Calculus

Problem 5101

Find the derivative of h(x)=(x2+4)(2x2x+1)h(x)=(x^{2}+4)(2x^{2}-x+1).

See Solution

Problem 5102

A potato is launched from a 50-ft building with an initial speed of 75ft/s75 \, \text{ft/s}. Find its velocity when it hits the ground.

See Solution

Problem 5103

Differentiate z=Ay6+Beyz=\frac{A}{y^{6}}+B e^{y} with respect to yy.

See Solution

Problem 5104

Connor invested \$77,000 at 4.5\% interest compounded continuously. How much will he have after 12 years?

See Solution

Problem 5105

How much will Serenity have after 12 years if she invests \$3,100 at a 2.9% continuous interest rate?

See Solution

Problem 5106

Find the derivative of h(x)=(4x2+3x)(5x22)h(x)=(4x^{2}+3x)(5x^{2}-2).

See Solution

Problem 5107

Find the derivative of f(x)=3x(sin(x))2f(x)=3x(\sin(x))^{2}.

See Solution

Problem 5108

Find the derivative of f(x)=(x2+2x)x3f(x)=(x^{2}+2x) \cdot \sqrt[3]{x}.

See Solution

Problem 5109

Gegeben ist die Funktion f(x)=1xcos(x)f(x) = \frac{1}{x} \cos(x). Bestimmen Sie Definitionsmenge, Nullstellen, Grenzwert und zeichnen Sie Graphen.

See Solution

Problem 5110

Find the revenue function R(x)R(x) from p=100.002xp=10-0.002x, then calculate R(x)R'(x) and its values at x=8000x=8000 and x=9000x=9000.

See Solution

Problem 5111

Berechne die verbleibende Menge an Cs 137 nach 2, 5, 10 und 33 Jahren, wenn 2,1\% jährlich zerfallen, aus 500 g.

See Solution

Problem 5112

Find the critical numbers for the function f(x)=23x33x280x10f(x)=\frac{2}{3} x^{3}-3 x^{2}-80 x-10.

See Solution

Problem 5113

Is it true or false that if f(x)>0f^{\prime}(x)>0 on an interval, then ff is positive there? Explain your answer. Options: A, B, C, D.

See Solution

Problem 5114

Is it true or false that derivatives alternate between positive and negative across regions separated by critical numbers?

See Solution

Problem 5115

Find the critical numbers, increasing intervals, and decreasing intervals for f(x)=2.5+4.2x1.1x2f(x)=2.5+4.2 x-1.1 x^{2}.

See Solution

Problem 5116

Find the marginal profit at x=6x=6 for the profit function P(x)=x2+12x32P(x)=-x^{2}+12x-32.

See Solution

Problem 5117

Identify functions that can be evaluated without the Chain Rule: z=sintz=\sqrt{\sin t}, y=tanxcosxy=\tan x \cos x, T(v)=(3v+7)2T(v)=(3 v+7)^{2}, S(x)=3tan2xS(x)=3 \tan ^{2} x, A(x)=tan(3x2)A(x)=\tan \left(3 x^{2}\right), f(x)=tan(cosx)f(x)=\tan (\cos x).

See Solution

Problem 5118

Trouvez les limites à gauche et à droite de la fonction en -2 et 3. Écrivez inf pour \infty et -inf pour -\infty.
limx2f= \lim _{x \rightarrow-2^{-}} f= limx2+f= \lim _{x \rightarrow-2^{+}} f= limx3f= \lim _{x \rightarrow 3^{-}} f= limx3+f= \lim _{x \rightarrow 3^{+}} f=

See Solution

Problem 5119

Find the average rate of change of the function h(x)=x24x+7h(x)=-x^{2}-4x+7 on the interval 7x0-7 \leq x \leq 0.

See Solution

Problem 5120

Find the derivative of f(x)=sin(5x2x)f(x)=\sin(5x^{2}-x) using the Chain Rule.

See Solution

Problem 5121

Find the derivatives: a) For h(x)=f(3x)h(x)=f(3x), find h(2)h'(2). b) For y=f(x2+2)y=f(x^2+2), find yx=1y'|_{x=1}. c) For G(x)=cos(f(x))G(x)=\cos(f(x)), find G(π)G'(\pi).

See Solution

Problem 5122

Déterminez la convergence de la suite an=3n45n8+4n5a_{n}=\frac{3 n^{4}}{\sqrt{5 n^{8}+4 n^{5}}}. Limite ou diverge ?

See Solution

Problem 5123

Trouvez aa pour que limx2f(x)\lim _{x \rightarrow 2} f(x) existe, avec f(x)={exa9si x2x2+5si x<2f(x)=\begin{cases} e^{x-a}-9 & \text{si } x \geq 2 \\ x^{2}+5 & \text{si } x<2 \end{cases}.

See Solution

Problem 5124

Find the derivative using the Power Rule: ddtt3t=4=\left.\frac{d}{d t} t^{-3}\right|_{t=4}=

See Solution

Problem 5125

Find the units of S=2tS=2^t, the average rate of change in 5 months, and the growth rate at t=5t=5 using an interval of 0.001.

See Solution

Problem 5126

Find the slope mm of the tangent line to y=f(x)y=f(x) at (5,f(5))(-5, f(-5)) where f(x)=6x26f(x) = 6x^2 - 6.

See Solution

Problem 5127

Find the derivative of h(t)=9t4th(t)=9 \sqrt{t}-\frac{4}{\sqrt{t}}. Express in exact form: h(t)=h^{\prime}(t)=

See Solution

Problem 5128

Find the derivative of P(V)=3VP(V)=\frac{3}{V} at V=5V=-5. What is dPdVV=5=\left.\frac{d P}{d V}\right|_{V=-5}=?

See Solution

Problem 5129

Find points on the graph of f(x)=27xx3f(x)=27x-x^{3} where the tangent line is horizontal. Provide as (x,y)(x, y) pairs.

See Solution

Problem 5130

Find f(1)f^{\prime}(1) for f(x)=5x2+2f(x)=5^{x^{2}+2}. Answer in the form "number/n natural log".

See Solution

Problem 5131

Find all xx where tangent lines to y=x4y=x^{4} and y=x5y=x^{5} have the same slope.
x= x=

See Solution

Problem 5132

Find xx where the slope of the tangent to y=5x221x+7y=5 x^{2}-21 x+7 is steeper than that of y=13xy=\frac{1}{3} x (interval form).

See Solution

Problem 5133

Find the average rate of change of j(x)=3x3j(x)=3x^{3} from x=1x=1 to x=1+hx=1+h.

See Solution

Problem 5134

Find the derivative dydx\frac{dy}{dx} for x+y=100\sqrt{x}+\sqrt{y}=100 using implicit differentiation.

See Solution

Problem 5135

Find f(x)f^{\prime}(x) using the limit definition for f(x)=x2+23xf(x) = x^{2} + 23x.

See Solution

Problem 5136

Find xx where the slope of the tangent to y=5x221x+7y=5x^2-21x+7 is steeper than that of y=13x3y=\frac{1}{3}x^3. Answer as an interval (a,b)(a, b).

See Solution

Problem 5137

Find the rate of change of a circle's area with respect to radius rr. What is it when r=6r=6?

See Solution

Problem 5138

Find f(x)f^{\prime}(x) using the limit definition for f(x)=(17x)1/2+5f(x)=(17 x)^{-1/2}+5.

See Solution

Problem 5139

Find dKdt\frac{d K}{d t} for K=A5B34K=\frac{A^{5} B^{3}}{4}, with BB varying and AA constant.

See Solution

Problem 5140

Find the surface area change rate of a sphere with respect to radius rr. What is it when r=12r=12?

See Solution

Problem 5141

Given K=A2B33K=\frac{A^{2} B^{3}}{3}, find dKdt\frac{d K}{d t} when AA and BB vary with respect to tt.

See Solution

Problem 5142

Find the values of xx (8,2,0.3,5-8, -2, 0.3, 5) where the limit of ff exists, given the limits at 2-2 and 33.

See Solution

Problem 5143

Find the rate of change of a circle's area with respect to radius rr when r=6r=6. What is the rate?

See Solution

Problem 5144

Find the horizontal asymptote of the function f(x)=15x2x23x2+7f(x)=\frac{1-5 x-2 x^{2}}{3 x^{2}+7} for x>0x>0. Choices: A) y=23y=-\frac{2}{3} B) y=13y=\frac{1}{3} C) y=23y=\frac{2}{3}.

See Solution

Problem 5145

Find the derivative of f(x)=4a3bx2f(x)=\frac{4 a}{3 b x^{2}} in terms of xx, aa, and bb. f(x)=f^{\prime}(x)=

See Solution

Problem 5146

Find the derivative using the Power Rule: ddtt3t=2=\left.\frac{d}{d t} t^{-3}\right|_{t=2}=

See Solution

Problem 5147

Find the derivative using the Power Rule: ddtt8/5\frac{d}{d t} t^{-8/5} at t=1t=1. What is the result?

See Solution

Problem 5148

Find the horizontal asymptote of the function f(x)=3x+2e2x+1f(x)=\frac{3^{x}+2}{e^{2 x}+1} for x>0x>0. Options: (A) y=0y=0, (B) y=3e2y=\frac{3}{e^{2}}, (C) y=1y=1, (D) none.

See Solution

Problem 5149

Use the table to solve these:
a) Find ddx[0f(x)]x=5=\left.\frac{d}{d x}[0 f(x)]\right|_{x=5}= b) Find ddx[f(x)+g(x)]x=3=\left.\frac{d}{d x}[f(x)+g(x)]\right|_{x=3}= c) Find the tangent line equation y=f(x)g(x)y=f(x)-g(x) at x=7x=7.

See Solution

Problem 5150

Find the horizontal asymptote of the function f(x)=2x+3x2+5x37x4x42x35x2+2x3f(x)=\frac{2-x+3 x^{2}+5 x^{3}-7 x^{4}}{x^{4}-2 x^{3}-5 x^{2}+2 x-3} for x>0x>0. Options: (A) y=7y=-7, (B) y=2y=2, (C) y=7y=7, (D) none.

See Solution

Problem 5151

Find f(1)f^{\prime}(1) for f(x)=4x3f(x)=4 \sqrt[3]{x} and the tangent line's equation at x=1x=1. Express as y=f(x)y=f(x).

See Solution

Problem 5152

Find the derivative of h(t)=3t4th(t)=3 \sqrt{t}-\frac{4}{\sqrt{t}}. Use exact numbers and symbolic notation.

See Solution

Problem 5153

Find ff^{\prime} and the tangent line equation at x=5x=5 for f(x)=12x3f(x)=12 x^{-3}. Express as y=f(x)y=f(x).

See Solution

Problem 5154

Find the volume VV of the solid formed by rotating the area between y=316x2y=3\sqrt{16-x^2}, y=0y=0, x=2x=2, x=3x=3 around the xx-axis.

See Solution

Problem 5155

Find all values of xx where the tangent lines to y=x7y=x^{7} and y=x8y=x^{8} have the same slope.

See Solution

Problem 5156

Find the derivative of the function y=5x2e3xy=5 x^{2} e^{3 x}.

See Solution

Problem 5157

Find dKdt\frac{d K}{d t} for K=A5B42K=\frac{A^{5} B^{4}}{2} where AA varies with tt and BB is constant.

See Solution

Problem 5158

Find the derivative dydx\frac{dy}{dx} for the equation x3+y3=5x^{3}+y^{3}=5 using implicit differentiation.

See Solution

Problem 5159

Plot f(x)=xcos(xπ2)f(x)=\left|x-\cos \left(x-\frac{\pi}{2}\right)\right| using a graphing tool and analyze its behavior at x=0x=0. Is ff nondifferentiable or differentiable? Is the tangent line vertical, nonexistent, or horizontal?

See Solution

Problem 5160

Find the derivative of f(x)=7a3bx2f(x)=\frac{7 a}{3 b x^{2}} in terms of xx, aa, and bb. f(x)= f^{\prime}(x)=

See Solution

Problem 5161

Find true statements about the function f(x)=2x3+x2+6x+8f(x)=2x^{3}+x^{2}+6x+8 from its derivative.

See Solution

Problem 5162

Find the marginal profit of the function P(x)=x34x2+10x+7P(x)=x^{3}-4 x^{2}+10 x+7 at x=6x=6.

See Solution

Problem 5163

Find: a) ddx[3f(x)]x=3\left.\frac{d}{d x}[-3 f(x)]\right|_{x=3}, b) ddx[f(x)+g(x)]x=6\left.\frac{d}{d x}[f(x)+g(x)]\right|_{x=6}, c) Tangent line equation for y=f(x)g(x)y=f(x)-g(x) at x=2x=2.

See Solution

Problem 5164

Find the number of CDs, xx, that maximizes revenue given R(x)=50xx26R(x)=50x-\frac{x^2}{6}.

See Solution

Problem 5165

Find the fourth derivative of the function f(x)=cos(sin(x))f(x)=\cos (\sin (x)) at x=0x=0, denoted as f(4)(0)f^{(4)}(0).

See Solution

Problem 5166

Find the 4th derivative of f(x)=cos(sin(x))f(x)=\cos(\sin(x)) at x=0x=0 using the Taylor series.

See Solution

Problem 5167

Differentiate y=3xsinx+cosx y = \frac{3x}{\sin x + \cos x} .

See Solution

Problem 5168

Find f(x)f^{\prime}(x) using logarithmic differentiation for f(x)=((3x31)5x342x+2)5f(x)=\left(\frac{(3x^{3}-1)\sqrt{5x^{3}-4}}{2x+2}\right)5.

See Solution

Problem 5169

Find the derivative of the function 3x+10x2+3\frac{3 x+10}{x^{2}+3}.

See Solution

Problem 5170

Find the derivative of f(x)=x9(x6)9(x2+7)7f(x)=\frac{x^{9}(x-6)^{9}}{(x^{2}+7)^{7}} using logarithmic differentiation. f(x)= f^{\prime}(x)=

See Solution

Problem 5171

Find the derivative of y=(7+sin(x))xy=(7+\sin (x))^{x} using Logarithmic Differentiation: dydx=\frac{d y}{d x}=

See Solution

Problem 5172

Find the displacement of a vehicle with velocity v(t)=24+5tt2v(t) = 24 + 5t - t^2 after 5 seconds using overestimate U5U_{5} and underestimate L5L_{5}.

See Solution

Problem 5173

Find the global extrema of f(x)=cos(2x)xf(x)=\cos(2x)-x for x[π2,π2]x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].

See Solution

Problem 5174

Find f(x)f^{\prime}(x) for f(x)=(6x3)4(7x2+3)4f(x)=(6 x-3)^{4} \cdot(7 x^{2}+3)^{4} using logarithmic differentiation.

See Solution

Problem 5175

Nennen Sie drei verschiedene Funktionen, die für x+x \rightarrow+\infty keinen Grenzwert haben.

See Solution

Problem 5176

Bestimmen Sie die Tangente und Normale von ff bei P(1,f(1))P(-1, f(-1)) und berechnen Sie den Steigungswinkel. a) f(x)=x53x3f(x)=x^{5}-3 x^{3} b) f(x)=sin(πx)f(x)=\sin (\pi \cdot x) c) f(x)=2x+4f(x)=\sqrt{2 x+4} d) f(x)=1x2f(x)=\frac{1}{x^{2}}

See Solution

Problem 5177

Limits and asymptotes:
1. Find limx1f(x)\lim_{x \to -1} f(x), limx0+f(x)\lim_{x \to 0^+} f(x), f(2)f(2), and limx3f(x)\lim_{x \to 3} f(x).
2. Identify vertical asymptotes of f(x)=11x2f(x)=1-\frac{1}{x^2}.
3. Determine limx2+x2x\lim_{x \to 2^+} \frac{x}{2-x}.
4. Which function has no vertical asymptote at x=πx=\pi?

See Solution

Problem 5178

Bestimmen Sie die Tangente und Normale an ff bei P(1,f(1))P(-1, f(-1)) und berechnen Sie den Steigungswinkel für: a) f(x)=x53x3f(x)=x^{5}-3 x^{3}, b) f(x)=sin(πx)f(x)=\sin(\pi x), c) f(x)=2x+4f(x)=\sqrt{2x+4}, d) f(x)=1x2f(x)=\frac{1}{x^{2}}.

See Solution

Problem 5179

Bestimmen Sie die Stammfunktionen für: a. f1(x)=x3f_{1}(x)=x^{3}, b. f2(x)=x14f_{2}(x)=x^{14}.

See Solution

Problem 5180

Finde alle Stammfunktionen für die Funktion f1(x)=x3f_{1}(x)=x^{3}.

See Solution

Problem 5181

Beweisen Sie, dass wenn F\mathrm{F} eine Stammfunktion von f\mathrm{f} ist, dann G(x)=F(x)+cG(x)=F(x)+c auch eine Stammfunktion ist.

See Solution

Problem 5182

Bestimmen Sie Tangenten- und Normalengleichungen sowie den Steigungswinkel der Tangente für ff bei P(1,f(1))P(-1, f(-1)). a) f(x)=x53x3f(x)=x^{5}-3 x^{3} b) f(x)=sin(πx)f(x)=\sin (\pi \cdot x) c) f(x)=2x+4f(x)=\sqrt{2 x+4} d) f(x)=1x2f(x)=\frac{1}{x^{2}}

See Solution

Problem 5183

Bestimmen Sie das Integral x3dx\int x^{3} d x und überprüfen Sie das Ergebnis durch Ableitung.

See Solution

Problem 5184

Finden Sie die Stammfunktionen für die folgenden Funktionen: a. f1(x)=x3f_{1}(x)=x^{3}, b. f2(x)=x14f_{2}(x)=x^{14}, c. f3(x)=14f_{3}(x)=14, d. f4(x)=xf_{4}(x)=x, e. f5(x)=2x3f_{5}(x)=2 x^{3}, f. f6(x)=x3f_{6}(x)=-x^{3}, g. f7(x)=x2f_{7}(x)=x^{-2}.

See Solution

Problem 5185

Bestimmen Sie die Integrale x3dx\int x^{3} dx und ax3dx\int a \cdot x^{3} dx und überprüfen Sie die Ergebnisse durch Ableitung.

See Solution

Problem 5186

Bestimmen Sie die Integrale und überprüfen Sie die Ergebnisse durch Ableitung: a. x3dx\int x^{3} dx, b. ax3dx\int a \cdot x^{3} dx, c. axndx\int a \cdot x^{n} dx.

See Solution

Problem 5187

Bestimme die Grenzwerte von f(x)=14(x+1)2(x2,5)f(x)=\frac{1}{4}(x+1)^{2}(x-2,5) für xx \to \infty und xx \to -\infty.

See Solution

Problem 5188

Bestimmen Sie die Ableitung von fa(x)f_{a}(x) für die Funktionen a) fa(x)=sin(ax)ax2f_{a}(x)=\sin (a x) \cdot a x^{2}, b) fa(x)=(ax)4axf_{a}(x)=(a x)^{4} \cdot \sqrt{a x}, c) fa(x)=(x2+a)xf_{a}(x)=\left(x^{2}+a\right) \cdot \sqrt{x}.

See Solution

Problem 5189

Find the derivative of f(x)=24x1f(x)=\frac{2}{4x-1}.

See Solution

Problem 5190

Calculate the integral: exex+2dx\int e^{x} \cdot e^{x+2} \, dx

See Solution

Problem 5191

j) Find the integral of exex+2e^{x} \cdot e^{x+2} with respect to xx. k) Calculate the integral of 4ex\frac{4}{e^{x}} with respect to xx.

See Solution

Problem 5192

Calculate the integral: (2x+1x)xdx\int\left(2 x+\frac{1}{x}\right) \cdot x \, dx

See Solution

Problem 5193

Calculate the integral: nx2n1dx\int n \cdot x^{2 n-1} d x

See Solution

Problem 5194

Evaluate the integrals: 1) 4exdx\int \frac{4}{e^{x}} dx and 2) (sinx+2cosx)dx\int(\sin x + 2 \cos x) dx.

See Solution

Problem 5195

Finde alle Werte für a, sodass der Graph GfaG_{f_{a}} rechtsgekrümmt ist für die Funktionen: a) fa(x)=a(2x3)4f_{a}(x)=a \cdot(2 x-3)^{4} b) fa(x)=a2x(x0)f_{a}(x)=\sqrt{a^{2} x}(x \geq 0) c) fa(x)=ax2(x0)f_{a}(x)=\frac{a}{x^{2}}(x \neq 0)

See Solution

Problem 5196

Bestimme die Steigung des Graphen von f(x)=19(3x+2)3f(x)=\frac{1}{9}(3x+2)^{3} bei P(2,f(2))P(2, f(2)).

See Solution

Problem 5197

Find the slope of the tangent line for f(x)=12x2+3x12f(x)=\frac{1}{2} x^{2}+3 x-\frac{1}{2} at x=2x=2.

See Solution

Problem 5198

Find xx values for horizontal tangents of f(x)=3x26x+4f(x)=3x^2-6x+4. Select "None" if there are none.

See Solution

Problem 5199

Find all xx values for horizontal tangent lines of the function f(x)=3x2+12x7f(x)=-3 x^{2}+12 x-7. Select "None" if none exist.

See Solution

Problem 5200

Find the limit as xx approaches -5 for the expression x2+3x10x+5\frac{x^{2}+3x-10}{x+5}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord