Calculus

Problem 8301

Find the derivative dydx\frac{d y}{d x} from the equation ycos(y+x+x2)ysin(y+x+x2)(y+1+2x)=3x2y^{\prime} \cos(y+x+x^{2}) - y \sin(y+x+x^{2})(y^{\prime}+1+2x) = 3x^{2} at point P=(0,π2)P=(0, \frac{\pi}{2}).

See Solution

Problem 8302

Determine where the function k(x)=5x4+20x3k(x)=5 x^{4}+20 x^{3} is increasing or decreasing. Provide your answer in interval notation.

See Solution

Problem 8303

Calculate the partial derivative of 2x2+3y=4x+y2 x^{2}+3 \sqrt{y}=-4 x+y with respect to xx at the point (2,9)(-2,9).

See Solution

Problem 8304

Find the implicit derivative of 2x2+3y=4x+y2x^{2}+3\sqrt{y}=-4x+y.

See Solution

Problem 8305

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for 4x25y2=114 x^{2}-5 y^{2}=11 using implicit differentiation.

See Solution

Problem 8306

Find the second derivative of yy with respect to xx for 4x25y2=114 x^{2}-5 y^{2}=11 using implicit differentiation.

See Solution

Problem 8307

Find horizontal tangent lines for the curve y3y2=2xx2y - 3y^{2} = 2x - x^{2}. If none, explain why.

See Solution

Problem 8308

Find the integral xx(1+lnx)dx\int x^{x}(1+\ln x) \, dx given that f(x)=xx(1+lnx)f'(x)=x^{x}(1+\ln x). Explain your reasoning.

See Solution

Problem 8309

Find limx4f(x)\lim _{x \rightarrow 4} f(x) for f(x)=8x+3f(x)=8x+3. Prove f(x)35=8x4|f(x)-35|=8|x-4| and show δ=ϵ8\delta=\frac{\epsilon}{8}.

See Solution

Problem 8310

A ball's position is given by s(t)=16t2+128t+5s(t)=-16 t^{2}+128 t+5. Find: a. velocity at t=1t=1, b. acceleration at t=5t=5, c. time for velocity -64 ft/s, d. time at height 117 ft.

See Solution

Problem 8311

Find δ\delta for limx2f(x)=7\lim _{x \rightarrow 2} f(x)=7 with f(x)=4x1f(x)=4x-1 and f(x)7<0.01|f(x)-7|<0.01.

See Solution

Problem 8312

Bestimme die Ableitung von 2x(4x1)2x \cdot (4x - 1).

See Solution

Problem 8313

A stone is thrown up at 128ft/sec128 \mathrm{ft} / \mathrm{sec}. Find: a. max height, b. time to hit ground, c. speed when it hits.

See Solution

Problem 8314

A stone is thrown up at 128ft/sec128 \mathrm{ft/sec}. Find: a. max height, b. time to hit ground, c. speed on impact using integrals.

See Solution

Problem 8315

Bestimmen Sie die Koordinaten des Punktes PP, wo der Graph GfG_{f} von f(x)=14x2+xf(x)=-\frac{1}{4} x^{2}+x die Steigung -2 hat.

See Solution

Problem 8316

Bestimmen Sie die Ableitung von fa(x)=1axaf_{a}(x)=\frac{1}{a} x^{a}.

See Solution

Problem 8317

Evaluate the integral 12315x2(x3+4)12dx\int_{12}^{31} \frac{5 x^{2}}{\left(x^{3}+4\right)^{\frac{1}{2}}} d x using u=x3+4u=x^{3}+4. Round to three decimal places.

See Solution

Problem 8318

Given y=e3xSin5xy=e^{3 x} \operatorname{Sin} 5 x, find (a) (i) dydx\frac{d y}{d x}, (ii) d2ydx2\frac{d^{2} y}{d x^{2}}. (b) Show that d2ydx2+3dydx20y=9e3x[5Cos5x3Sin5x]\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-20 y=9 e^{3 x}[5 \operatorname{Cos} 5 x-3 \operatorname{Sin} 5 x].

See Solution

Problem 8319

Untersuchen Sie die Intervalle, in denen f(x)=18x334x22,5f(x)=\frac{1}{8} x^{3}-\frac{3}{4} x^{2}-2,5 linksgekrümmt ist. Bestimmen Sie die Extrempunkte von f(x)=16x3+2xf(x)=-\frac{1}{6} x^{3}+2 x.

See Solution

Problem 8320

Find the horizontal asymptotes of y=2xx21y=\frac{2x}{\sqrt{x^2-1}}. Options: (A) y=0y=0 (B) y=1y=1 (C) y=2y=2 (D) y=2y=-2 and y=2y=2 (E) y=1y=-1 and y=1y=1.

See Solution

Problem 8321

Cell growth rate xx at time tt increases proportionally to (20x)(20-x).
(a) Write the differential equation. (b) If initially there are 10 cells and after 1.5 hours there are 18, find the cell count after 2 hours (2 sig. figs.).

See Solution

Problem 8322

Berechnen Sie den Flächeninhalt eines gleichschenkligen Dreiecks und bestimmen Sie die Intervalle, in denen f(x)=23x3+x212x+1f(x)=\frac{2}{3} x^{3}+x^{2}-12 x+1 monoton wachsend ist. Untersuchen Sie auch die Krümmung von f(x)=18x334x22,5f(x)=\frac{1}{8} x^{3}-\frac{3}{4} x^{2}-2,5.

See Solution

Problem 8323

A car's position is given by s(t)=(4t23)e0.5ts(t)=(4 t^{2}-3)e^{-0.5 t}. How far does it travel from t=0t=0 to when it stops?

See Solution

Problem 8324

The function gg is continuous on [2,6][2,6] with values: g(2)=7g(2)=7, g(3)=4g(3)=4, g(4)=1g(4)=1, g(5)=4g(5)=4, g(6)=7g(6)=7. True statement?

See Solution

Problem 8325

Find the limit: limx2x+1x\lim_{x \rightarrow \infty} \frac{2x + 1}{x}.

See Solution

Problem 8326

Gegeben ist die Funktion f(x)=x2f(x)=x^{2} und der Punkt T(1/3)T(1 /-3). Bestimme die Tangentengleichung in P(u/f(u))P(u / f(u)).

See Solution

Problem 8327

Find the maximum slope of the tangent line to the graph of f(x)=3x22x3f(x)=3x^2-2x^3.

See Solution

Problem 8328

Gegeben ist die Funktion f(x)=(2x+10)e5x+3f(x)=(2 x+10) \cdot e^{5 x+3}. Finde die Nullstelle und den yy-Achsen-Schnittpunkt. Bestimme die Steigung bei x=2x=-2.

See Solution

Problem 8329

Berechne die Ableitung von g(x)=x2+2x3x4g(x)=\frac{x^{2}+2x}{3x-4} und finde die Tangenten bei P(3/g(3))P(3/g(3)). Untersuche auch Asymptoten.

See Solution

Problem 8330

Bestimmen Sie die Ableitungsfunktion für die folgenden Funktionen: a) f(x)=0,5xf(x)=0,5 x, b) f(x)=2x+3f(x)=2 x+3, c) f(x)=x2+5f(x)=x^{2}+5, d) f(x)=3x2f(x)=3 x^{2}, e) f(x)=x2+7xf(x)=-x^{2}+7 x, f) f(x)=3x22x+4f(x)=3 x^{2}-2 x+4.

See Solution

Problem 8331

Find the curve where the slope of the tangent line at (x,y)(x, y) is 3x3 \sqrt{x} and it passes through (9,4)(9, 4).

See Solution

Problem 8332

Find the hydrostatic force on one side of an isosceles triangle (base 12 ft, sides 10 ft) submerged 2 ft below water. Set up Riemann Sum and integral without evaluating.

See Solution

Problem 8333

Untersuchen Sie, ob die Funktion g(x)=f(x)cos(x)g(x)=f(x) \cdot \cos (x) im Punkt P(01)P(0 \mid 1) auch eine waagerechte Tangente hat.

See Solution

Problem 8334

Leiten Sie die Funktion g(x)=cf(x)g(x)=c \cdot f(x) mit der Produktregel ab. Welche Regel ergibt sich?

See Solution

Problem 8335

Bestimmen Sie die Summe des Funktionsterms f(x)f(x) und leiten Sie ff einmal ab für: a) f(x)=x4x3x2f(x)=\frac{x^{4}-x^{3}}{x^{2}}, b) f(x)=x12+x8+1x10f(x)=\frac{x^{12}+x^{8}+1}{x^{10}}, c) f(x)=x4+2x2x5f(x)=\frac{x^{4}+2 x^{2}}{x^{5}}.

See Solution

Problem 8336

Bestimme die Ableitung der Funktion f(x)=(5x42x)3f(x)=(5x^4-2x)^{-3} mit der Kettenregel.

See Solution

Problem 8337

Find the limit of f(x)=sin(x)xf(x)=\frac{\sin(x)}{x} as xx approaches 00 from the left, right, and both sides.

See Solution

Problem 8338

Calculate the average rate of change for f(x)=x2+8xf(x)=x^{2}+8x from x=2x=2 to x=3x=3. Simplify your answer.

See Solution

Problem 8339

Calculate the average rate of change of f(x)=xf(x)=\sqrt{x} from x1=16x_{1}=16 to x2=81x_{2}=81. Simplify your answer.

See Solution

Problem 8340

Find the average rate of change of f(x)=xf(x)=\sqrt{x} from x1=16x_{1}=16 to x2=81x_{2}=81. Simplify your answer.

See Solution

Problem 8341

Analyze the series S=11+12+13++1nS = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}} for convergence or divergence.

See Solution

Problem 8342

Find the max and saddle points of f(x,y)=x3+8xy4y2+3f(x, y)=-x^{3}+8xy-4y^{2}+3.

See Solution

Problem 8343

Bestimme die Fußpunkte des Hügels für die Funktion f(x)=12x2+4x6f(x)=-\frac{1}{2} x^{2}+4 x-6 und den Steigungswinkel am westlichen Fußpunkt.

See Solution

Problem 8344

Differentiate the function f(x)=x34x23xf(x) = x^{3} - 4x^{2} - 3x.

See Solution

Problem 8345

Eine Kleinstadt hat 2006 Neubaugebiete.
a) Bestimme, wann die Einwohnerzahl mit f(x)=1000x2exf(x)=1000 \cdot x^{2} \cdot e^{-x} am stärksten zunimmt. b) Berechne die Veränderung der Einwohnerzahl von 2006 bis 2014. c) Finde den Durchschnitt der jährlichen Zunahme von 2006 bis 2014.

See Solution

Problem 8346

Find the value of 0bxf(x2)dx\int_{0}^{b} x f\left(x^{2}\right) d x given that 0b2f(x)dx=214.2\int_{0}^{b^{2}} f(x) d x=214.2. Round to two decimal places.

See Solution

Problem 8347

If h(a)=h(b)h(a)=h(b), find the value of abg(h(x))h(x)dx\int_{a}^{b} g(h(x)) h^{\prime}(x) d x.

See Solution

Problem 8348

Find 0af(3x)dx\int_{0}^{a} f(3 x) d x given that 03af(x)dx=13.8\int_{0}^{3 a} f(x) d x=13.8. Round to two decimal places.

See Solution

Problem 8349

A balloon rises at 3 m/s from a point 30 m away. Find the angle of elevation's rate of change when the balloon is 30 m high.

See Solution

Problem 8350

Evaluate the integral 0ex23.5dx\int_{0}^{\infty} e^{\frac{-x^{2}}{3.5}} d x using 0ex2dx=12π\int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi}. Round to five decimal places.

See Solution

Problem 8351

Find the derivative r(t)\vec{r}^{\prime}(t) of the vector function r(t)=sin(t),2e2t,3t22\vec{r}(t)=\langle-\sin(t), 2e^{-2t}, 3t^{2}-2\rangle.

See Solution

Problem 8352

Find the derivative of the function 7lnx+ln27 \ln x + \ln 2.

See Solution

Problem 8353

Find the derivative r(t)\vec{r}^{\prime}(t) for r(t)=2ln(4t),3e4t,34t\vec{r}(t)=\langle 2 \ln (4 t), 3 e^{4 t},-3 \sqrt{4 t}\rangle.

See Solution

Problem 8354

Find the derivative r(t)\vec{r}^{\prime}(t) for r(t)=5sin(t2),4te5t,2tln(4t)\vec{r}(t)=\langle 5 \sin (t-2),-4 t e^{5 t}, 2 t \ln (-4 t)\rangle.

See Solution

Problem 8355

Find the derivative r(t)\vec{r}^{\prime}(t) of the vector function r(t)=2e2t,4ln(5t),22t\vec{r}(t)=\left\langle 2 e^{-2 t}, 4 \ln (5 t),-2 \sqrt{2 t}\right\rangle.

See Solution

Problem 8356

Find the derivative r(t)\vec{r}^{\prime}(t) for r(t)=3t2t3+2,6tt22,52t1\vec{r}(t)=\left\langle\frac{-3 t^{2}}{-t^{3}+2}, \frac{6 t}{t^{2}-2}, \frac{5}{2 t-1}\right\rangle.

See Solution

Problem 8357

Find the second derivative of the function f(x)=4x330x248x36f(x)=-4 x^{3}-30 x^{2}-48 x-36.

See Solution

Problem 8358

Find r(t)\vec{r}^{\prime}(t) for r(t)=5sin(t2),4te5t,2tln(4t)\vec{r}(t)=\langle 5 \sin(t-2), -4t e^{5t}, 2t \ln(-4t) \rangle.

See Solution

Problem 8359

Find local max/min points of f(x)=2x3+6x218x+12f(x)=2 x^{3}+6 x^{2}-18 x+12 using the Second Derivative Test. Enter as ordered pairs.

See Solution

Problem 8360

Find the derivative of f(x)=4x3+6x2+240x12f(x)=-4 x^{3}+6 x^{2}+240 x-12.

See Solution

Problem 8361

Find the second derivative of the vector function r(t)=(3t+7sin(t))i+(5t+7cos(t))j\vec{r}(t)=(3t+7\sin(t))\vec{i}+(5t+7\cos(t))\vec{j}.

See Solution

Problem 8362

Find limx43f(x)\lim _{x \rightarrow \frac{4}{3}} f(x) for the function f(x)=(3x4)(x2x+2)(3x4)(x3)f(x)=\frac{(3 x-4)(x^{2}-x+2)}{(3 x-4)(x-3)}. Options: (A) \infty, (B) 2215-\frac{22}{15}, (C) 0, (D) does not exist.

See Solution

Problem 8363

Find the second derivative of the function f(x)=x36x5f(x) = x^{3} - 6 \sqrt{x} - 5.

See Solution

Problem 8364

Find the tangent line (L)(L) to the curve r(t)=3t2+5,t34t4,3t3\vec{r}(t)=\langle 3t^{2}+5, t^{3}-4t^{4},-3t^{3}\rangle at the point (8,3,3)(8,-3,-3).

See Solution

Problem 8365

Find the tangent line (L)(L) to the vector function r(t)=5t5,4e2t,3e5t\vec{r}(t)=\langle-5 t-5,-4 e^{-2 t}, 3 e^{5 t}\rangle at t=3t=-3.

See Solution

Problem 8366

Find the local max and min of f(x)=5x220xf(x)=5 x^{2}-20 x on [0,8][0,8] as ordered pairs.

See Solution

Problem 8367

Find the local min and max of f(x)=2x3150xf(x)=2x^3−150x in the interval [7,8][-7,8].

See Solution

Problem 8368

Find the absolute extrema of f(x)=5x220xf(x)=5x^{2}-20x on [0,7][0,7]. Provide (x,f(x))(x, f(x)) as an ordered pair.

See Solution

Problem 8369

Berechnen Sie die Integrale: a) 1x2dx\int \sqrt{1-x^{2}} d x und b) 1+x2dx\int \sqrt{1+x^{2}} d x.

See Solution

Problem 8370

Find limx2πsin(2π)sin(x)x2π\lim _{x \rightarrow 2 \pi} \frac{\sin(2 \pi)-\sin(x)}{x-2 \pi}. What is the limit?

See Solution

Problem 8371

Найдите предел an=4n32n+5a_{n}=\frac{4 n-3}{2 n+5} при nn \to \infty и значение aa при n=2n = 2.

See Solution

Problem 8372

Find f(0)f^{\prime}(0) for the function f(x)=2cosx+3exf(x)=2 \cos x+3 e^{x}. Choose from (A) -3, (B) 0, (C) 3, (D) 5.

See Solution

Problem 8373

Find limx2ln2lnxx2\lim _{x \rightarrow 2} \frac{\ln 2 - \ln x}{x - 2}. Choose from (A) ln2-\ln 2, (B) 12-\frac{1}{2}, (C) 12\frac{1}{2}, (D) ln2\ln 2.

See Solution

Problem 8374

Find critical numbers of f(x)=2x324xf(x)=2x^{3}-24x in the interval [7,3][-7,3].

See Solution

Problem 8375

Find local extrema of f(x)=6x372x2270xf(x)=-6 x^{3}-72 x^{2}-270 x on [7,7][-7,7]. Provide your answer as an ordered pair.

See Solution

Problem 8376

Find the tangent line equation for f(x)=(x2+31)45f(x)=(x^{2}+31)^{\frac{4}{5}} at x=1x=1.

See Solution

Problem 8377

A 13-foot ladder leans against a wall. If Jack pulls it away at 0.5 ft/s, how fast is the top sliding down when the foot is 5 ft away?

See Solution

Problem 8378

Find the tangent line equation for f(x)=x(1x)4f(x)=x(1-x)^{4} at x=2x=2. What is y=y=?

See Solution

Problem 8379

Find the derivative of f(g(x))f(g(x)) where f(x)=x3f(x)=x^{3} and g(x)=3x8g(x)=3 x-8.

See Solution

Problem 8380

Find g(3)g^{\prime}(3) where gg is the inverse of f(x)=ex+3x+8f(x)=\sqrt{e^{x}+3x+8} and f(0)=3f(0)=3.

See Solution

Problem 8381

Find the tangent line equation for f(x)=4ex1f(x)=4 e^{x}-1 at x=0x=0.

See Solution

Problem 8382

Find the limit: limx23x2+5x24x3+12x27x30\lim _{x \rightarrow-2} \frac{3 x^{2}+5 x-2}{4 x^{3}+12 x^{2}-7 x-30}

See Solution

Problem 8383

Find the derivative of f(x)=x2arctan(5x)f(x)=x^{2} \cdot \arctan (5 x). What is f(x)f^{\prime}(x)?

See Solution

Problem 8384

Find the derivative dydx\frac{d y}{d x} for y=x4x+1y=x^{4} \sqrt{x+1}. Choose the correct option among the given choices.

See Solution

Problem 8385

Find the derivative f(x)f'(x) for f(x)=arcsinx2xf(x)=\arcsin x-2x and the tangent line at x=0x=0.

See Solution

Problem 8386

Two planes fly at the same height: A at 310 mi/h east and B at 260 mi/h north. Find the rate of distance change to the airport.

See Solution

Problem 8387

Zeigen Sie, dass die Wendepunkte der Funktion ft(x)=2t2x312tx23f_{t}(x)=\frac{2}{t^{2}} x^{3}-\frac{12}{t} x^{2}-3 auf einer Geraden liegen.

See Solution

Problem 8388

A cylinder has a radius of 9 ft and height of 22 ft. If the surface area increases at 320ft2/sec320 \mathrm{ft}^{2}/\mathrm{sec} and height decreases at 4ft/sec-4 \mathrm{ft}/\mathrm{sec}, find the rate of change of the radius.

See Solution

Problem 8389

A penny is dropped from a height of 373 m373 \mathrm{~m}. What is its velocity upon hitting the ground? (Ignore air resistance.)

See Solution

Problem 8390

Write the composite function f(g(x))f(g(x)) for y=cos(sin(x))y=\cos(\sin(x)) with f(u)=cos(u)f(u)=\cos(u) and g(x)=sin(x)g(x)=\sin(x). Find dydx\frac{d y}{d x}.

See Solution

Problem 8391

A conical tank is 6 m wide and 8 m deep. If water height decreases at 13.5 m/min, find volume change when height is 4 m.

See Solution

Problem 8392

Ein Turmspringer springt waagerecht ab. Gegeben ist h(t)=105t2h(t)=10-5 t^{2}.
a) Durchschnittsgeschwindigkeit in der ersten Sekunde? b) Momentangeschwindigkeit nach 1 Sekunde? c) Momentangeschwindigkeit beim Eintauchen?

See Solution

Problem 8393

Calculer la dérivée de f(x)=(10x8+7)4(7x86)4f(x)=\frac{(10 x^{8}+7)^{4}}{(7 x^{8}-6)^{4}}. Trouver f(x)f^{\prime}(x).

See Solution

Problem 8394

Find the derivative of f(x)=(2x3)33xf(x)=(2x-3)^{3} \cdot 3x.

See Solution

Problem 8395

Bestimme den Differenzenquotienten von f(x)=12x24f(x)=\frac{1}{2} x^{2}-4 in den Intervallen [0;2][0; 2] und [1;11][-1; 11].

See Solution

Problem 8396

Find the derivative or integral of the function g(x)=x2x+1g(x)=\frac{x^{2}}{x+1} or solve for a specific x-value.

See Solution

Problem 8397

Bestimme die Tangentengleichung der Funktion f(x)=xf(x)=\sqrt{x} im Punkt B(4,f(4))B(4, f(4)).

See Solution

Problem 8398

Bestimme den Differenzenquotienten von f(x)=12x24f(x)=\frac{1}{2} x^{2}-4 für die Intervalle: a) [0;2][0 ; 2], b) [1;1][-1 ; 1], c) [2;1,9][-2 ;-1,9].

See Solution

Problem 8399

Gegeben ist die Funktion fa(x)f_{a}(x). Bestimme die Ableitung und die Steigung bei x=0x=0. Für welches aa ist die Steigung 1? a) fa(x)=x2+axf_{a}(x)=-x^{2}+a x b) fa(x)=ax33axf_{a}(x)=a x^{3}-3 a x c) fa(x)=ax44x3+a2xf_{a}(x)=a x^{4}-4 x^{3}+a^{2} x

See Solution

Problem 8400

Find the derivative of f(x)=1+xex1+xf(x)=\frac{1+x e^{x}}{1+x}. What is f(x)f'(x)?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord