Calculus

Problem 5601

Calculate the average rate of change of g(x)=3x3+4g(x)=3 x^{3}+4 between x=4x=-4 and x=4x=4.

See Solution

Problem 5602

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=4x2f(x)=-4 x^{2} and simplify it.

See Solution

Problem 5603

Calculate the average rate of change of g(x)=3x3+4g(x)=3x^{3}+4 from x=4x=-4 to x=4x=4.

See Solution

Problem 5604

Find the limit as xx approaches 0 for the function f(x)=2xsin3xf(x)=\frac{2 x}{\sin 3 x}.

See Solution

Problem 5605

Analyze object B's motion: describe it, create a motion map, calculate displacement, average velocity, average acceleration, and instantaneous velocities.

See Solution

Problem 5606

Find g(x)g^{\prime}(x) for g(x)=cos(x)g(x)=\cos (x) and calculate g(5)g^{\prime}(5) rounded to the nearest hundredth.

See Solution

Problem 5607

Find g(x)g^{\prime}(x) for g(x)=sin(x)g(x)=\sin (x) and calculate g(1)g^{\prime}(1) rounded to the nearest hundredth.

See Solution

Problem 5608

Encuentra T(t),N(t),B(t),K(t)T(t), N(t), B(t), K(t) para r(t)=<5t2,et,3t>r(t)=<5t-2, e^t, 3t>

See Solution

Problem 5609

Find the derivative of the function f(x)=2sinx+5cosxf(x)=2 \sin x+5 \cos x, i.e., f(x)=f^{\prime}(x)=.

See Solution

Problem 5610

Find f(x)f'(x) for f(x)=9x+2sinx+6cosxf(x)=9x+2\sin x+6\cos x and calculate f(1)f'(1) (round to the nearest hundredth).

See Solution

Problem 5611

Find the limits: limh0cos(h)1h\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h} and limh0sin(h)h\lim _{h \rightarrow 0} \frac{\sin (h)}{h}.

See Solution

Problem 5612

Find the tangent line equation to y=2sinxy=2 \sin x at (π6,1)\left(\frac{\pi}{6}, 1\right) in the form y=mx+by=m x+b. Round mm and bb to the nearest hundredth.

See Solution

Problem 5613

Simplify f(x)=1cos4xxf(x)=\frac{1-\cos 4 x}{x} and indicate if you're finding its derivative, integral, limit, or another aspect.

See Solution

Problem 5614

Solve the ODE d2ydx2ω2y=0\frac{d^{2} y}{d x^{2}}-\omega^{2} y=0 with y(0)=0y(0)=0 and dydxx=π=0\left.\frac{d y}{d x}\right|_{x=\pi}=0.

See Solution

Problem 5615

Find the derivative [Df][D f] of the function f(xyz)=((1+2x+3y)1e2y5z(x+2)(z4))f\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{c} (1+2 x+3 y)^{-1} \\ e^{2 y-5 z} \\ (x+2)(z-4) \end{array}\right).

See Solution

Problem 5616

Find the derivative [Df][D f] of the function f(x,y,z)=((1+2x+3y)1e2y5z(x+2)(z4))f(x, y, z) = \begin{pmatrix} (1+2x+3y)^{-1} \\ e^{2y-5z} \\ (x+2)(z-4) \end{pmatrix}, showing your work.

See Solution

Problem 5617

Find the derivative [Df][D f] of the function f(x,y,z)f(x,y,z) and evaluate it at the origin. Show your work.

See Solution

Problem 5618

Find the limit as xx approaches 3 from the left: limx3ln(3x)\lim _{x \rightarrow 3^{-}} \ln (3-x).

See Solution

Problem 5619

Find the limit: limx5+ln(x5)\lim _{x \rightarrow 5^{+}} \ln (x-5).

See Solution

Problem 5620

Find the derivative of f(x)=3+32xf(x)=3+\frac{3}{2} x using the definition of the derivative.

See Solution

Problem 5621

Find the derivatives of ff and gg at the origin for the functions f(x,y,z)f(x,y,z) and g(s,t)g(s,t).

See Solution

Problem 5622

Find the average rate of change between points A, B, and C given: A to B is 15\frac{1}{5}, B to C is 14\frac{1}{4}, A to C is 16\frac{1}{6}.

See Solution

Problem 5623

Find the limit: limx4+(x6)3(x+4)(x2+8)(x23x10)\lim _{x \rightarrow-4^{+}} \frac{(x-6)^{3}(x+4)}{(x^{2}+8)(x^{2}-3 x-10)}.

See Solution

Problem 5624

Find the limit: limx3+x2(x1)x3+2x22x+3\lim _{x \rightarrow-3^{+}} \frac{x^{2}(x-1)}{x^{3}+2 x^{2}-2 x+3}.

See Solution

Problem 5625

A plane drops a package from 117 m117 \mathrm{~m} at 42 m/s42 \mathrm{~m/s}. Find where it lands, and its horizontal and vertical velocities before impact.

See Solution

Problem 5626

Find the tangent line equation to y=2cosxy=2 \cos x at x=π6x=\frac{\pi}{6}. Use exact values. y= y=

See Solution

Problem 5627

Find the derivative of 1x31x+x2\frac{1}{x^{3}}-\frac{1}{x}+x^{2} and evaluate it at x=1x=-1.

See Solution

Problem 5628

Find f(e)f^{\prime}(e) for the function f(x)=exf(x)=e^{x}.

See Solution

Problem 5629

Find the limit: limh0h+832h\lim _{h \rightarrow 0} \frac{\sqrt[3]{h+8}-2}{h}.

See Solution

Problem 5630

Find the limit: limn04n+83+2\lim _{n \rightarrow 0} \frac{4}{\sqrt[3]{n+8}+2}.

See Solution

Problem 5631

Find limx3f(x)\lim _{x \rightarrow 3} f(x) given 3x1f(x)x23x+83 x-1 \leq f(x) \leq x^{2}-3 x+8 for x0x \geq 0.

See Solution

Problem 5632

Find the derivative of the function y=3log3(x35)y=3 \log _{3}(x^{3}-5).

See Solution

Problem 5633

Find the derivative of y=log19xy=\log_{19} x. Use logarithm properties to simplify before calculating f(x)f^{\prime}(x).

See Solution

Problem 5634

Find the horizontal asymptotes of the function f(x)=x+ex3+4x3f(x)=\frac{x+e^{x}}{3+4 x^{3}}.

See Solution

Problem 5635

Find the horizontal asymptotes of the function f(x)=5x2+exx32f(x)=\frac{5 x^{2}+e^{x}}{x^{3}-2}.

See Solution

Problem 5636

Find the speed of a searchlight beam along the shoreline when it makes a 4545^{\circ} angle, turning at 5 rev/min.

See Solution

Problem 5637

Find the general solution of y+4y+4y=0y'' + 4y' + 4y = 0 and show y=e2xy=e^{-2x} and y=xe2xy=xe^{-2x} are independent using the Wronskian.

See Solution

Problem 5638

Find a relation between angle θ\theta and side length cc in ABC\triangle ABC. Also, find the rate of increase of cc when dθdt=5 radians/sec\frac{d \theta}{d t}=5 \text{ radians/sec} and cosθ=23\cos \theta=\frac{2}{3}.

See Solution

Problem 5639

Bestimme den Differenzquotienten für f(x)=2x2+5f(x)=2 x^{2}+5 im Intervall [-2, 4].

See Solution

Problem 5640

Bestimme die mittlere Änderungsrate der Funktion f(x)=2x2+5f(x)=2 x^{2}+5 im Intervall [2,4][-2, 4].

See Solution

Problem 5641

How fast is the height of a conical gravel pile increasing when it is 7 ft high, given a rate of 25ft3/min25 \mathrm{ft}^{3}/\mathrm{min}?

See Solution

Problem 5642

Finde das Extremum (Maxima oder Minima) der Funktion f(x)=2x2+5f(x)=2x^{2}+5 im Intervall [2,4][-2, 4].

See Solution

Problem 5643

Find the horizontal asymptotes of the function f(x)=5x5+x3+x4f(x)=5x^{5}+x^{3}+x^{4}.

See Solution

Problem 5644

Find if the limit is \infty, -\infty, or a specific value: limx2x2+46x2ex\lim_{x \rightarrow-\infty} \frac{2x^{2}+4}{6x^{2}-e^{x}}

See Solution

Problem 5645

What is the limit as xx approaches infinity for 3x84(3)x+x8\frac{3 x^{8}}{-4(3)^{x}+x^{8}}? Options: 0, does not exist, or exists and not 0.

See Solution

Problem 5646

Find the limit: limx9x34110x+9+3x2\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{3}-41}}{10 x+9+3 x^{2}}. If infinite, state DNE.

See Solution

Problem 5647

Find xx such that f(x)=xx+4f(x)=\frac{x}{x+4} and f(x)=3f^{\prime}(x)=3. Provide exact values for xx.

See Solution

Problem 5648

Find the second derivative of the function h(u)=6euu4h(u)=-6 e^{u} u^{4}. What is h(u)=?h^{\prime \prime}(u)=?

See Solution

Problem 5649

Calculate the average rate of change for f(x)=x21f(x)=x^{2}-1 over the interval [1,1.1][1, 1.1].

See Solution

Problem 5650

Find the derivative f(x)f'(x) of f(x)=x2x+2f(x)=\frac{\sqrt{x}-2}{\sqrt{x}+2} and calculate f(2)f'(2) rounded to the nearest hundredth.

See Solution

Problem 5651

Find the vertical and horizontal asymptotes for the function p(x)=4x2+1p(x)=\frac{4}{x^{2}+1}.

See Solution

Problem 5652

Find f(x)f'(x) for f(x)=5sinx2sinx+4cosxf(x)=\frac{5 \sin x}{2 \sin x+4 \cos x}. Determine the tangent line at a=π6a=\frac{\pi}{6}: y=mx+by=mx+b, round mm and bb to the nearest hundredth.

See Solution

Problem 5653

Verify if the derivative of a product (fg)(x)(f g)^{\prime}(x) equals the product of the derivatives f(x)g(x)f^{\prime}(x) g^{\prime}(x) for f(x)=7x+8,g(x)=3x+10f(x)=7x+8, g(x)=3x+10.

See Solution

Problem 5654

Berechnen Sie die mittlere Änderungsrate von f(x)=0,5x22x+2f(x)=0,5x^{2}-2x+2 im Intervall [0,4][0, 4].

See Solution

Problem 5655

Find the correct product rule for derivatives and use it to find the derivative of f(x)=(x6+10)xf(x)=(x^{6}+10) \sqrt{x}.

See Solution

Problem 5656

If h(x)=f(x)g(x)h(x)=f(x) \cdot g(x), find h(1)h^{\prime}(1). If h(x)=f(x)g(x)h(x)=\frac{f(x)}{g(x)}, find h(1)h^{\prime}(1).

See Solution

Problem 5657

Find the derivative of g(x)=(5x23x3)exg(x)=(5x^2-3x-3)e^x. What is g(x)=?g'(x)=?

See Solution

Problem 5658

Find the derivative of (4x83x6)(8ex1)\left(-4 x^{8}-3 x^{6}\right)\left(8 e^{x}-1\right) using the product rule.

See Solution

Problem 5659

Find the first and second derivatives of the function f(x)=3x+4x+3f(x)=\frac{-3 x+4}{x+3}. Simplify your answers.

See Solution

Problem 5660

Find the derivative of f(x)=x8exf(x) = x^{8} e^{x}. What is f(x)=f^{\prime}(x) = ?

See Solution

Problem 5661

Bestimme die Steigung an den Schnittpunkten von f(x)=x2+4xf(x)=-x^{2}+4x mit der xx-Achse und vergleiche mit f(2)f^{\prime}(2).

See Solution

Problem 5662

Find the second derivative of the function g(x)=5exx5g(x)=-5 e^{x} x^{5}. What is d2gdx2\frac{d^{2} g}{d x^{2}}?

See Solution

Problem 5663

Find the derivative of the function f(x)=5sinx2sinx+6cosxf(x)=\frac{5 \sin x}{2 \sin x+6 \cos x}. What is f(x)f^{\prime}(x)?

See Solution

Problem 5664

Find the derivative f(x)f'(x) for f(x)=5sinx2sinx+6cosxf(x)=\frac{5 \sin x}{2 \sin x+6 \cos x} and the tangent line at a=π6a=\frac{\pi}{6} in y=mx+by=mx+b form. Round mm and bb to the nearest hundredth.

See Solution

Problem 5665

A pilot's flight distance is modeled by d(t)=t3+30t+100d(t)=t^{3}+30t+100.
a) Find average velocity from 1 to 4 hours. b) Find instantaneous rate of change at 3 hours. c) Explain the meanings of a and b.

See Solution

Problem 5666

Find the tangent line to y=3xcosxy=3 x \cos x at (π,3π)(\pi,-3 \pi). Express it as y=mx+by=m x+b with m=m= and b=b=.

See Solution

Problem 5667

Verify if the derivative of a quotient is the quotient of the derivatives for f(x)=4x+5f(x)=4x+5 and g(x)=9xg(x)=9x.

See Solution

Problem 5668

You buy a car for \40000.Itsvalueafter40000. Its value after tyearsis years is V(t)=40000(0.55)^{t}.Find. Find V(3)and and V^{\prime}(3).Interpret. Interpret V(7)=609and and V^{\prime}(7)=-7234.Howdoes. How does V^{\prime}(1)=-13152$ affect your decision?

See Solution

Problem 5669

Verify if the derivative of a quotient is the quotient of the derivatives for f(x)=4x+5f(x)=4x+5 and g(x)=9xg(x)=9x. Calculate f(x)f'(x), g(x)g'(x), and check the claims.

See Solution

Problem 5670

Find the derivative of g(x)=ex15xg(x)=\frac{e^{x}}{1-5 x}. What is g(x)=?g^{\prime}(x)=?

See Solution

Problem 5671

Find the derivative of the function f(x)=7sinx2sinx+4cosxf(x)=\frac{7 \sin x}{2 \sin x+4 \cos x}. What is f(x)f^{\prime}(x)?

See Solution

Problem 5672

Verify if the derivative of a product is the product of the derivatives for f(x)=5x+4f(x)=5x+4 and g(x)=7x+9g(x)=7x+9.

See Solution

Problem 5673

Find the derivative of f(x)=5x(sinx+cosx)f(x)=5 x(\sin x+\cos x) and calculate f(4)f^{\prime}(4) rounded to the nearest hundredth.

See Solution

Problem 5674

Calculate the derivative (fg)(x)(fg)'(x) using the product rule for f(x)=7x+5f(x)=7x+5 and g(x)=3x+10g(x)=3x+10.

See Solution

Problem 5675

Check if the derivative of a product (fg)(x)(f g)^{\prime}(x) equals the product of derivatives f(x)g(x)f^{\prime}(x) g^{\prime}(x) for f(x)=7x+5,g(x)=3x+10f(x)=7x+5, g(x)=3x+10.

See Solution

Problem 5676

Find f(1)f^{\prime}(-1) for f(x)=x7h(x)f(x)=x^{7} h(x) given h(1)=4h(-1)=4 and h(1)=7h^{\prime}(-1)=7.

See Solution

Problem 5677

Find the derivative f(x)f'(x) for f(x)=7sinx2sinx+4cosxf(x)=\frac{7 \sin x}{2 \sin x + 4 \cos x}. Determine the tangent line at a=π3a=\frac{\pi}{3}: y=mx+by=mx+b with mm and bb rounded to the nearest hundredth.

See Solution

Problem 5678

Find the derivative of (9x3+2x8)(5ex+2)(9 x^{3}+2 x^{8})(5 e^{x}+2) using the product rule without expanding.

See Solution

Problem 5679

Bestimme die Ableitung von ff, finde die Extremstellen mit f(x)=0f^{\prime}(x)=0 und prüfe mit dem Vorzeichenwechselkriterium. a) f(x)=x28x+15f(x)=x^{2}-8 x+15 b) f(x)=2x33x212x+4f(x)=2 x^{3}-3 x^{2}-12 x+4

See Solution

Problem 5680

Simplify f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=2x3f(x)=2x-3.

See Solution

Problem 5681

Find the correct product rule for derivatives: (ab)=?(ab)' = ? Then use it to find f(x)f'(x) for f(x)=(x6+4)xf(x)=(x^6+4)\sqrt{x}.

See Solution

Problem 5682

Find the tangent line to y=2xcosxy=2 x \cos x at (π,2π)(\pi,-2 \pi) in the form y=mx+by=m x+b where m=m= and b=b=.

See Solution

Problem 5683

Find the derivative f(x)f'(x) of f(x)=5x(sinx+cosx)f(x)=5x(\sin x+\cos x), then compute f(2)f'(2) rounded to the nearest hundredth.

See Solution

Problem 5684

Bestimme den Funktionstyp von ff und ob ff für x+x \rightarrow+\infty konvergiert oder divergiert: a) f(x)=3x3x22x+5f(x) = 3x^{3} - x^{2} - 2x + 5 b) f(x)=4x7f(x) = -\frac{4}{x} - 7 c) f(x)=0,01sin(x)+110f(x) = 0,01 \cdot \sin(x) + \frac{1}{10}

See Solution

Problem 5685

Find the tangent line to y=3xcosxy=3 x \cos x at (π,3π)(\pi,-3 \pi). Write it as y=mx+by=m x+b with m=m= and b=b=.

See Solution

Problem 5686

Find the derivative of 10ex+83x5+2x7\frac{10 e^{x}+8}{-3 x^{5}+2 x^{7}} using the quotient rule. No need to expand.

See Solution

Problem 5687

Find the derivative f(x)f'(x) of f(x)=5sinx1+cosxf(x)=\frac{5 \sin x}{1+\cos x} and compute f(4)f'(4) (rounded to the nearest hundredth).

See Solution

Problem 5688

Eine Pflanze hat Blattläuse. Die Funktion f(t)=3000,1t+1f(t)=\frac{300}{0,1 t+1} beschreibt die Anzahl der Blattläuse.
a) Finde den Zeitpunkt, wann die Blattläuse nach 15 Tagen mit Marienkäfern ausgestorben sind. b) Bestimme, wann Marienkäfer eingesetzt werden müssen, damit die Blattläuse nach 30 Tagen aussterben.

See Solution

Problem 5689

Approximate f(0.82)f(0.82) using the tangent line of f(x)=xsinxf(x)=x \sin x at x=π2x=\frac{\pi}{2} with slope 1.

See Solution

Problem 5690

Approximate sugar production when the price is 28 cents using f(30)=50f'(30)=50 and f(30)=6700f(30)=6700.

See Solution

Problem 5691

What does f(3)=2f^{\prime}(3)=2 mean for rainfall at 3:00 am? It indicates a rate of 2 cm/h and predicts 2 cm more rain.

See Solution

Problem 5692

Ergänzen Sie die Tabelle mit dem Verhalten der Funktionen für x+x \rightarrow +\infty und xx \rightarrow -\infty. Skizzieren Sie eine Funktion zu den gegebenen Asymptoten.

See Solution

Problem 5693

Untersuchen Sie die Stetigkeit und Differenzierbarkeit von ff. Bestimmen Sie eine knickfreie Fortsetzung und eine neue Funktion g(x)g(x).
1. f(x)={x28fu¨x20.5x2+2x10fu¨x>2f(x)=\begin{cases} x^{2}-8 & \text{für } x \leq 2 \\ 0.5 x^{2}+2 x-10 & \text{für } x > 2 \end{cases}
2. f(x)=0.25x21f(x)=0.25 x^{2}-1 für x[3,3]x \in [-3, 3].

See Solution

Problem 5694

Approximate f(0.82)f(0.82) using the tangent line of f(x)=xsinxf(x)=x \sin x at x=π2x=\frac{\pi}{2}, which rises π2\frac{\pi}{2} per π2\frac{\pi}{2}.

See Solution

Problem 5695

Gegeben ist f(x)=3x46x3f(x)=3 x^{4}-6 x^{3}. Untersuchen Sie Symmetrie, Nullstellen, Extrempunkte, Wendepunkte und die Ortskurve für k0k \neq 0.

See Solution

Problem 5696

Untersuchen Sie die Stetigkeit und Differenzierbarkeit der Funktion ff definiert durch: f(x)={x28 fu¨x20.5x2+2x10 fu¨x>2 f(x)=\left\{\begin{array}{ll} x^{2}-8 & \text { für } x \leq 2 \\ 0.5 x^{2}+2 x-10 & \text { für } x>2 \end{array}\right.

See Solution

Problem 5697

Determine the features of f(x)=12e2x(x22)f(x)=\frac{1}{2} e^{2 x}(x^{2}-2): y-intercept, endpoint behavior, symmetry, extrema, inflection points, and asymptotes.

See Solution

Problem 5698

Find the first and second derivatives of f(x)=12e2x(x22)f(x)=\frac{1}{2} e^{2 x}(x^{2}-2), then determine extreme points, inflection points, limits as x±x \to \pm \infty, and roots.

See Solution

Problem 5699

Untersuchen Sie die Funktion fk(x)=3x4kx3f_{k}(x)=3 x^{4}-k x^{3} für k0k \neq 0. Hat der Graph immer eine Tiefstelle? Bestimmen Sie die Ortskurve der Wendepunkte und den Wert von kk, wenn die Tangente im Wendepunkt einen Winkel von α=21\alpha=-21^{\circ} zur xx-Achse bildet.

See Solution

Problem 5700

Bestimmen Sie die Ableitungen von den Funktionen: a) f(x)=14x42x2f(x)=\frac{1}{4} x^{4}-2 x^{2}, b) f(x)=3x2+4f(x)=-3 x^{2}+4, c) f(x)=3(x2)2+xf(x)=3(x-2)^{2}+x, d) f(x)=ax3+bx2+cx+df(x)=a x^{3}+b x^{2}+c x+d, e) f(x)=2xf(x)=2 \sqrt{x}, f) f(x)=4x+1f(x)=\frac{4}{x}+1.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord