Calculus

Problem 20101

Find the tangent line equation to 5x2+4y4=9xy5x^{2}+4y^{4}=-9xy at the point (1,1)(-1,1).

See Solution

Problem 20102

Determine if the series k=15k+6k11k\sum_{k=1}^{\infty} \frac{5^{k}+6^{k}}{11^{k}} converges or diverges.

See Solution

Problem 20103

Find the area between f(x)=x3+8f(x)=x^{3}+8 and the xx-axis over the interval [3,1][-3,-1]. The area is \square.

See Solution

Problem 20104

Find the antiderivative FF of f(x)=x33x42f(x)=x^{3}-3 x^{-4}-2 such that F(1)=0F(1)=0. What is F(x)=F(x)=\square?

See Solution

Problem 20105

Evaluate the integral using the Fundamental Theorem of Calculus: 0126dx1x2=\int_{0}^{\frac{1}{2}} \frac{6 d x}{\sqrt{1-x^{2}}}=\square

See Solution

Problem 20106

Analyze a trapezoidal velocity-time graph with these details: starts at rest, constant 2 m/s from 1-5s, decelerates at 4s, max velocity -1 m/s at 12s. Find: (i) max distance from start, (ii) displacement after 12s, (iii) max acceleration magnitude.

See Solution

Problem 20107

Find the derivatives of these functions:
(a) f(x)=x3sec(x)f(x) = \frac{x^{3}}{\sec (x)}
(b) g(x)=log5(sin(5x23))g(x) = \log_{5}(\sin(5x^{2}-3))
(c) h(x)=tan(x)arccos(x)h(x) = \tan(x) \cdot \arccos(x)
(d) i(x)=ln(ln(ln(x)))i(x) = \ln(\ln(\ln(x)))
(e) j(x)=cos7(3x+45)j(x) = \cos^{7}(3^{x}+4^{5})

See Solution

Problem 20108

Evaluate the integral H(x)=0x4t2dtH(x)=\int_{0}^{x} \sqrt{4-t^{2}} d t for 2x2-2 \leq x \leq 2:
a. Find H(0)H(0), b. H(1)H'(1), c. H(2)H'(2), d. Use geometry for H(2)H(2), e. Solve H(x)=sH(x)H(x)=s H(-x).

See Solution

Problem 20109

Evaluate the integral from 1 to infinity: 1x3ex4dx\int_{1}^{\infty} x^{3} e^{-x^{4}} d x. Is it finite?

See Solution

Problem 20110

Determine if the series n=2n2n3+1\sum_{n=2}^{\infty} \frac{n^{2}}{n^{3}+1} converges or diverges using the integral test. Evaluate 2x2x3+1dx\int_{2}^{\infty} \frac{x^{2}}{x^{3}+1} dx.

See Solution

Problem 20111

求函数 f(x)=x2axbf(x)=\left|x^{2}-a x-b\right| 在区间 [1,1][-1,1] 上的导数最大值 M(a,b)M(a, b) 的最小值。

See Solution

Problem 20112

Use the integral test to check if the series n=2n2n3+1\sum_{n=2}^{\infty} \frac{n^{2}}{n^{3}+1} converges or diverges. Evaluate 2x2x3+1dx\int_{2}^{\infty} \frac{x^{2}}{x^{3}+1} dx. The integral is finite, so the series converges.

See Solution

Problem 20113

Find the gradient of curve CC at point P(4,1)P(4,-1) and the normal's equation ax+by+c=0ax+by+c=0. Also, determine f(x)f(x).

See Solution

Problem 20114

Find the gradient of the curve CC at point P(4,1)P(4,-1), then determine the normal's equation in the form ax+by+c=0a x + b y + c = 0.

See Solution

Problem 20115

Determine the values of xx for which the series n=0enx\sum_{n=0}^{\infty} e^{n x} converges and find its sum.

See Solution

Problem 20116

Determine convergence or divergence of the series n=1n4\sum_{n=1}^{\infty} n^{-4} using the Integral Test. Evaluate 1x4dx\int_{1}^{\infty} x^{-4} dx.

See Solution

Problem 20117

Determine if the series n=1n3en4\sum_{n=1}^{\infty} n^{3} e^{-n^{4}} converges by evaluating the integral 1x3ex4dx\int_{1}^{\infty} x^{3} e^{-x^{4}} d x.

See Solution

Problem 20118

Bestimme die 4. Grades Funktion für die Punkte A(0,5), B(5,2), C(7,1.4), D(10,3), E(13,1.8). Berechne Extrem- und Wendepunkte, sowie Nullstellen der Funktion f(x)=0,004x4+0,1x30,72x2+x+5f(x)=-0,004 x^{4}+0,1 x^{3}-0,72 x^{2}+x+5. Zeichne KK für 2x14-2 \leq x \leq 14 und finde Punkte, wo der Wind senkrecht auf die Küste trifft.

See Solution

Problem 20119

Evaluate the integral from 1 to 7 of (x3+1)/x2(x^{3}+1)/x^{2} with respect to xx.

See Solution

Problem 20120

9 radioaktive Stoffe haben Halbwertszeiten. a) Wie viel U235 bleibt nach 2,112 Mrd. Jahren von 1 kg? b) Was denkt Erik falsch über I131 nach 16 Tagen? Wie viel % sind zerfallen? Q10 a) Wie lange bis 3 g Rn220 bleiben? b) Wie lange bis 90 % Pu239 zerfallen? 11 a) Wie viel Cs137 bleibt am 26.4.2020? b) Wann bleibt 1 % Cs137 übrig?

See Solution

Problem 20121

Berechne die Ableitungen f(x)f^{\prime}(x) für die folgenden Funktionen: a) x3+x2x^{3}+x^{2}, b) x4+x2x^{4}+x^{2}, c) x5+x4x^{5}+x^{4}, d) x4+1x^{4}+1, e) x7+x4+x2x^{7}+x^{4}+x^{2}, f) x8+x3+5x^{8}+x^{3}+5, g) x5+x+3x^{5}+x+3, h) x11+x7+x3x^{11}+x^{7}+x^{3}, i) x5+x4+x3+x2x^{5}+x^{4}+x^{3}+x^{2}.

See Solution

Problem 20122

Evaluate 10(93x2)dx\int_{1}^{0}(9-3 x^{2}) dx using 01x2dx=13\int_{0}^{1} x^{2} dx=\frac{1}{3}.

See Solution

Problem 20123

Evaluate the integrals: (a) 53f(x)dx\int_{5}^{3} f(x) dx, (b) 574h(x)g(x)2dx\int_{5}^{7} \frac{4 h(x)-g(x)}{2} dx, (c) 73r(x)dx\int_{7}^{3} r(x) dx.

See Solution

Problem 20124

Solve the Boltzmann equation for f1f_{1} in an electric field, find σαβ(ω)\sigma_{\alpha \beta}(\omega) at T=0T=0.

See Solution

Problem 20125

Find f(π2)f^{\prime}\left(\frac{\pi}{2}\right) for the function f(x)=xcosxf(x)=x^{\cos x}.

See Solution

Problem 20126

Bestimme, wo die Tangente an ff in Punkt B die xx-Achse schneidet: a) f(x)=0,5x2,B(2f(2))f(x)=0,5 x^{2}, B(2 \mid f(2)) b) f(x)=13x3+2x2,B(1f(1))f(x)=\frac{1}{3} x^{3}+2 x^{2}, B(-1 \mid f(-1)) c) f(x)=3x,B(1f(1))f(x)=\frac{3}{x^{\prime}}, B(-1 \mid f(-1))

See Solution

Problem 20127

Find the approximation of f(1.1)f(1.1) using linearization, given the normal line at x=1x=1 is y=x+7y=-x+7.

See Solution

Problem 20128

Find (f1)(1)\left(f^{-1}\right)^{\prime}(1) for f(x)=x+e2xf(x)=x+e^{2 x}. Choices: a. 12\frac{1}{2} b. Else c. 16\frac{1}{6} d. 15\frac{1}{5} e. 14\frac{1}{4} f. 13\frac{1}{3}.

See Solution

Problem 20129

Bestimme den Schnittpunkt der Tangente an ff bei BB mit der xx-Achse für die Funktionen: a) f(x)=0,5x2,B(2f(2))f(x)=0,5 x^{2}, B(2 \mid f(2)) b) f(x)=13x3+2x2,B(1f(1))f(x)=\frac{1}{3} x^{3}+2 x^{2}, B(-1 \mid f(-1)) c) f(x)=3x,B(1f(1))f(x)=\frac{3}{x}, B(-1 \mid f(-1))

See Solution

Problem 20130

Find f(30)(0)f^{(30)}(0) for the function f(x)=x30+cosxf(x)=x^{30}+\cos x. Choices: a. 30!130 !-1, b. 311+1311+1, c. 30!+130 !+1, d. 3111311-1, e. 0, f. 1, g. Else.

See Solution

Problem 20131

Find the limit: limx0sin2xsinxx2cos8x=\lim _{x \rightarrow 0} \frac{\sin 2 x \sin x}{x^{2} \cos 8 x}= a. Else b. 4 c. 5 d. 3 e. Does not exist f. 2 g. 0

See Solution

Problem 20132

Find the derivative dydx\frac{d y}{d x} if y=2cos(3x)y=2 \cos (3 x). Options: A. sin3x-\sin 3 x, B. 3sin3x-3 \sin 3 x, C. 6sin3x6 \sin 3 x, D. 6sin3x-6 \sin 3 x.

See Solution

Problem 20133

Një vijë ka ekuacionin y=f(x)y=f(x). Jepet dydx=10x412x2+1\frac{d y}{d x}=10 x^{4}-12 x^{2}+1 dhe f(2)=9f(2)=9. Gjeni f(x)f(x) dhe tregoni që f(1)=24f(-1)=-24.

See Solution

Problem 20134

Find f(0)+f(1)f^{\prime}(0)+f^{\prime}(-1) for f(x)=2xx+2f(x)=\frac{2 x}{x+2}. Options: A. 0 B. 4 C. 5 D. 1

See Solution

Problem 20135

Calculate the limit: limx0sin(8x)sin(3x)6x2cos(10x)\lim _{x \rightarrow 0} \frac{\sin (8 x) \sin (3 x)}{6 x^{2} \cos (10 x)}. What is the result?

See Solution

Problem 20136

Determine which functions are differentiable at x=1x=1: A. f(x)=x2(x1)1/2f(x)=x^{2}(x-1)^{1/2}, B. f(x)=2(x1)2/3f(x)=2-(x-1)^{2/3}, C. f(x)=(x1)2/3(x2)1/3f(x)=(x-1)^{2/3}(x-2)^{1/3}, D. f(x)=1+(x1)3/2f(x)=-1+(x-1)^{3/2}. Options: a. Only D, b. C&D only, c. A, B&D, d. A, B&C, e. B, C&D.

See Solution

Problem 20137

Calculate the area under f(x)=x2f(x) = x^2 from x=0x = 0 to x=2x = 2 using a definite integral and sketch the curve.

See Solution

Problem 20138

Find the value of xx where the tangent to y=22x+20y=2 \sqrt{2 x+20} is perpendicular to 6x+2y=16 x+2 y=1. Options: a. 3, b. 7, c. 5, d. 6, e. 8, f. 4, g. Else.

See Solution

Problem 20139

Find the area under the curve for f(x)=1xf(x)=\frac{1}{\sqrt{x}} from x=16x=16 to x=25x=25 using a definite integral.

See Solution

Problem 20140

Find the area under the curve of f(x)=6x2+6x3f(x)=6 x^{2}+6 x-3 from x=1x=1 to x=2x=2 using a definite integral.

See Solution

Problem 20141

Find the tangent line equation to the curve defined by x=t24t+1x=t^{2}-4 t+1 and y=t3y=t^{3} at the point (3,8)(-3,8).

See Solution

Problem 20142

Find the area under the curve f(x)=124x3f(x)=12-4 \sqrt[3]{x} from x=0x=0 to x=8x=8 using a definite integral.

See Solution

Problem 20143

Gegeben ist die Funktion f(x)=2xf(x)=\frac{2}{\sqrt{x}} für x>0x>0. Berechne die Fläche im Intervall [1;2][1; 2] und die Linien, die diese halbieren.

See Solution

Problem 20144

Find the area under the curve f(x)=12x3f(x)=12 x^{3} from x=1x=1 to x=3x=3 using a definite integral.

See Solution

Problem 20145

Ein Sandhaufen hat eine elliptische Grundfläche mit a=5 ma=5 \mathrm{~m} und b=3 mb=3 \mathrm{~m}.
a) Finde das Volumen als Integral. b) Berechne das Volumen. c) Bestimme die Höhe des Sandhaufens.

See Solution

Problem 20146

Find the speed and orbital period of the ISS, which orbits at 350 km350 \mathrm{~km} above Earth. Calculate both values.

See Solution

Problem 20147

Calculate the orbital speeds of Venus and Earth around the Sun, given the Sun's mass 1.99×1030 kg1.99 \times 10^{30} \mathrm{~kg}, Venus' radius 1.08×1011 m1.08 \times 10^{11} \mathrm{~m}, and Earth's radius 1.49×1011 m1.49 \times 10^{11} \mathrm{~m}.

See Solution

Problem 20148

Check if f(x)=sin1xf(x)=\sin^{-1} x on [1,1][-1,1] meets the Mean Value Theorem conditions.

See Solution

Problem 20149

Check if f(x)=ln(x1)f(x)=\ln(x-1) on [2,4][2,4] meets the Mean Value Theorem conditions.

See Solution

Problem 20150

Lösen Sie eine der Aufgaben:
1. Gewicht eines Tieres: g(t)=118t3+23t2+18t+48g(t)=-\frac{11}{8} t^{3}+23 t^{2}+18 t+48.
2. Geschwindigkeit einer Achterbahn: v(t)=11000(t454t3+956t25754t3229)v(t)=-\frac{1}{1000}(t^{4}-54 t^{3}+956 t^{2}-5754 t-3229).

See Solution

Problem 20151

Bestimme die Fläche A(t)A(t), die der Graph von ft(x)=tx2f_{t}(x)=\frac{t}{x^{2}} über [1;2][1; 2] einschließt, und finde tt für A(t)=8A(t)=8.

See Solution

Problem 20152

Find the average value of f(x)=x4f(x)=\sqrt[4]{x} over [1,16][1,16] and graph the function with its average value.

See Solution

Problem 20153

Calculate the area between the curves y=exy=-e^{-x} and y=0y=0 from x=2x=-2 to x=2x=2.

See Solution

Problem 20154

Find the volume VV of the solid formed by rotating the area between y=x1y=\sqrt{x-1}, y=0y=0, and x=6x=6 around the xx-axis. Answer: V=12.5πV=12.5 \pi. Sketch the region.

See Solution

Problem 20155

Find the volume VV of the solid formed by rotating the area between x=27yx=2 \sqrt{7 y}, x=0x=0, y=3y=3 around the yy-axis. V=V= Sketch the region.

See Solution

Problem 20156

Calculate the integral from 45 to 120 of the function (172x28+0.2x)(172 - x - 28 + 0.2x).

See Solution

Problem 20157

Bestimmen Sie die Ableitung von ff an x0=2x_{0}=2 mit dem Differenzenquotienten für h0h \rightarrow 0 für die Funktionen: a) f(x)=x2f(x)=x^{2} b) f(x)=2xf(x)=\frac{2}{x} c) f(x)=2x23f(x)=2 x^{2}-3 d) f(x)=x4f(x)=x^{4} e) f(x)=x3f(x)=x^{3} f) f(x)=4xx2f(x)=4 x-x^{2} g) f(x)=1xf(x)=-\frac{1}{x} h) f(x)=5f(x)=5

See Solution

Problem 20158

A 500 g isotope decays as A(t)=500e0.039tA(t)=500 e^{-0.039 t}. Find (a) amount left after 20 years, (b) time to half decay.

See Solution

Problem 20159

Find intervals of concavity and inflection points for f(x)=(x24)exf(x)=(x^{2}-4)e^{x}.

See Solution

Problem 20160

Zeigen Sie, dass die Karaffe mindestens 500ml500 \mathrm{ml} fasst, indem Sie die Integration durchführen: ab[f(x)g(x)]dx500\int_{a}^{b}[f(x)-g(x)] d x \geq 500.

See Solution

Problem 20161

For the function f(x)=2xf(x)=2x from a=3a=3 to b=5b=5, find the Riemann sum with 5 rectangles and the exact area using integrals.

See Solution

Problem 20162

Find the max and min of f(x)=3x2f(x)=3x-2 on the intervals [0,9][0,9] and [3,2][-3,2]. Indicate the xx-values.

See Solution

Problem 20163

Bestimme die Fläche A(t)=12ft(x)dxA(t) = \int_{1}^{2} f_{t}(x) \, dx für t>0t > 0. Wann ist A(t)=8A(t) = 8 FE?

See Solution

Problem 20164

Bestimme die Fläche A(t)=12ft(x)dxA(t) = \int_{1}^{2} f_{t}(x) \, dx mit ft(x)=tx2f_{t}(x) = \frac{t}{x^{2}}. Für welches tt ist A(t)=8A(t) = 8?

See Solution

Problem 20165

Find the marginal cost function for C(x)=4500+5x+0.01x2+0.0002x3C(x)=4500+5x+0.01x^{2}+0.0002x^{3}. Then, calculate it at x=100x=100 and find C(100)C(100).

See Solution

Problem 20166

Find the average rate of change of f(x)=x23x5f(x)=x^{2}-3x-5 over the interval 2x3-2 \leq x \leq 3.

See Solution

Problem 20167

How much to deposit now to have \2050in60yearsatacontinuouscompoundingrateof2050 in 60 years at a continuous compounding rate of 5.5\%$?

See Solution

Problem 20168

What is the present value needed to reach \$1700 in 60 years at a continuous compounding rate of 7.5%?

See Solution

Problem 20169

Décomposez f(x)=exx2+1f(x)=\mathrm{e}^{\frac{x}{x^{2}+1}} en vuv \circ u et trouvez les dérivées de uu, vv et ff.

See Solution

Problem 20170

Bestimmen Sie die Ableitungsfunktion ff^{\prime} und berechnen Sie f(2)f(2) für: a) f(x)=2x2f(x)=2 x^{2}, b) f(x)=4x2f(x)=4 x^{2}, c) f(x)=3x2f(x)=-3 x^{2}, d) f(x)=12x2f(x)=\frac{1}{2} x^{2}.

See Solution

Problem 20171

Bestimmen Sie die zweite Ableitung von r(x)=2tx2ex2r^{\prime}(x)=-2 t x^{2} e^{-x^{2}}.

See Solution

Problem 20172

Bestimme die Ableitungsfunktion ff' von ff und berechne f(2)f(2) für die folgenden Funktionen: a) f(x)=2x2f(x)=2 x^{2}, b) f(x)=4x2f(x)=4 x^{2}, c) f(x)=3x2f(x)=-3 x^{2}, d) f(x)=12x2f(x)=\frac{1}{2} x^{2}.

See Solution

Problem 20173

Find the number of devices xx to minimize average cost given C(x)=841,000+160x+0.001x2C(x)=841,000+160x+0.001x^2. What is the average cost and its difference from marginal cost?

See Solution

Problem 20174

Soit u(x)=3x+4u(x)=-3 x+4 et v(x)=x3v(x)=x^{3}. Trouvez (vu)(x)(v \circ u)(x) et calculez (vu)(x)(v \circ u)^{\prime}(x) de deux manières.

See Solution

Problem 20175

Ein Stein fällt aus 35 m35 \mathrm{~m} Höhe. Bestimme die Höhe nach 1,0 s und 2,0 s sowie Zeit und Geschwindigkeit beim Aufprall.

See Solution

Problem 20176

Find the number of devices xx to minimize average cost given C(x)=484,000+160x+0.001x2C(x)=484,000+160x+0.001x^{2}. What is the average cost? \$\square. How does it differ from marginal cost? \$\square.

See Solution

Problem 20177

Find the second derivatives of g(x)g(x) and h(x)h(x) if g(x)=tex2g^{\prime}(x)=t e^{-x^{2}} and h(x)=2tx2ex2h^{\prime}(x)=-2 t x^{2} e^{-x^{2}}.

See Solution

Problem 20178

Find the maximum increase of the dependency ratio R(t)=0.00731t40.174t3+1.528t2+0.48t+19.3R(t)=0.00731 t^{4}-0.174 t^{3}+1.528 t^{2}+0.48 t+19.3 for 0t60 \leq t \leq 6, and its value in 2052.

See Solution

Problem 20179

A turkey cools from 185185^{\circ}F in a 7575^{\circ}F room.
(a) Find its temp after 45 min if it's 141141^{\circ}F after 30 min.
(b) When will it reach 100100^{\circ}F? Use Newton's cooling law:
T(t)=Ta+(ToTa)ektT(t) = T_a + (T_o - T_a) \cdot e^{-kt}

See Solution

Problem 20180

Find the reduction level qq for lowest average cost from C(q)=1,000+194q2C(q)=1,000+194 q^{2}. Round qq to two decimals. What is the average cost? Round to the nearest dollar.

See Solution

Problem 20181

Find the emission reduction level qq that minimizes average cost C(q)=1,900+193q2C(q)=1,900+193q^{2}. Round qq to two decimals and find average cost to nearest dollar.

See Solution

Problem 20182

Berechne die Fläche zwischen den Graphen von ff und gg für die gegebenen Funktionen und Grenzen.

See Solution

Problem 20183

Find the emf induced in a 30-turn, 2.70 mm radius coil with magnetic field B=50.0+3.20sin1046πtB=50.0+3.20 \sin 1046 \pi t mT.

See Solution

Problem 20184

Find the revenue RR and profit PP functions for the demand p=6000.05xp=600-0.05x, and cost C(x)=0.000002x30.03x2+400x+80,000C(x)=0.000002x^3-0.03x^2+400x+80,000. Then, compute C(2000)C'(2000), R(2000)R'(2000), and P(2000)P'(2000).

See Solution

Problem 20185

Find the minimum average cost for producing xx units, where C(x)=600+100x100ln(x)C(x)=600+100x-100\ln(x), x1x \geq 1.

See Solution

Problem 20186

Find the derivative of f(x)=x11x2f(x) = \frac{\sqrt{x-1}-1}{x-2} using the quotient and chain rules.

See Solution

Problem 20187

Evaluate the limit: limx16(1x48x16)=\lim _{x \rightarrow 16}\left(\frac{1}{\sqrt{x}-4}-\frac{8}{x-16}\right)=

See Solution

Problem 20188

La fonction f(x)=(1x)e3xf(x)=(1-x) \mathrm{e}^{3 x} est-elle concave sur [0;1][0 ; 1] et où se trouve son point d'inflexion ?

See Solution

Problem 20189

Find the rate of change of consumption with respect to income for C(x)=0.712x+95.05C(x)=0.712 x+95.05 where C(x)C(x) is in \$ billions.

See Solution

Problem 20190

Find drdt\frac{d r}{d t} for the curve r=3cosθr=3 \cos \theta when dθdt=2\frac{d \theta}{d t}=2 at θ=π3\theta=\frac{\pi}{3}.

See Solution

Problem 20191

Find N(t)=2000(1+0.2t)3/2dtN(t)=\int 2000(1+0.2 t)^{-3 / 2} d t and evaluate N(5)N(5).

See Solution

Problem 20192

Find the tangent line equation to the curve y=x2(x+1)4y=x^{2}(x+1)^{4} at point P(1,16).

See Solution

Problem 20193

A 1930s demand function for corn is given by p=6,650,000q1.3p=\frac{6,650,000}{q^{1.3}}.
(a) Find the price per bushel to maximize revenue (round to nearest cent).
(b) Calculate how much corn can be sold at that price.
(c) Determine the annual revenue (round to nearest cent).

See Solution

Problem 20194

Find the normal line equation to the curve y=2x+36xy=\frac{2 x+3}{6-x} at the point (5,13)(5,13).

See Solution

Problem 20195

Find the stationary point of the curve y=(x4)exy=(x-4) \mathrm{e}^{-x} and determine its nature.

See Solution

Problem 20196

Find the first and second derivatives of f(x)=4x22x+1f(x)=4 x^{2}-2 x+1.

See Solution

Problem 20197

A particle's position is given by x(t),y(t)=sin(2t),t2t\langle x(t), y(t)\rangle=\langle\sin(2t), t^{2}-t\rangle. Find speed at t=3t=3, speed trend at t=5t=5, total distance from t=0t=0 to t=6t=6, and position at t=11t=11 after t=8t=8.

See Solution

Problem 20198

Berechne die Steigung von ff an x0x_{0} mit der hh-Methode für: a) f(x)=x2,x0=1f(x)=x^{2}, x_{0}=1 b) f(x)=2x2,x0=1f(x)=2 x^{2}, x_{0}=-1 c) f(x)=x3,x0=2f(x)=x^{3}, x_{0}=2 d) f(x)=2x,x0=1f(x)=2 x, x_{0}=1

See Solution

Problem 20199

A particle's position is given by x(t),y(t)=sin(2t),t2t\langle x(t), y(t)\rangle = \langle \sin(2t), t^2 - t \rangle for 0t80 \leq t \leq 8.
a. Find speed at t=3t=3 seconds. b. Is speed increasing or decreasing at t=5t=5 seconds? c. Total distance traveled from t=0t=0 to t=6t=6 seconds? d. Position at t=11t=11 seconds if it moves straight from t=8t=8 with the same velocity.

See Solution

Problem 20200

If the tangent to the polar curve r=f(θ)r=f(\theta) at θ=π6\theta=\frac{\pi}{6} is vertical, which statement is true?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord