^{7} x} d x.

See Solution

Problem 27655

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} given that x2+y2=1x^{2}+y^{2}=1.

See Solution

Problem 27656

Find cc in Rolle's Theorem for f(x)=excosxf(x)=e^{x} \cos x on x[0,π]x \in [0, \pi].

See Solution

Problem 27657

Find the value of cc for the mean value theorem of f(x)=12+1f(x)=\frac{1}{2}+1 on [1,6][1,6].

See Solution

Problem 27658

Find the volume of the solid formed by revolving the area between y=xy=\sqrt{x}, 0x40 \leq x \leq 4, and the x-axis around the x-axis.

See Solution

Problem 27659

Find the value of cc for the function f(x)=x33x2f(x)=x^{3}-3x^{2} in the interval [0,3][0,3] that meets the Mean Value Theorem.

See Solution

Problem 27660

Find the critical points of the function f(x)=x22x21f(x)=\frac{x^{2}-2}{x^{2}-1}.

See Solution

Problem 27661

Find the inflection point of the function f(x)=x55x4+x+1f(x)=\frac{x^{5}}{5}-x^{4}+x+1.

See Solution

Problem 27662

Find all xx where the curve y=4x42x24y=4 x^{4}-2 x^{2}-4 has a horizontal tangent.

See Solution

Problem 27663

Find the value of cc in Rolle's Theorem for f(x)=excosxf(x)=e^{x} \cos x on [0,π][0, \pi]. Options: a. π4\frac{\pi}{4} b. π2\frac{\pi}{2} c. 3π4\frac{3 \pi}{4} d. None.

See Solution

Problem 27664

Find the value of cc in Rolle's Theorem for f(x)=excosxf(x)=e^{x} \cos x on [0,2π][0, 2\pi]. Options: a) π4\frac{\pi}{4} b) 3π4\frac{3\pi}{4} c) 5π4\frac{5\pi}{4} d) Two are true.

See Solution

Problem 27665

Find the limit: limx0x34x2x2+3x\lim _{x \rightarrow 0} \frac{x^{3}-4 x}{2 x^{2}+3 x}.

See Solution

Problem 27666

Find the volume of the solid of revolution for the region in the first quadrant between y=x3+3y=x^{3}+3, y=4y=4, and the yy-axis for different axes: (a) yy-axis (disk), (b) xx-axis (washer), (c) y=1y=1 (shell), (d) x=1x=-1 (shell).

See Solution

Problem 27667

In the WKB approximation, analyze two potentials VA(x)V_A(x) and VB(x)V_B(x) for a quantum particle. Answer the following:
(a) State boundary conditions for VA(x)V_A(x) at x=0x=0 and x=2Lx=2L. (b) Determine the energy spectrum for E>2V0LE > 2V_0L in VA(x)V_A(x), leaving the equation for EnE_n. (c) Explain how to compute tunneling probability for VB(x)V_B(x) using WKB. (d) Calculate tunneling probability for a particle with energy E<V0E < V_0 approaching VB(x)V_B(x) from the left.

See Solution

Problem 27668

Calculate the integral: x3x2+1dx\int x^{3} \sqrt{x^{2}+1} \, dx

See Solution

Problem 27669

Calculate the integral: x1x5dx\int \sqrt{\frac{x-1}{x^{5}}} d x

See Solution

Problem 27670

Evaluate the integral: dxx(1+x)2\int \frac{d x}{\sqrt{x}(1+\sqrt{x})^{2}}

See Solution

Problem 27671

Find where the graph of y=x3+x227xy=x^{3}+x^{2}-27 x is concave down. Options: a. x13x \leq \frac{-1}{3}, b. 6x2-6 \leq x \leq 2, c. x\lgax \backslash \lg a, d. x0x \leq 0, e. None.

See Solution

Problem 27672

A function ff is defined piecewise. Find pp for limit at x=3x=3 and check limit existence at x=5x=5.

See Solution

Problem 27673

Find the value of cb(f(x)g(x))dx\int_{c}^{b}(f(x)-g(x)) \, dx given the area shown, options: a) 6, b) -2, c) 2, d) -5.

See Solution

Problem 27674

Determine the interval where the function f(x)=xlnxx,x>0f(x)=x \ln x-x, x>0 is increasing: a. decreasing for all x>0x>0 b. (0,)(0, \infty) c. [1,)[1, \infty) d. (0,1](0,1]

See Solution

Problem 27675

Calculate the integral: 0π/6(secx+tanx)2dx\int_{0}^{\pi / 6}(\sec x+\tan x)^{2} d x

See Solution

Problem 27676

Given f(x)f(x) is decreasing on [3,8][3,8] and increasing on [3,2][-3,2], which statement is false? a) f(4)<f(2)f^{\prime}(4)<f^{\prime}(2) b) f(6)>f(1)f^{\prime}(6)>f^{\prime}(-1) c) f(5)f(7)f(0)>0\frac{f(5)-f(7)}{f^{\prime}(0)}>0 d) f(7)f(5)f(1)<0\frac{f(7)-f(5)}{f^{\prime}(-1)}<0

See Solution

Problem 27677

Consider the function f(x)=x1x2(x2)f(x)=\frac{x-1}{x^{2}(x-2)}. Which statement about its extrema is true?

See Solution

Problem 27678

Calculate the value of 0π3(secx+tanx)2dx\int_{0}^{\frac{\pi}{3}}(\sec x+\tan x)^{2} d x. Choose the correct answer.

See Solution

Problem 27679

Evaluate the integral π6π4(4sec2t+πt2)dt\int_{\frac{\pi}{6}}^{\frac{\pi}{4}}\left(4 \sec ^{2} t+\frac{\pi}{t^{2}}\right) dt.

See Solution

Problem 27680

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=0y=0, x=π4x=-\frac{\pi}{4}, x=π4x=\frac{\pi}{4} around y=2y=-2. Select the correct integral:
1) π4π4π((secx+2)24)dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \pi\left((\sec x+2)^{2}-4\right) d x 2) π4π4π(sec2x2)dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \pi\left(\sec ^{2} x-2\right) d x 3) π4π4π(secx+4)2dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \pi(\sec x+4)^{2} d x 4) π4π4π(secx2)2dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \pi(\sec x-2)^{2} d x

See Solution

Problem 27681

Consider the function f(x)=x1x2(x2)f(x)=\frac{x-1}{x^{2}(x-2)}. Which statement about its extrema is true?

See Solution

Problem 27682

Given f(3)=0f'(3)=0, f(5)=0f'(5)=0, f(3)=4f''(3)=-4, and f(5)=5f''(5)=-5, determine the nature of ff at x=3x=3 and x=5x=5.

See Solution

Problem 27683

Analyze the function f(x)=x4+1x2f(x)=\frac{x^{4}+1}{x^{2}} and select the correct statement about its critical points and asymptotes.

See Solution

Problem 27684

Find the area between the curves y=5xy=5 \sqrt{x} and y=5x2y=5 x^{2}. Choices: 53,12,52,13,\frac{5}{3}, \frac{1}{2}, \frac{5}{2}, \frac{1}{3}, none.

See Solution

Problem 27685

Estimate the profit from the 101st101^{st} unit sold using marginal analysis for P(x)=0.04x2+27x1000P(x)=-0.04 x^{2}+27 x-1000.

See Solution

Problem 27686

Find the area between the curves y=2xy=2 \sqrt{x} and y=2x2y=2 x^{2}. Choose: 215\frac{2}{15}, 25\frac{2}{5}, none.

See Solution

Problem 27687

Find the value of 0π3(cosx+secx)2dx\int_{0}^{\frac{\pi}{3}}(\cos x+\sec x)^{2} d x.

See Solution

Problem 27688

Find the derivative f(x)f^{\prime}(x) if f(x)=x2g(x)f(x)=x^{2} g(x). Choose from the options provided.

See Solution

Problem 27689

Find the volume of a solid with a base under y=4x2y=4-x^{2}, where cross-sections perpendicular to the yy-axis are squares.

See Solution

Problem 27690

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=0y=0, x=π4x=-\frac{\pi}{4}, and x=π4x=\frac{\pi}{4} around the xx-axis.

See Solution

Problem 27691

Find the area between the curves y=xy=\sqrt{x} and y=xy=x. Choose from: 16,13,14,12\frac{1}{6}, \frac{1}{3}, \frac{1}{4}, \frac{1}{2}.

See Solution

Problem 27692

Find the area between the curves y=xy=\sqrt{x} and y=x3y=\sqrt{x^{3}}. What is the area?

See Solution

Problem 27693

If f(2)=0f'(2)=0, which statement about ff is true?
1. The tangent line at (2,f(2))(2, f(2)) is x=2x=2.
2. At x=2x=2, ff changes direction.
3. (2,f(2))(2, f(2)) is a local max or min.
4. The tangent line at (2,f(2))(2, f(2)) is horizontal.

See Solution

Problem 27694

Find the volume of a solid with a square cross-section above the xx-axis and under the parabola y=9x2y=9-x^{2}.

See Solution

Problem 27695

Analyze the function f(x)=x4+1x2f(x)=\frac{x^{4}+1}{x^{2}} and determine which statement is true about it.

See Solution

Problem 27696

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=0y=0, x=π4x=-\frac{\pi}{4}, x=π4x=\frac{\pi}{4} around y=1y=-1.

See Solution

Problem 27697

Analyze the function f(x)=43xtanxf(x)=\frac{4}{3} x-\tan x for concavity in specified intervals. Which statement is true?

See Solution

Problem 27698

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=2y=\sqrt{2}, x=π4x=-\frac{\pi}{4}, x=π4x=\frac{\pi}{4} around y=2y=-\sqrt{2}.

See Solution

Problem 27699

Evaluate the integral π6π4(4sec2t+πt2)dt\int_{\frac{\pi}{6}}^{\frac{\pi}{4}}\left(4 \sec ^{2} t+\frac{\pi}{t^{2}}\right) dt.

See Solution

Problem 27700

Analyze the function f(x)=43xtanxf(x)=\frac{4}{3} x-\tan x for π2<x<π2-\frac{\pi}{2}<x<\frac{\pi}{2}. Which interval is ff increasing?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord