Calculus

Problem 14901

Berechne den Flächeninhalt unter den Graphen von f(x)f(x) im Intervall [0; 2] für a) bis d): a) f(x)=exf(x)=e^{x}, b) f(x)=8exf(x)=8-e^{x}, c) f(x)=ex+x+2f(x)=e^{x}+x+2, d) f(x)=exxf(x)=e^{x}-x.

See Solution

Problem 14902

Eine Rakete erreicht bei der zweiten Stufe 12500 m. Bestimmen Sie Höhe nach 30 s, Funktionen für Höhenzuwachs und Zuwachs von 10 s bis 30 s.

See Solution

Problem 14903

For the function f(x)=5x2+2x+8x2f(x)=\frac{-5 x^{2}+2 x+8}{x^{2}}, find: (a) domain, (b) first derivative f(x)f^{\prime}(x), (c) increase/decrease regions, (d) local extrema, (e) second derivative f(x)f^{\prime \prime}(x), (f) concavity regions, (g) inflection points.

See Solution

Problem 14904

Berechne die Flächeninhalte unter den Graphen von f(x)f(x) im Intervall [0;2][0; 2] für die Funktionen a) bis d).

See Solution

Problem 14905

Find the radius and height of a grain silo (cylinder + hemisphere) that minimizes material cost with volume 900m3900 \, m^{3}.

See Solution

Problem 14906

Find the slope and concavity of the curve defined by x=cosθx=\cos \theta and y=3sinθy=3 \sin \theta at θ=0\theta=0.

See Solution

Problem 14907

Find the intervals where the function f(x)=3x2+6xf(x)=3 x^{2}+6 x is decreasing.

See Solution

Problem 14908

Find d2ydx2\frac{d^{2} y}{d x^{2}} for the parametric equations x=3t21x=3 t^{2}-1 and y=lnty=\ln t in terms of tt.

See Solution

Problem 14909

Berechnen Sie die folgenden Integrale: f) 0π2cos(x)dx\int_{0}^{\frac{\pi}{2}} \cos (x) d x g) 0πsin(x)dx\int_{0}^{\pi} \sin (x) d x h) π2π212cos(x)dx\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} \cos (x) d x i) ππsin(x)dx\int_{-\pi}^{\pi}-\sin (x) d x j) 2423exdx\int_{2}^{4} \frac{2}{3} e^{x} d x

See Solution

Problem 14910

Find the slope and concavity of yy at θ=π\theta=\pi given x=θcosθx=\theta-\cos \theta and y=1sinθy=1-\sin \theta.

See Solution

Problem 14911

Find the limit as xx approaches 5 for the function f(x)=x32x5f(x)=\frac{\sqrt{x-3}-\sqrt{2}}{x-5}. Show your work.

See Solution

Problem 14912

احسب limx5x32x5\lim_{x \rightarrow 5} \frac{\sqrt{x-3}-\sqrt{2}}{x-5} ووضح خطوات الحل.

See Solution

Problem 14913

Find the tangent line equation for f(x)=x2ln(x)f(x)=x^{2} \ln (x) at x=ex=e.

See Solution

Problem 14914

Find the derivative of y=1+cosx1+sinxy=\frac{1+\cos x}{1+\sin x}.

See Solution

Problem 14915

Find the values of xx where the function g(x)=0xf(t)dtg(x) = \int_{0}^{x} f(t) dt has a point of inflection, given ff has horizontal tangents at x=2x=2 and x=5x=5.

See Solution

Problem 14916

Find the derivative of y=33x+7y=\frac{3}{3x+7}.

See Solution

Problem 14917

Find the derivative of y=sin2xy=\sin ^{2} x or y=sinxsinxy=\sin x \cdot \sin x.

See Solution

Problem 14918

Berechnen Sie das Integral von w(t)=0,001t2w(t)=0,001 \cdot t^{2} für 0t1000 \leqq t \leqq 100 und deuten Sie das Ergebnis.

See Solution

Problem 14919

Find the derivative of y=3x+7x3y=\frac{3x+7}{x^{3}}.

See Solution

Problem 14920

Find the tangent line equation for the curve y=x2e5xy=x^{2} e^{-5 x} at x=1x=1.

See Solution

Problem 14921

Find the derivative of y=1x2sinxy=\frac{1-x^{2}}{\sin x}.

See Solution

Problem 14922

Find the derivative of y=cscxy=\csc x.

See Solution

Problem 14923

Find the derivative of y=cos2xy=\cos^{2} x.

See Solution

Problem 14924

Find the derivative of y=x23x+7y=\frac{x^{2}}{3x+7}.

See Solution

Problem 14925

Calculate the area under the curve from -3 to 2 for the function f(x)=8f(x) = 8. What is 328dx\int_{-3}^{2} 8 d x?

See Solution

Problem 14926

Calculate the area under the curve: 512xdx=\int_{-5}^{1} 2 x \, dx = \square

See Solution

Problem 14927

Find the derivative of the function y=3x2+7xx2y=\frac{3x^{2}+7x}{x^{2}}.

See Solution

Problem 14928

Find the function ff from the limit of Riemann sums and express it as a definite integral: limΔ0k=1n(xk)6Δxk;[2,11]\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n}\left(x_{k}^{*}\right)^{6} \Delta x_{k} ;[2,11]

See Solution

Problem 14929

Find the derivative of y=3x+7xy=\frac{3x+7}{\sqrt{x}}.

See Solution

Problem 14930

Find the function ff from the limit of Riemann sums and express it as a definite integral over [1,2][1,2]: limΔ0k=1nxksinxkΔxk.\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} x_{k}^{*} \sin x_{k}^{*} \Delta x_{k}.

See Solution

Problem 14931

Find the function ff and express the limit of Riemann sums as a definite integral: limΔ0k=1nxkcosxkΔxk;[1,2]\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} x_{k}^{*} \cos x_{k}^{*} \Delta x_{k} ;[1,2].

See Solution

Problem 14932

Find the derivative of the function y=2x53x+7y=\frac{2x-5}{3x+7}.

See Solution

Problem 14933

Find the function ff for the limit of Riemann sums: limΔ0k=1nxksinxkΔxk\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} x_{k}^{*} \sin x_{k}^{*} \Delta x_{k} on [1,2][1,2].

See Solution

Problem 14934

Graph a function ff with these properties: domain all reals, f(2)=3f(-2)=3, f(2)=3f(2)=3, no xx intercepts, yy intercept 5, limxf(x)=0\lim_{x \to \infty} f(x)=0, limxf(x)=0\lim_{x \to -\infty} f(x)=0, f(x)>0f'(x)>0 for x<0x<0, f(x)<0f'(x)<0 for x>0x>0, f(0)=0f'(0)=0, f(x)<0f''(x)<0 for 2<x<2-2<x<2, f(x)>0f''(x)>0 for x>2|x|>2, f(2)=0f''(2)=0, f(2)=0f''(-2)=0.

See Solution

Problem 14935

Find the tangent equation to the curve x=t2x=t^2, y=t1/ty=t-1/t at the point where t=2t=2.

See Solution

Problem 14936

Find the slope of y2(4x)=x2y^{2}(4-x)=x^{2} at the point (3, -3) by calculating the derivative with respect to x.

See Solution

Problem 14937

Evaluate 72g(x)dx\int_{7}^{2} g(x) d x given 27g(x)dx=8\int_{2}^{7} g(x) d x=-8.

See Solution

Problem 14938

Find dy/dx for the parametric equations x=te2tx=t-e^{2 t} and y=e2ty=e^{2 t}.

See Solution

Problem 14939

Find g(52)g^{\prime}\left(\frac{5}{2}\right) given g(x)9xsin(g(x))=6x2x35g(x)-9 x \sin(g(x))=6 x^{2}-x-35 and g(52)=0g\left(\frac{5}{2}\right)=0.

See Solution

Problem 14940

Find f(4)f^{\prime}(4) for f(x)=(g(x))2f(x)=(g(x))^{2}, f(x)=h(x)f(x)=\sqrt{h(x)}, and f(x)=h(g(x))f(x)=h(g(x)) using given values.

See Solution

Problem 14941

Given 24f(x)dx=7\int_{2}^{4} f(x) d x=-7, 27f(x)dx=3\int_{2}^{7} f(x) d x=-3, and 27g(x)dx=8\int_{2}^{7} g(x) d x=-8, find:
1. 72g(x)dx\int_{7}^{2} g(x) d x
2. 278g(x)dx\int_{2}^{7} 8 g(x) d x
3. 27[g(x)f(x)]dx=\int_{2}^{7}[g(x)-f(x)] d x=\square

See Solution

Problem 14942

Find the tangent line equation to the hyperbola 3x23xy4y2+2x=243 x^{2}-3 x y-4 y^{2}+2 x=24 at the point (3,3)(3,-3).

See Solution

Problem 14943

Evaluate the integral 03π/2xsinxdx\int_{0}^{3 \pi / 2} x \sin x \, dx given areas of regions R1,R2,R3,R4R_{1}, R_{2}, R_{3}, R_{4} as 1,π1,π+1,2π11, \pi-1, \pi+1, 2\pi-1.

See Solution

Problem 14944

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the circle defined by the equation x2+y2=25x^{2}+y^{2}=25.

See Solution

Problem 14945

Given 24f(x)dx=7\int_{2}^{4} f(x) d x=-7, 27f(x)dx=3\int_{2}^{7} f(x) d x=-3, and 27g(x)dx=8\int_{2}^{7} g(x) d x=-8, find:
1. 72g(x)dx\int_{7}^{2} g(x) d x.
2. 278g(x)dx\int_{2}^{7} 8 g(x) d x.
3. 27[g(x)f(x)]dx\int_{2}^{7}[g(x)-f(x)] d x.
4. 27[8g(x)f(x)]dx=\int_{2}^{7}[8 g(x)-f(x)] d x=\square.

See Solution

Problem 14946

Given 24f(x)dx=7\int_{2}^{4} f(x) d x=-7, 27f(x)dx=3\int_{2}^{7} f(x) d x=-3, and 27g(x)dx=8\int_{2}^{7} g(x) d x=-8, find:
1. 72g(x)dx=8\int_{7}^{2} g(x) d x=8 (simplify).
2. 278g(x)dx=\int_{2}^{7} 8 g(x) d x=\square (simplify).

See Solution

Problem 14947

Find dydx\frac{d y}{d x} for the relation x+3xy+y2=2xx + 3xy + y^2 = 2x.

See Solution

Problem 14948

Find the slope of the tangent line to the ellipse x2+4y2=16x^{2}+4 y^{2}=16 at the point (4,0)(4,0).

See Solution

Problem 14949

Bestimme die Geschwindigkeiten des Fahrzeugs bei t=2t = 2, 55, 88 und 1010 s für f(t)=t2f(t) = t^{2}.

See Solution

Problem 14950

Bestimmen Sie die Ableitung der Funktionen: a) f(x)=2x2f(x)=2 x^{2}, b) f(x)=xf(x)=x, c) f(x)=2xf(x)=2 x, d) f(x)=5f(x)=5, e) f(x)=x2f(x)=-x^{2}, f) f(x)=2x+2f(x)=2 x+2, g) f(x)=ax+bf(x)=a x+b, h) f(x)=ax2f(x)=a x^{2}, i) f(x)=ax2+bx+cf(x)=a x^{2}+b x+c.

See Solution

Problem 14951

Evaluate the integral 18f(x)dx\int_{1}^{8} f(x) d x where f(x)={2xif 1x5122xif 5<x8f(x)=\begin{cases} 2x & \text{if } 1 \leq x \leq 5 \\ 12-2x & \text{if } 5<x \leq 8 \end{cases}. Find 18f(x)dx=\int_{1}^{8} f(x) d x=\square.

See Solution

Problem 14952

Evaluate the integral 37[3f(x)2g(x)]dx\int_{3}^{7}[3 f(x)-2 g(x)] d x given 37f(x)dx=6\int_{3}^{7} f(x) d x=6 and 37g(x)dx=5\int_{3}^{7} g(x) d x=5.

See Solution

Problem 14953

Bestimme die Ableitungen: a) dEdt\frac{d E}{d t}, b) dEda\frac{\mathrm{dE}}{\mathrm{da}}, c) dEdb\frac{d E}{d b} für E=at+b2t2E=a t+\frac{b}{2} t^{2}.

See Solution

Problem 14954

Find the work done by the tension in a string lifting a mass MM at an acceleration of g4\frac{g}{4} over a distance \ell.

See Solution

Problem 14955

Estimate the area under f(x)=4x4f(x)=4 x^{4} from x=0x=0 to x=4x=4 using 4 equal subintervals and right endpoints.

See Solution

Problem 14956

Find the linearization L(x)L(x) of the function f(x)=ln(x2)f(x)=\ln(x^{2}) at the point x=ex=e.

See Solution

Problem 14957

Determine if the rectangular approximation is an underestimate or overestimate. Estimate area under f(x)=4x4f(x)=4x^4 from x=0x=0 to x=4x=4 using 4 left endpoints.

See Solution

Problem 14958

Estimate the area under f(x)=4x4f(x)=4 x^{4} from x=0x=0 to x=4x=4 using 4 equal subintervals with left endpoints.

See Solution

Problem 14959

Hochbehälter: Gegeben ist h(t)=18t22t+8h(t)=\frac{1}{8} t^{2}-2 t+8. a) Graph zeichnen. b) Wann leer? c) Halb und 1/41/4 voll? d) Durchschnittliche Sinkgeschwindigkeit?

See Solution

Problem 14960

Bestimme dudv\frac{d u}{d v} aus der Gleichung 2u=vw2v32 \cdot u = v \cdot w^{2} - v^{3} (mit konstantem ww).

See Solution

Problem 14961

Find the limit of p(t)=4300tt+1p(t)=\frac{4300 t}{t+1} as tt approaches infinity, where p(t)p(t) is the rabbit population.

See Solution

Problem 14962

Evaluate the integral dxx2+36\int_{-\infty}^{\infty} \frac{d x}{x^{2}+36} or state if it diverges.

See Solution

Problem 14963

Gegeben ist die Formel 2u=vw2v32 \cdot u=v \cdot w^{2}-v^{3}. Finde a) dudv\frac{d u}{d v} (für konstantes ww) und b) dudw\frac{d u}{d w} (für konstantes vv).

See Solution

Problem 14964

Determine the end behavior of the function f(x)=1536+3724x3+4x6+5248x+6616x2+916x4+100x5f(x)=1536+3724 x^{3}+4 x^{6}+5248 x+6616 x^{2}+916 x^{4}+100 x^{5}.

See Solution

Problem 14965

Determine the truth of these statements: I. If f(c)=0f^{\prime}(c)=0, then ff has a local max/min at x=cx=c. II. If f(x)f(x) is increasing everywhere, it has no inflection points. III. A function ff can have a local min at x=3x=3 with f(3)0f^{\prime}(3) \neq 0.

See Solution

Problem 14966

Find the limit: limx4x32x+10\lim _{x \rightarrow-\infty} 4 x^{3}-2 x+10. Options: a. 0 b. \infty c. -\infty d. undefined

See Solution

Problem 14967

Approximate the integral 05(x2+17x5)dx\int_{0}^{5}(-x^{2}+17x-5)dx using a Riemann Sum with 5 subintervals and right endpoints.

See Solution

Problem 14968

Given functions f(x)f(x), g(x)g(x), and h(x)h(x), determine their behavior at critical points x=2x=2 and x=1x=1 and x=3x=3.

See Solution

Problem 14969

Evaluate the integral from 8 to 27 of x3\sqrt[3]{x} with respect to xx.

See Solution

Problem 14970

Evaluate the integral from -6 to 0: 60(2xex)dx\int_{-6}^{0}\left(2 x-e^{x}\right) d x

See Solution

Problem 14971

Evaluate the integral from 0 to 1: 01x(4x3+7x4)dx\int_{0}^{1} x(4 \sqrt[3]{x}+7 \sqrt[4]{x}) d x

See Solution

Problem 14972

Calculate the sum of the series i=0(15)i\sum_{i=0}^{\infty}\left(\frac{1}{5}\right)^{i}.

See Solution

Problem 14973

Find the limit: limx2x34x2+104x3+2x1\lim _{x \rightarrow \infty} \frac{-2 x^{3}-4 x^{2}+10}{4 x^{3}+2 x-1}.

See Solution

Problem 14974

Calculate the sum of the series i=0(710)i\sum_{i=0}^{\infty}\left(\frac{7}{10}\right)^{i}.

See Solution

Problem 14975

Find the limit as xx approaches 2 for x24x23x+2\frac{x^{2}-4}{x^{2}-3x+2}. Options: 1/2-1/2, 4, 4-4, 1/5-1/5.

See Solution

Problem 14976

Approximate the area under f(x)=6ex2f(x)=6 e^{-x^{2}} on [0,6][0,6] using 3 equal subintervals and right endpoints. Round to 3 decimals.

See Solution

Problem 14977

Calculate the sum of the series i=0(35)i\sum_{i=0}^{\infty}\left(\frac{3}{5}\right)^{i}.

See Solution

Problem 14978

Approximate the area under f(x)=6ex2f(x)=6 e^{-x^{2}} on [0,6][0,6] using 3 rectangles with right endpoints. Find Δx\Delta x and endpoints.

See Solution

Problem 14979

Problem 1: Start with \$1000 at 2% interest compounded yearly.
(a) Find the formula for A(t)A(t). (b) How long to double your money? (c) Compute the change rate after 10 years.

See Solution

Problem 14980

Determine if the series converges: k=19k2+4k\sum_{k=1}^{\infty} \frac{\sqrt{9 k^{2}+4}}{k}

See Solution

Problem 14981

Evaluate the integral from 0 to 3: 03(6ex+5cosx)dx\int_{0}^{3}\left(6 e^{x}+5 \cos x\right) d x.

See Solution

Problem 14982

Find dydx\frac{d y}{d x} at the point (1,0)(1,0) for e2ye(y2y)=x4x2e^{2 y}-e^{(y^{2}-y)}=x^{4}-x^{2}. Options: (A) 0 (B) 12\frac{1}{2} (C) 23\frac{2}{3} (D) 2

See Solution

Problem 14983

Find the first and second derivatives of these functions: (a) f(x)=x3+14x2+6x+7f(x)=x^{3}+14 x^{2}+6 x+7, (b) f(x)=cos(x2)f(x)=\cos(x^{2}), (c) f(x)=ex+exf(x)=e^{x}+e^{-x}, (d) f(x)=ln(5x)f(x)=\ln(5x), (e) f(x)=sin(x)cos(x)f(x)=\sin(x)\cos(x).

See Solution

Problem 14984

Find the first and second derivatives for these functions: (a) f(x)=x3+14x2+6x+7f(x)=x^{3}+14 x^{2}+6 x+7, (b) f(x)=cos(x2)f(x)=\cos(x^{2}), (c) f(x)=ex+exf(x)=e^{x}+e^{-x}, (d) f(x)=ln(5x)f(x)=\ln(5x), (e) f(x)=sin(x)cos(x)f(x)=\sin(x)\cos(x).

See Solution

Problem 14985

Evaluate the integral: 0π/42+5cos2θcos2θdθ\int_{0}^{\pi / 4} \frac{2+5 \cos ^{2} \theta}{\cos ^{2} \theta} d \theta.

See Solution

Problem 14986

Aufgabe 7: a) Definiere die Ableitung einer Funktion ff an der Stelle x0x_{0}. b) Unter welchen Bedingungen ist eine Funktion gg differenzierbar? c) Bestimme die Ableitung von f(x)=1xf(x)=\frac{1}{x} an der Stelle x0=2x_{0}=2 schrittweise.

See Solution

Problem 14987

Calculate 07f(x)dx\int_{0}^{7} f(x) d x where f(x)=5f(x) = 5 for x<5x<5 and f(x)=xf(x) = x for x5x \geq 5.

See Solution

Problem 14988

Calculate the integral from 8 to 27 of the cube root of x: 827x3dx\int_{8}^{27} \sqrt[3]{x} dx.

See Solution

Problem 14989

Calculate the threshold value of infection from the function f(t)=t(t21)(t+1)f(t)=-t(t-21)(t+1) at t=14t=14 days. Round to the nearest whole number.

See Solution

Problem 14990

Find the limit: As xx \rightarrow -\infty, what is arctanx\arctan x?

See Solution

Problem 14991

Evaluate the integral from 8 to 27 of x3\sqrt[3]{x} with respect to xx.

See Solution

Problem 14992

Evaluate the integral from 4 to 5 of (2+2y)2dy(2+2y)^{2} \, dy.

See Solution

Problem 14993

Determine if the sequences converge or diverge. If they converge, find the limit:
1. an=5n+2a_{n}=\frac{5}{n+2}
2. an=5n+2a_{n}=5 \sqrt{n+2}
3. an=4n23n2n2+1a_{n}=\frac{4 n^{2}-3 n}{2 n^{2}+1}
4. an=4n23n2n+1a_{n}=\frac{4 n^{2}-3 n}{2 n+1}
5. an=n4n32na_{n}=\frac{n^{4}}{n^{3}-2 n}
6. an=2+(0.86)na_{n}=2+(0.86)^{n}

See Solution

Problem 14994

Evaluate the integral: 0π/42+5cos2θcos2θdθ\int_{0}^{\pi / 4} \frac{2+5 \cos ^{2} \theta}{\cos ^{2} \theta} d \theta.

See Solution

Problem 14995

A culture of Rhodobacter sphaeroides starts with 24 bacteria and grows at 3.4657e0.1386t3.4657 e^{0.1386 t}. Find the population after 6 hours.

See Solution

Problem 14996

A bacteria colony grows at 4.0591e1.1t4.0591 e^{1.1 t} per hour. If it starts with 40, find the population after 4 hours.

See Solution

Problem 14997

Gegeben ist die Funktion f(x)=0,5x2f(x)=0,5 x^{2}. Bestimmen Sie den Wert von f(2)f^{\prime}(2) an der Tangente im Punkt P(22)P(2 \mid 2).

See Solution

Problem 14998

Gegeben ist die Funktion f(x)=(x+3)exf(x)=(x+3) \cdot e^{-x}. Finde Nullstellen, Ableitungen, Hoch-/Tiefpunkte und skizziere den Graphen. Berechne die Tangente und Normale bei A(03)A(0 \mid 3).

See Solution

Problem 14999

Find the mass of an 881 kg881 \mathrm{~kg} radioactive sample after 6 days, decaying at 14%14\% per day. Round to the nearest tenth.

See Solution

Problem 15000

Gegeben ist die Funktion f(x)=0,5x2f(x)=0,5 x^{2}. Bestimmen Sie den Wert von f(2)f^{\prime}(2) anhand der Tangente im Punkt P(22)P(2 \mid 2).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord