Calculus

Problem 17601

Find relative maxima and minima for the function f(x)=2x3+3x236x+6f(x)=2 x^{3}+3 x^{2}-36 x+6. Calculate their values.

See Solution

Problem 17602

Find the cost function C(x)C(x) given the marginal cost MC=35x4/314x3/4+1M C=35 x^{4/3}-14 x^{3/4}+1 and fixed costs of \$7,000.

See Solution

Problem 17603

Gegeben ist die Funktion f(x)=(2a)exa1f(x)=(2-a)e^{-\frac{x}{a-1}} mit a]1;2[a \in] 1 ; 2[. Bestimme aa, sodass I(a)=0f(x)dxI(a)=\int_{0}^{\infty} f(x) \, dx maximal ist. Skizziere f(x)f(x) für a{1.3;1.5;1.7}a \in\{1.3 ; 1.5 ; 1.7\}.

See Solution

Problem 17604

Ein Körper wird mit 6 m/s6 \mathrm{~m/s} von 140 m140 \mathrm{~m} Höhe abgeworfen. Berechne die Zeit TT bis zum Boden. T=55.3T=55.3 Sekunden.

See Solution

Problem 17605

Bestimmen Sie die Ableitung von ff an x0=2x_{0}=2 mit dem Differenzenquotienten für h0h \rightarrow 0 für die Funktionen: a) f(x)=x2f(x)=x^{2}, b) f(x)=2xf(x)=\frac{2}{x}, c) f(x)=2x23f(x)=2 x^{2}-3, d) f(x)=x4f(x)=x^{4}, e) f(x)=x3f(x)=x^{3}, f) f(x)=4xx2f(x)=4 x-x^{2}, g) f(x)=1xf(x)=-\frac{1}{x}, h) f(x)=5f(x)=5.

See Solution

Problem 17606

Berechnen Sie den Grenzwert aa der Folgen und finden Sie nεn_{\varepsilon} mit ana<1018\left|a_{n}-a\right|<10^{-18} für (a) an=k=0n99(1100)ka_{n}=\sum_{k=0}^{n} 99\left(\frac{1}{100}\right)^{k} und (b) an=n3278n3a_{n}=\frac{n^{3}-27}{8 n^{3}}.

See Solution

Problem 17607

Calculate the integral excosxdx\int e^{x} \cos x \, dx.

See Solution

Problem 17608

Napisz równanie stycznej do funkcji f w punkcie x0\mathrm{x}_{0} dla: a) f(x)=84+x2,x0=2f(x)=\frac{8}{4+x^{2}}, x_{0}=2 b) f(x)=lnx1x,x0=1f(x)=\ln x-\frac{1}{x}, x_{0}=1 c) f(x)=arcsin2x1+x2,x0=3f(x)=\arcsin \frac{2 x}{1+x^{2}}, x_{0}=\sqrt{3}

See Solution

Problem 17609

Calculate the indefinite integral and include the constant of integration CC: (12e3x+8x)dx\int\left(12 e^{3 x}+8 x\right) d x

See Solution

Problem 17610

Calculate the length of the curve y=ln(cos(x))y=\ln (\cos (x)) for 0xπ60 \leq x \leq \frac{\pi}{6}.

See Solution

Problem 17611

Calculate the indefinite integral and include the constant CC for integration: e3xdx\int e^{-3 x} d x

See Solution

Problem 17612

Find the surface area when the curve x=a2y2x=\sqrt{a^{2}-y^{2}} (for 0ya/60 \leq y \leq a/6) is rotated about the yy-axis.

See Solution

Problem 17613

Calculate the indefinite integral: (e5x5x)dx\int\left(e^{5 x}-\frac{5}{x}\right) d x and include the constant CC.

See Solution

Problem 17614

Calculate the curve length for y=1xt31dty=\int_{1}^{x} \sqrt{t^{3}-1} dt from x=16x=16 to x=25x=25.

See Solution

Problem 17615

Find the area of the surface formed by rotating y=7xy=\sqrt{7-x} from x=1x=1 to x=7x=7 about the xx-axis.

See Solution

Problem 17616

Calculate the indefinite integral: (9x3)dx\int(9 \sqrt{x}-3) \, dx (Include constant CC).

See Solution

Problem 17617

Calculate the indefinite integral and include the constant of integration CC for the result: (24x3+8x5)dx\int(24 x^{3}+8 x-5) dx

See Solution

Problem 17618

Find the limit as nn approaches infinity for the sequence an=n2cos(n)4+n2a_{n}=\frac{n^{2} \cos (n)}{4+n^{2}}.

See Solution

Problem 17619

Find the first eight partial sums of the series n=15n3\sum_{n=1}^{\infty} \frac{5}{\sqrt[3]{n}} to four decimal places. Is it convergent or divergent?

See Solution

Problem 17620

Calculate the indefinite integral: (10x38x)dx\int\left(10 \sqrt{x^{3}}-8 x\right) d x (Include constant CC).

See Solution

Problem 17621

Calculate the indefinite integral and include the constant CC for integration: 3x3+2x2+3xxdx\int \frac{3 x^{3}+2 x^{2}+3 x}{x} d x

See Solution

Problem 17622

Consider the sequence an=5n3n+1a_{n}=\frac{5 n}{3 n+1}. Is it convergent or divergent? Also, is n=1an\sum_{n=1}^{\infty} a_{n} convergent or divergent?

See Solution

Problem 17623

Is y=12xsin(x)y=\frac{1}{2} x \sin (x) a solution for the equation y+y=sin(x)y^{\prime \prime}+y=\sin (x)?

See Solution

Problem 17624

Find the slope of the tangent to the curve given by x=t2+2tx=t^{2}+2t and y=2t2ty=2^{t}-2t at (24,8). Round to two decimals.

See Solution

Problem 17625

Evaluate the series n=4(1n1n+1)\sum_{n=4}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right).

See Solution

Problem 17626

Find dxdt\frac{d x}{d t}, dydt\frac{d y}{d t}, and dydx\frac{d y}{d x} for x=5t3+6tx=5 t^{3}+6 t, y=3t4t2y=3 t-4 t^{2}.

See Solution

Problem 17627

Find dydx\frac{d y}{d x} and d2ydx2\frac{d^{2} y}{d x^{2}} for x=t2+3x=t^{2}+3, y=t2+5ty=t^{2}+5t. When is the curve concave upward?

See Solution

Problem 17628

Calculate the area between the parametric curve x=sin2(t)x=\sin^{2}(t), y=8cos(t)y=8\cos(t), and the yy-axis using Area = (x(t)y(t))dt\int (x(t) * y'(t)) dt.

See Solution

Problem 17629

Solve the equation dydx=xy\frac{d y}{d x}=x \sqrt{y}. Include initial conditions if provided.

See Solution

Problem 17630

Calculate the area under the curve defined by x=5sin(t)x=5 \sin (t) and y=sin(t)cos(t)y=\sin (t) \cos (t) for 0tπ20 \leq t \leq \frac{\pi}{2}.

See Solution

Problem 17631

Bestimmen Sie die Punkte, wo der Graph von ff eine waagerechte Tangente hat: a) f(x)=x2e3xf(x)=x^{2} e^{3 x}, b) f(x)=2x(x+1)exf(x)=2 x(x+1) e^{x}, c) f(x)=23e2x1f(x)=\frac{2}{3} e^{2 x-1}, d) f(x)=(x+3)3exf(x)=(x+3)^{3} e^{x}.

See Solution

Problem 17632

Maximize production Q=50L0.6K0.4Q=50 L^{0.6} K^{0.4} under 8L+4K=4008L + 4K=400. Find optimal LL and KK.

See Solution

Problem 17633

Find the time tt (in days) when cases N=8001+790e0.1tN=\frac{800}{1+790 e^{-0.1 t}} has a point of inflection. Round to nearest integer.

See Solution

Problem 17634

Bestimme die Besucherzahl xx, die die Heizkosten H(x)=550,001x2H(x)=55-0,001 \cdot x^{2} minimal macht, für 0x1450 \leq x \leq 145.

See Solution

Problem 17635

أي تعبير يمكن استخدامه لحساب ميل المستقيم المماس للدالة y=1x2y=\frac{1}{x^{2}} عند x=3x=3؟

See Solution

Problem 17636

A flu outbreak starts with 5 cases on day t=0t=0. The growth rate is r(t)=14e0.04tr(t)=14 e^{0.04 t}.
(a) Find the total cases F(t)F(t) in the first tt days. (b) Calculate F(25)F(25) and round to the nearest whole number.

See Solution

Problem 17637

Find the derivative dydx\frac{d y}{d x} for the function y=(arcsinx)1x2y=(\arcsin x) \sqrt{1-x^{2}}.

See Solution

Problem 17638

Find the derivative dydx\frac{d y}{d x} at x=1x=1 for the function y=lnx1exy=\ln x-\frac{1}{e^{x}}.

See Solution

Problem 17639

Find the instantaneous velocity of f(t)=t2+tf(t)=-t^{2}+t at t=3t=3 seconds. Options: -5, -4, -3, -2.

See Solution

Problem 17640

Find the x\mathrm{x}-values where the tangent line of f(x)=2sinx+sin2xf(x)=2 \sin x+\sin ^{2} x is horizontal for 0x<2π0 \leq x<2 \pi. x= x=

See Solution

Problem 17641

Find the instantaneous velocity of f(t)=t23tf(t)=t^{2}-3t at t=10t=10 seconds. Options: 21, 17, 5, 15.

See Solution

Problem 17642

Finde die Punkte, wo der Graph der Funktionen f(x)=2x(x+1)exf(x)=2 x(x+1) e^{x}, f(x)=23e2x1f(x)=\frac{2}{3} e^{2 x-1} und f(x)=(x+3)3exf(x)=(x+3)^{3} e^{x} eine waagerechte Tangente hat.

See Solution

Problem 17643

Calculate the integral I=05x3dxI=\int_{0}^{5}|x-3| dx. What is the value of II?

See Solution

Problem 17644

Evaluate the integral I=0π/2sin(x)cos(x)cos2(x)+7dxI=\int_{0}^{\pi / 2} \frac{\sin (x) \cos (x)}{\cos ^{2}(x)+7} d x. Find II.

See Solution

Problem 17645

Evaluate the integral 10xlnxdx\int_{-1}^{0}-x \ln |x| d x. Does it diverge or converge to 14-\frac{1}{4}, 0, or 14\frac{1}{4}?

See Solution

Problem 17646

Evaluate the integral: x1+x3dx=\int \frac{\sqrt{x}}{1+x^{3}} d x=. Choose the correct answer from the options provided.

See Solution

Problem 17647

Evaluate the convergence of the integral 1sech(x2023)2024+x20242023dx\int_{1}^{\infty} \frac{\operatorname{sech}\left(x^{2023}\right)}{\sqrt[2023]{2024+x^{2024}}} d x. Choose A, B, C, or D.

See Solution

Problem 17648

找出函数的临界点,并使用二阶导数测试分类该点。 f(x,y)=44x24y2 f(x, y)=4-4 x^{2}-4 y^{2} 临界点 (x,y)=()(x, y)=(\square) 分类 \quad 选择- vv 最后,确定函数的相对极值。 相对最小值 相对最大值

See Solution

Problem 17649

Evaluate the integral 1sech(x2023)2024+x20242023dx\int_{1}^{\infty} \frac{\operatorname{sech}\left(x^{2023}\right)}{\sqrt[2023]{2024+x^{2024}}} d x for convergence. Options: A) Converges B) 2023 C) Improper II D) Diverges

See Solution

Problem 17650

Evaluate the integral from ln2\ln 2 to ln3\ln 3 of 3sinhxcosh2x+coshx2dx\frac{3 \sinh x}{\cosh ^{2} x+\cosh x-2} dx. What is the result? A) ln(1126)\ln \left(\frac{11}{26}\right) B) ln(169726)\ln \left(\frac{169}{726}\right) C) ln(2611)\ln \left(\frac{26}{11}\right) D) ln(726169)\ln \left(\frac{726}{169}\right)

See Solution

Problem 17651

Find the critical point of f(x,y)=x2+2xy+2y26x+10y+8f(x, y) = x^2 + 2xy + 2y^2 - 6x + 10y + 8. Use the second derivative test to classify it. Determine relative extrema values.

See Solution

Problem 17652

Find critical points of f(x,y)=x32xy+y2+3f(x, y)=x^{3}-2xy+y^{2}+3 and classify them using the Second Derivative Test.

See Solution

Problem 17653

Find the limit: limx0+x5sin(x)\lim _{x \rightarrow 0^{+}} x^{5 \sin (x)}.

See Solution

Problem 17654

Given the function f(x)=x5x1/5f(x)=x-5 x^{1 / 5}, find critical values, intervals of increase/decrease, and local maxima.

See Solution

Problem 17655

Find the instantaneous velocity of f(t)=t3f(t)=t^{3} at t=4t=4 seconds. Choices: 48, 60, 24, 36.

See Solution

Problem 17656

Find the average velocity of a car with position y(t)=3t26ty(t)=3 t^{2}-6 t from t=2t=2 to t=5t=5.

See Solution

Problem 17657

Find the instantaneous velocity of f(t)=t2+tf(t)=-t^{2}+t at t=4t=4 seconds. Options: 3-3, 1-1, 7-7, 5-5.

See Solution

Problem 17658

Find the instantaneous velocity of f(t)=t23tf(t)=t^{2}-3t at t=7t=7 seconds. Choices: 11, 8, 4, 5.

See Solution

Problem 17659

Find the average velocity of s(t)=4t24ts(t)=4 t^{2}-4 t from t=0t=0 to t=2t=2.

See Solution

Problem 17660

Find the interval where the function F(x)=1x2F(x)=\frac{1}{x^2} has a positive, decreasing slope. Options: a. x<6x<-6 b. 6<x<2-6<x<-2 c. 2<x<2-2<x<2 d. x>2x>2

See Solution

Problem 17661

Find the limit as xx approaches 0 from the right: limx0+(1+5x)5/x\lim _{x \rightarrow 0^{+}}(1+5 x)^{5 / x}.

See Solution

Problem 17662

Evaluate the integral: sin3(y)cos4(y)dy\int \sin^{3}(y) \cos^{4}(y) \, dy (use C\mathrm{C} for the constant).

See Solution

Problem 17663

Determine the inflection points for the function f(x)=x212x35f(x)=-x^{2}-12 x-35. Are there any?

See Solution

Problem 17664

Solve the equation yy=exy' - y = e^{x}. Include the constant if there's an initial value.

See Solution

Problem 17665

Find the critical point of f(x,y)=xy+ln(x)+32y2f(x, y) = xy + \ln(x) + 32y^2, classify it, and determine relative extrema.

See Solution

Problem 17666

Find the critical point of f(x,y)=x2ey2f(x, y)=x^{2}-e^{y^{2}} and classify it using the Second Derivative Test. Then find relative extrema.

See Solution

Problem 17667

Find the average rate of change of f(x)=3x22xf(x)=-\frac{3}{x^{2}-2x} on the interval [1,13]\left[-1, \frac{1}{3}\right].

See Solution

Problem 17668

Is the sequence an=9n!2na_{n}=\frac{9 n !}{2^{n}} convergent or divergent? If convergent, find the limit; otherwise, state DIVERGES.

See Solution

Problem 17669

Identify why these integrals are improper: (a) 19dxx8\int_{1}^{9} \frac{d x}{x-8}; (b) 8dxx29\int_{8}^{\infty} \frac{d x}{x^{2}-9}.

See Solution

Problem 17670

Find the volume of the solid formed by rotating the region between x=1+(y4)2x=1+(y-4)^{2} and x=2x=2 around the xx-axis using cylindrical shells.

See Solution

Problem 17671

Find local extrema of f(x)=x2x2+1f(x)=\frac{x^{2}}{x^{2}+1} using the first derivative test.

See Solution

Problem 17672

Find the acceleration of the particle at t=πt=\pi for x(t)=sin(2t)cos(3t)x(t)=\sin(2t)-\cos(3t). Options: (A) 9, (B) 1/91/9, (C) 0, (D) 19-\frac{1}{9}, (E) -9.

See Solution

Problem 17673

Evaluate the improper integrals: (c) 01tan(πx)dx\int_{0}^{1} \tan (\pi x) d x and (d) 1exxdx\int_{-\infty}^{-1} \frac{e^{x}}{x} d x.

See Solution

Problem 17674

Find the slope of the tangent to f(x)=2x1x+2f(x)=\frac{2 x-1}{x+2} at x=3x=-3, rounded to 1 decimal place.

See Solution

Problem 17675

Given the function f(x)=9x2ln(x)f(x)=9 x^{2} \ln (x) for x>0x>0, find critical values, intervals of increase/decrease, local extrema, concavity, and inflection points.

See Solution

Problem 17676

Calculate the surface area from rotating the curve y=x2+1y=\sqrt{x^{2}+1} around the xx-axis for 0x40 \leq x \leq 4.

See Solution

Problem 17677

Bestimme die Punkte, an denen der Graph von f(x)=(x+3)3exf(x)=(x+3)^{3} e^{x} eine waagerechte Tangente hat.

See Solution

Problem 17678

Find the tangent slope mtanm_{\tan } using mtan =limh0f(x+h)f(x)hm_{\text {tan }}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} and the equation at given points:
6. f(x)=x2+xf(x)=x^{2}+x, a=1a=1
7. f(x)=1xx2f(x)=1-x-x^{2}, a=0a=0

See Solution

Problem 17679

Find the slope of the tangent to the curve f(x)=2x1x+2f(x)=\frac{2 x-1}{x+2} at x=3x=-3, rounded to 1 decimal place.

See Solution

Problem 17680

Calculate the surface area from rotating the curve y=x2+1y=\sqrt{x^{2}+1} around the xx-axis for 0x20 \leq x \leq 2.

See Solution

Problem 17681

Find the indefinite integral and verify by differentiating: (4x115x14)dx=\int(4 x^{11}-5 x^{14}) dx = \square

See Solution

Problem 17682

Find the displacement of an object with velocity v=3t2+2v=3 t^{2}+2 ft/s on [0,4][0,4] using midpoints for n=4n=4 and n=8n=8 subintervals.

See Solution

Problem 17683

Find the slope of the tangent line and its equation for f(x)=1xx2f(x)=1-x-x^{2} at x=0x=0. Use mtan=limh0f(0+h)f(0)hm_{\tan }=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}.

See Solution

Problem 17684

Solve the equation: t2dydt+3ty=1+t2t^{2} \frac{d y}{d t}+3 t y=\sqrt{1+t^{2}}.

See Solution

Problem 17685

For the functions, find the tangent slope mtan=f(a)m_{\tan }=f^{\prime}(a) and the tangent line equation at x=ax=a:
1. f(x)=x2+x,a=1f(x)=x^{2}+x, a=1
2. f(x)=1xx2,a=0f(x)=1-x-x^{2}, a=0
3. f(x)=7x,a=3f(x)=\frac{7}{x}, a=3
4. f(x)=x+8,a=1f(x)=\sqrt{x+8}, a=1

See Solution

Problem 17686

Find the indefinite integral and verify by differentiating:
(5x13+4x13+11)dx= \int\left(5 x^{\frac{1}{3}}+4 x^{-\frac{1}{3}}+11\right) d x=\square

See Solution

Problem 17687

A particle moves on y=x2y=x^{2} with dx/dt=8dx/dt=8 m/s. Find dθ/dtd\theta/dt when x=1x=1 m. Write the relation: dθ/dt=dxdtd\theta/dt=\square \frac{dx}{dt}.

See Solution

Problem 17688

Find all antiderivatives of f(r)=15r2+1f(r)=\frac{15}{r^{2}+1} and verify by differentiating. Antiderivatives are F(r)=F(r)=\square.

See Solution

Problem 17689

Calculate the left and right Riemann sums for f(x)=x+2f(x)=x+2 on [0,5][0,5] with n=5n=5.

See Solution

Problem 17690

Evaluate the double integral: 0213x2y3dydx\int_{0}^{2} \int_{1}^{3} x^{2} y^{3} d y d x.

See Solution

Problem 17691

Find the derivative of the function y=(6t1)(3t4)1y=(6 t-1)(3 t-4)^{-1}.

See Solution

Problem 17692

Compute the integral (2secxtanx+7sec2x)dx\int(2 \sec x \tan x + 7 \sec ^{2} x) \, dx.

See Solution

Problem 17693

Determine if the sequence an=7n2na_{n}=\frac{7 n}{2^{n}} converges or diverges. Find the limit if it converges.

See Solution

Problem 17694

Find the antiderivative FF of f(x)=9x+4f(x)=9 \sqrt{x}+4 with F(1)=3F(1)=3. What is F(x)=F(x)=\square?

See Solution

Problem 17695

Find the derivative of f(x)=(sec(5x)+73x)10f(x)=\left(\sec (5 x)+7^{3 x}\right)^{10}.

See Solution

Problem 17696

Trouvez l'équation de la tangente à la courbe f(x)=log2(x2+4)f(x)=\log _{2}\left(x^{2}+4\right) au point (2,3)(2,3).

See Solution

Problem 17697

A particle moves on y=x2y=x^{2} with dx/dt=10 m/sdx/dt=10 \mathrm{~m/s}. Find dθ/dtd\theta/dt when x=1 mx=1 \mathrm{~m}. Relate them: dθdt=dxdt\frac{d \theta}{d t}=\square \frac{d x}{d t}.

See Solution

Problem 17698

AP Calculus: Find f(2)f^{\prime}(2) for f(x)=x2+9xf(x)=x^{2}+9x using f(a)=limh0f(a+h)f(a)hf^{\prime}(a)=\lim_{h \to 0} \frac{f(a+h)-f(a)}{h}.

See Solution

Problem 17699

Find the normal line equation to the curve f(x)=log2(x2+4)f(x)=\log _2(x^2+4) at the point (2,3)(2,3).

See Solution

Problem 17700

Find the critical points of the function f(x)=6x22x3f(x)=-6 x^{2}-2 x^{3}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord