Calculus

Problem 1801

Find the derivative of f(t)=1.1t20.2t0.4+27f(t)=1.1 t^{2}-0.2 t^{0.4}+27.

See Solution

Problem 1802

Find the derivative of f(t)=1.1t20.2t0.4+27f(t)=1.1 t^{2}-0.2 t^{0.4}+27.

See Solution

Problem 1803

Find the derivative of f(x)=4x2+11x2f(x) = 4x^2 + 11x - 2 at x=3x=3 using f(x)=limh0f(x+h)f(x)hf^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 1804

Find the slope of the tangent line for the function f(x)=3x2+9x35xf(x)=3 x^{2}+9 x^{3}-5 x at x=4x=-4.

See Solution

Problem 1805

Find the tangent line equation for f(x)=3x2+9x35xf(x)=3 x^{2}+9 x^{3}-5 x at x=4x=-4.

See Solution

Problem 1806

Find the limit as xx approaches -9 for the expression x2+10x+9x+9\frac{x^{2}+10 x+9}{x+9}.

See Solution

Problem 1807

Find the limit: limx03x+819x\lim _{x \rightarrow 0} \frac{\sqrt{3 x+81}-9}{x}. What is the exact value?

See Solution

Problem 1808

Find the limits: limm5m5,\lim _{m \rightarrow 5^{-}} \sqrt{m-5}, limm5+m5,\lim _{m \rightarrow 5^{+}} \sqrt{m-5}, limm5m5.\lim _{m \rightarrow 5} \sqrt{m-5}. Enter DNE if a limit does not exist.

See Solution

Problem 1809

Find the limits of the piecewise function f(x)={2xx2 if x42x9 if x>4f(x)=\left\{\begin{array}{ll}2-x-x^{2} & \text { if } x \leq 4 \\ 2 x-9 & \text { if } x>4\end{array}\right. at x=4x=4:
1. limx4f(x)=\lim _{x \rightarrow 4^{-}} f(x)=
2. limx4+f(x)=\lim _{x \rightarrow 4^{+}} f(x)=
3. limx4f(x)=\lim _{x \rightarrow 4} f(x)=

See Solution

Problem 1810

Find the limits of the piecewise function f(x)={4xx2 if x42x9 if x>4f(x)=\left\{\begin{array}{lll}4-x-x^{2} & \text { if } & x \leq 4 \\ 2 x-9 & \text { if } & x>4\end{array}\right. at x=4x=4:
1. limx4f(x)\lim _{x \rightarrow 4^{-}} f(x)
2. limx4+f(x)\lim _{x \rightarrow 4^{+}} f(x)
3. limx4f(x)\lim _{x \rightarrow 4} f(x)

Enter "DNE" if a limit does not exist.

See Solution

Problem 1811

Find the velocity and acceleration of a particle with position s(t)=7t2+6t+9s(t)=7 t^{2}+6 t+9 at t=3t=3 seconds using limits.

See Solution

Problem 1812

Estimate the jumper's height change h(5.5)h^{\prime}(5.5), h(6)h^{\prime}(6), h(6.5)h^{\prime}(6.5) and identify the fastest rise time.

See Solution

Problem 1813

Find the velocity of a particle at time tt from its position s(t)=7t2+6t+9s(t)=7 t^{2}+6 t+9 using the limit definition of the derivative. v(t)=msv(t)=\frac{m}{s}

See Solution

Problem 1814

Estimate the bungee jumper's height change h(5.5)h'(5.5), h(6)h'(6), h(6.5)h'(6.5), and find when the jumper rises fastest. Also, approximate h(6)h''(6).

See Solution

Problem 1815

A bungee jumper's height h(t)h(t) is given by data points. Estimate the jumper's speed and find when they rise fastest. Approximate h(6)h^{\prime \prime}(6).

See Solution

Problem 1816

Find the limits:
1. limx67x4=\lim _{x \rightarrow \frac{6}{7}} x^{4}=
2. limx64x3/2=\lim _{x \rightarrow 64} x^{3 / 2}=

See Solution

Problem 1817

Find the limit: limx718=\lim _{x \rightarrow-7} 18=. Use Basic Limit Laws.

See Solution

Problem 1818

Find the limit: limx125x43\lim _{x \rightarrow 125} x^{\frac{4}{3}}.

See Solution

Problem 1819

Find the limit: limx2(6x+5)\lim _{x \rightarrow 2}(6 x+5). Provide your answer as a whole number.

See Solution

Problem 1820

Find the limit using Basic Limit Laws: limx8(2x2/33x1)=\lim _{x \rightarrow 8}\left(2 x^{2 / 3}-3 x^{-1}\right)=

See Solution

Problem 1821

Find the limit using Basic Limit Laws: limt83t2t+6=\lim _{t \rightarrow 8} \frac{3 t-2}{t+6} =

See Solution

Problem 1822

Find the derivative of the function f(x)=12x56f(x)=\frac{1}{2 \sqrt[6]{x^{5}}} and express it in radical form.

See Solution

Problem 1823

Find the limit as xx approaches 7 for the expression x+2+1x+91\frac{\sqrt{x+2}+1}{\sqrt{x+9}-1}.

See Solution

Problem 1824

Find the limit as tt approaches 2 for the expression t1t^{-1}.

See Solution

Problem 1825

Find the limit: limx48x12x(x25)2\lim _{x \rightarrow 4} \frac{8 \sqrt{x}-\frac{1}{2} x}{(x-25)^{2}}.

See Solution

Problem 1826

Find the limit as xx approaches 132\frac{13}{2} for (4x2+10x7)3/2(4 x^{2}+10 x-7)^{3 / 2}.

See Solution

Problem 1827

Find the derivative of the function y=12xy=-\frac{1}{2 x}, expressed in simplest form without negative exponents.

See Solution

Problem 1828

Evaluate the limit: limx132(4x2+10x7)3/2\lim _{x \rightarrow \frac{13}{2}}\left(4 x^{2}+10 x-7\right)^{3 / 2}.

See Solution

Problem 1829

Evaluate the limit: limx3(5f(x)+3g(x))\lim _{x \rightarrow-3}(5 f(x)+3 g(x)) given limx3f(x)=5\lim _{x \rightarrow-3} f(x)=5 and limx3g(x)=1\lim _{x \rightarrow-3} g(x)=1.

See Solution

Problem 1830

Evaluate the limit given that limx2g(x)=3\lim _{x \rightarrow 2} g(x)=-3: limx2g(x)x2=\lim _{x \rightarrow 2} \frac{g(x)}{x^{2}}=

See Solution

Problem 1831

Find the derivative f(1)f'(1) for the function f(x)=5x3+2x3f(x)=\frac{5 \sqrt{x}}{3}+2 \sqrt{x^{3}}. Simplify to a single fraction.

See Solution

Problem 1832

Evaluate the limit: limx3f(x)+14g(x)9\lim _{x \rightarrow-3} \frac{f(x)+1}{4 g(x)-9} given limx3f(x)=3\lim _{x \rightarrow-3} f(x)=3 and limx3g(x)=5\lim _{x \rightarrow-3} g(x)=5.

See Solution

Problem 1833

Find the derivative f(3)f^{\prime}(3) for the function f(x)=x3x2f(x)=-\sqrt{x^{3}}-\frac{\sqrt{x}}{2} as a simplified fraction.

See Solution

Problem 1834

Given limxcf(x)g(x)=I\lim _{x \rightarrow c} f(x) g(x)=I and limxcg(x)=M0\lim _{x \rightarrow c} g(x)=M \neq 0, find limxcf(x)\lim _{x \rightarrow c} f(x). Is the proof valid? Select all that apply.

See Solution

Problem 1835

Given limxcf(x)g(x)=L\lim _{x \rightarrow c} f(x) g(x)=L and limxcg(x)=M0\lim _{x \rightarrow c} g(x)=M \neq 0, find limxcf(x)\lim _{x \rightarrow c} f(x). Is the proof valid?

See Solution

Problem 1836

Given limxcf(x)g(x)=L\lim _{x \rightarrow c} f(x) g(x)=L and limxcg(x)=M0\lim _{x \rightarrow c} g(x)=M \neq 0, find limxcf(x)\lim _{x \rightarrow c} f(x). Is the proof valid? Select reasons.

See Solution

Problem 1837

Given limxcf(x)g(x)=L\lim _{x \rightarrow c} f(x) g(x)=L and limxcg(x)=M0\lim _{x \rightarrow c} g(x)=M \neq 0, find limxcf(x)\lim _{x \rightarrow c} f(x). Is the proof valid? Select reasons if not.

See Solution

Problem 1838

Find functions ff and gg where limx0f(x)\lim_{x \to 0} f(x) and limx0g(x)\lim_{x \to 0} g(x) don't exist, but limx0(f(x)+g(x))\lim_{x \to 0}(f(x)+g(x)) does.

See Solution

Problem 1839

Given limx6f(x)=3\lim _{x \rightarrow 6} f(x)=3, find these limits:
1. limx6(f(x))2=\lim _{x \rightarrow 6}(f(x))^{2}=
2. limx61f(x)=\lim _{x \rightarrow 6} \frac{1}{f(x)}=
3. limx6xf(x)=\lim _{x \rightarrow 6} x \sqrt{f(x)}=

See Solution

Problem 1840

Cho hàm số y=f(x)y=f(x) với f(x)=x(x1)(x2)f^{\prime}(x)=x(x-1)(x-2). Số khẳng định đúng từ (I) đến (IV) là bao nhiêu? A. 4, B. 3, C. 2, D. 1.

See Solution

Problem 1841

Evaluate the limit: limx1(f(x)g(x)+2)\lim _{x \rightarrow-1}(f(x) \cdot g(x)+2) given that limx1f(x)=2\lim _{x \rightarrow-1} f(x)=2 and limx1g(x)=10\lim _{x \rightarrow-1} g(x)=10.

See Solution

Problem 1842

Evaluate the limit: limx7x+2+1x+91.\lim _{x \rightarrow 7} \frac{\sqrt{x+2}+1}{\sqrt{x+9}-1}.

See Solution

Problem 1843

Find the limit: limx7x+2+1x+91 \lim _{x \rightarrow 7} \frac{\sqrt{x+2}+1}{\sqrt{x+9}-1}

See Solution

Problem 1844

Evaluate the limit: limx73f(x)+xg(x)+1\lim _{x \rightarrow 7} \frac{3 f(x)+x}{g(x)+1} given that limx7f(x)=7\lim _{x \rightarrow 7} f(x)=7 and limx7g(x)=12\lim _{x \rightarrow 7} g(x)=-12.

See Solution

Problem 1845

Evaluate the limit: limx64(4x2/311x1)=?\lim _{x \rightarrow 64}\left(4 x^{2 / 3}-11 x^{-1}\right)=?

See Solution

Problem 1846

Find the limit: limxx44x3+122x27x4\lim _{x \rightarrow-\infty} \frac{x^{4}-4 x^{3}+1}{2-2 x^{2}-7 x^{4}}.

See Solution

Problem 1847

Calculate the limit: limxx44x3+122x22x4\lim _{x \rightarrow-\infty} \frac{x^{4}-4 x^{3}+1}{2-2 x^{2}-2 x^{4}}.

See Solution

Problem 1848

Evaluate the integral (x21)xdx\int (x^{2}-1) \sqrt{x} \, dx. Choose the correct answer from the options provided.

See Solution

Problem 1849

Evaluate the integral (x21)xdx\int\left(x^{2}-1\right) \sqrt{x} d x. Choose the correct answer from the options provided.

See Solution

Problem 1850

Find the limit: limx4x21x+2\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-1}}{x+2}.

See Solution

Problem 1851

Evaluate the integral exe2xdx\int e^{x} e^{2 x} dx. What is the result? (A) 13e3x+c\frac{1}{3} e^{3 x}+c (B) 3e3x+c3 e^{3 x}+c (C) 3xe3x+c3 x-e^{-3 x}+c (D) none of the choices

See Solution

Problem 1852

Evaluate e2xdxex+1\int \frac{e^{2 x} d x}{e^{x}+1}. Choose the correct answer from the options given.

See Solution

Problem 1853

Evaluate lnxxdx\int \frac{\ln x}{x} d x. Choose the correct answer: (A) 12(lnx)2+c\frac{1}{2}(\ln |x|)^{2}+c, (B) 2(lnx)2+c-2(\ln |x|)^{2}+c, (C) x2lnx2+c\frac{x}{2} \ln |x|^{2}+c, (D) none.

See Solution

Problem 1854

Find the numerical coefficient of the integral sinxcos2xdx\int \sin x \cos^{2} x \, dx rounded to 2 decimal places.

See Solution

Problem 1855

Evaluate 13xdx\int \frac{1}{3 x} d x and choose the correct answer: (A) 13lnx+C\frac{1}{3} \ln |x|+C, (B) 13lnx\frac{1}{3} \ln |x|, (C) 3lnx+C-3 \ln |x|+C, (D) 3lnxx+C3 \ln |x|-x+C.

See Solution

Problem 1856

Rotate the ellipse around the yy-axis. Use the shell method to find the volume: 43πa2b\frac{4}{3} \pi a^{2} b.

See Solution

Problem 1857

Find the 2 positive terms from the integral of cos4xsin2xdx\cos^{4} x \sin^{2} x \, dx. Options: (A), (B), (C), (D).

See Solution

Problem 1858

Evaluate the limit using limit laws: limx152(4x2+6x6)3/2=\lim _{x \rightarrow \frac{15}{2}}\left(4 x^{2}+6 x-6\right)^{3 / 2}=

See Solution

Problem 1859

What is the negative term in the integral of tan4xdx\tan^{4} x \, dx? Answer format: "term".

See Solution

Problem 1860

Evaluate the limit: limx1(f(x)g(x)+2)\lim _{x \rightarrow-1}(f(x) \cdot g(x)+2) given limx1f(x)=2\lim _{x \rightarrow-1} f(x)=2 and limx1g(x)=10\lim _{x \rightarrow-1} g(x)=10.

See Solution

Problem 1861

Air is pumped into a balloon at 10 cm³/s. Find the rate of diameter increase when the radius is 5 cm5 \mathrm{~cm}.

See Solution

Problem 1862

What is the numerical coefficient of the inverse trigonometric function in the integral dx2+7x2\frac{d x}{2+7 x^{2}}? Round to 2 decimal places.

See Solution

Problem 1863

Evaluate the integral dx3+2xx2\int \frac{d x}{\sqrt{3+2 x-x^{2}}} using trigonometric substitution. What is the result?

See Solution

Problem 1864

Evaluate dx(x3)x26x+8\int \frac{d x}{(x-3) \sqrt{x^{2}-6 x+8}}. Choose the correct answer: (A), (B), (C), or (D).

See Solution

Problem 1865

What is the term inside the inverse trigonometric function in the integral of dx25x2\frac{d x}{\sqrt{25-x^{2}}}?

See Solution

Problem 1866

Integrate dx(4x29)3/2\int \frac{d x}{(4 x^{2}-9)^{3/2}}. Choose the correct answer from the options provided.

See Solution

Problem 1867

Evaluate dxx24x+5\int \frac{d x}{x^{2}-4 x+5} using trigonometric substitution. Choose the correct answer: (A), (B), (C), or (D).

See Solution

Problem 1868

Find the integral of exsinxe^{x} \sin x with respect to xx: exsinxdx\int e^{x} \sin x \, dx. Choose the correct answer.

See Solution

Problem 1869

Find the integral of (lnx)2dx\int(\ln x)^{2} d x. Choose the correct answer from the options provided.

See Solution

Problem 1870

Integrate tan1(3x)dx\int \tan^{-1}(3x) \, dx. Choose the correct answer from the options provided.

See Solution

Problem 1871

Evaluate sec2(4x+1)dx\int \sec ^{2}(4 x+1) d x using u=4x+1u=4 x+1. What is the result?

See Solution

Problem 1872

Find the marginal cost function for the production cost C(x)=130+6x0.8x2C(x)=130+6x-0.8x^{2}.

See Solution

Problem 1873

Find the marginal cost function for the total cost C(x)=600+17x0.1x2+0.4x3C(x)=600+17 x-0.1 x^{2}+0.4 x^{3} of producing xx magazines.

See Solution

Problem 1874

Find the marginal average cost for the weekly hat production cost function C(x)=2800+26x+0.3x2C(x)=2800+26x+0.3x^{2}.

See Solution

Problem 1875

Find the marginal profit function given price p=D(x)=8.000.004xp=D(x)=8.00-0.004 x and cost C(x)=0.007x2+0.55x+270C(x)=0.007 x^{2}+0.55 x+270.

See Solution

Problem 1876

Find the marginal profit for selling 145 toasters, given price p=D(x)=81.70.01xp=D(x)=81.7-0.01 x and cost C(x)=0.03x2+4.7x+6100C(x)=0.03 x^{2}+4.7 x+6100.

See Solution

Problem 1877

Is the statement true or false? The derivative of f(x)f(x) is the instantaneous rate of change of y=f(x)y=f(x) with respect to xx. Choose A, B, C, or D.

See Solution

Problem 1878

Find the limit as xx approaches 2 for the function f(x)=x2+4x12x24f(x)=\frac{x^{2}+4 x-12}{x^{2}-4} using a table and verify with a graphing calculator.

See Solution

Problem 1879

Find the limit as xx approaches 2 for the expression x2+4x12x24\frac{x^{2}+4x-12}{x^{2}-4}, rounded to three decimal places.

See Solution

Problem 1880

Find values of x=ax=a where k(x)=4ex4k(x)=4 e^{\sqrt{x-4}} is discontinuous and state the limits as xx approaches aa.

See Solution

Problem 1881

Find values of x=ax=a where k(x)=4ex4k(x)=4 e^{\sqrt{x-4}} is discontinuous. State the limits or if they don't exist.

See Solution

Problem 1882

Find values of x=ax=a where k(x)=4ex4k(x)=4 e^{\sqrt{x-4}} is discontinuous and determine the limits as xx approaches aa.

See Solution

Problem 1883

Is it true or false that a runner's mile time can be used to find average speed? Choose the correct answer: A. True, average rate is time over distance. B. False, instantaneous speed is unknown. C. True, average rate is distance over time. D. False, only instantaneous speed can be found.

See Solution

Problem 1884

Find the instantaneous velocity of the object at t=4t=4 for the position function s(t)=4t2+5t+2s(t)=4 t^{2}+5 t+2.

See Solution

Problem 1885

Approximate the derivative of f(x)=5xxf(x)=5 x^{x} at a=2a=2 using small hh. Find the slope of the line near that point.

See Solution

Problem 1886

Approximate e0.6e^{-0.6} to three decimal places. What is the value?

See Solution

Problem 1887

Calculate the average rate of change of f(x)=x2+5xf(x)=x^{2}+5x from x=0x=0 to x=8x=8. Simplify your answer.

See Solution

Problem 1888

Find the limit: If h(x)=x+2x7h(x)=\frac{\sqrt{x}+2}{x-7}, what is limx7h(x)\lim _{x \rightarrow 7} h(x)? A. == B. DNE.

See Solution

Problem 1889

Find the limit: If h(x)=x+2x7h(x)=\frac{\sqrt{x}+2}{x-7}, then determine limx7h(x)\lim _{x \rightarrow 7} h(x). A. limx7h(x)=\lim _{x \rightarrow 7} h(x)= B. Limit does not exist.

See Solution

Problem 1890

Find the limit: If h(x)=x+2x7h(x)=\frac{\sqrt{x}+2}{x-7}, then calculate limx7h(x)\lim _{x \rightarrow 7} h(x).

See Solution

Problem 1891

Find limx7h(x)\lim _{x \rightarrow 7} h(x) for h(x)=x+2x7h(x)=\frac{\sqrt{x}+2}{x-7}. Does it exist?

See Solution

Problem 1892

Find the limit: If h(x)=x+2x7h(x)=\frac{\sqrt{x}+2}{x-7}, then determine limx7h(x)\lim _{x \rightarrow 7} h(x). Options: A. Limit value or B. Limit does not exist.

See Solution

Problem 1893

Find the integral of x2cosxx^{2} \cos x with respect to xx.

See Solution

Problem 1894

Find the marginal revenue R(x)R'(x) for R(x)=55xx2100R(x)=55x-\frac{x^2}{100}, estimate R(2000)R'(2000), actual revenue R(2001)R(2001), and compare.

See Solution

Problem 1895

Calculate the integral: x2+16dx\int \sqrt{x^{2}+16} \, dx

See Solution

Problem 1896

Find f(2)f^{\prime}(2), f(16)f^{\prime}(16), and f(3)f^{\prime}(-3) for f(x)=2xf(x)=\frac{-2}{x}. Does the derivative exist?

See Solution

Problem 1897

Find the instantaneous velocity of the object at time t=3t=3 for the position function s(t)=3t27t6s(t)=3 t^{2}-7 t-6.

See Solution

Problem 1898

Find the secant line for f(x)=8xf(x)=\frac{8}{x} between x=2x=2 and x=8x=8, and the tangent line at x=2x=2.

See Solution

Problem 1899

Untersuchen Sie das Verhalten von f(x)f(x) für xx \rightarrow \infty und xx \rightarrow -\infty für die folgenden Funktionen: a) f(x)=xexf(x)=x \cdot e^{x}, b) f(x)=x2exf(x)=x^{2} \cdot e^{-x}, c) f(x)=x3exf(x)=-x^{3} \cdot e^{x}, d) f(x)=5+x4exf(x)=5+x^{4} \cdot e^{x}, e) f(x)=4+xexf(x)=4+x \cdot e^{-x}, f) f(x)=(x2+x+7)exf(x)=(x^{2}+x+7) \cdot e^{x}, g) f(x)=3xexf(x)=3 x-e^{-x}, h) f(x)=xex+2f(x)=x-e^{x}+2, i) f(x)=xexx2f(x)=\frac{x}{e^{x}}-\frac{x}{2}.

See Solution

Problem 1900

Find the instantaneous rate of change of g(t)=5t2g(t)=5-t^{2} at t=6t=-6. What is the value?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord