Calculus

Problem 15301

Find the general antiderivative of f(x)=8xf(x)=\frac{8}{x} for x0x \neq 0. Use CC as the constant. F(x)=F(x)=

See Solution

Problem 15302

Bestimmen Sie die Ableitung von ff an x0x_{0} für: a) f(x)=x2f(x)=x^{2}, x0=3x_{0}=3; b) f(x)=2x2f(x)=2 x^{2}, x0=1x_{0}=1.

See Solution

Problem 15303

Find the second order partial derivative, 2fxy\frac{\partial^{2} f}{\partial x \partial y}, for f=9x4+9y3f=\sqrt{9 x^{4}+9 y^{3}}.

See Solution

Problem 15304

Find the antiderivatives: a. f(x)=xf(x)=\sqrt{x}, b. f(x)=xnf(x)=x^{n} for n1n \neq -1, c. f(x)=x1f(x)=x^{-1} for x>0x>0.

See Solution

Problem 15305

Justin has 120 m of fencing for a rectangular garden.
(a) Find the area function A(x)A(x) in terms of xx.
(b) What side length xx maximizes the area?
(c) What is the maximum area?

See Solution

Problem 15306

Find the critical points of f(x)=4x3232x2+5xf(x)=4 x^{3}-\frac{23}{2} x^{2}+5 x. Are they x=14,53x=\frac{1}{4}, \frac{5}{3} or none?

See Solution

Problem 15307

Find the critical points of f(x)=3x2+5x4f(x)=3x^2+5x-4. Derivative: f(x)=6x+5f'(x)=6x+5. Critical points: A. x=56x=-\frac{5}{6}, B. none.

See Solution

Problem 15308

Find the critical points of the function f(x)=xx2+49f(x)=\frac{x}{x^{2}+49} by determining its derivative.

See Solution

Problem 15309

Ashley has 120 m of fencing for three sides of a rectangle by a river.
(a) Find area function A(x)A(x) in terms of xx.
(b) What xx maximizes the area?
(c) What is the maximum area?

See Solution

Problem 15310

Berechnen Sie den Flächeninhalt AA zwischen den Funktionen f(x)=63πxf(x)=6-\frac{3}{\pi} x und g(x)=3sin(x2)g(x)=3 \cdot \sin \left(\frac{x}{2}\right) an der yy-Achse.

See Solution

Problem 15311

Find critical points of f(x)=x2x+18f(x)=x^{2} \sqrt{x+18}. Choices: A. x=0,1425x=0,-14 \frac{2}{5}; B. No critical points.

See Solution

Problem 15312

Calculate the integral from 3 to 8 of the function 20x2+5x8/3-20 x^{2}+5 x^{8 / 3}.

See Solution

Problem 15313

A school uses 360 m of fencing for 3 sides of a playground.
(a) Find the area function A(x)A(x).
(b) What length xx maximizes the area?
(c) What is the maximum area?

See Solution

Problem 15314

Find the absolute extreme values of f(x)=x27f(x)=x^{2}-7 on [3,4][-3,4]. What are the maximum and minimum values?

See Solution

Problem 15315

Find the absolute extreme values of f(x)=9x23xf(x)=9 x^{\frac{2}{3}}-x on [0,729][0,729]. What are the max and min?

See Solution

Problem 15316

Oblicz granicę dla ciągu an=n2+n+1n2n+1n+1na_{n}=\frac{\sqrt{n^{2}+\sqrt{n+1}}-\sqrt{n^{2}-\sqrt{n+1}}}{\sqrt{n+1}-\sqrt{n}}. Jeśli granica nie istnieje, wyjaśnij dlaczego.

See Solution

Problem 15317

Evaluate the series n=3(2)n+1(n)(5n)\sum_{n=3}^{\infty}(-2)^{n+1}(n)\left(5^{-n}\right).

See Solution

Problem 15318

Find the minimum surface area of a box with volume 20ft320 \mathrm{ft}^{3}, given S(x)=x2+80xS(x)=x^{2}+\frac{80}{x}. What are the dimensions?

See Solution

Problem 15319

Find the minimum surface area of a box with volume 20ft320 \mathrm{ft}^{3}, given S(x)=x2+80xS(x)=x^{2}+\frac{80}{x}. What are the dimensions?

See Solution

Problem 15320

Find the minimum surface area of a box with volume 20ft320 \mathrm{ft}^{3} given S(x)=x2+80xS(x)=x^{2}+\frac{80}{x}. What are the dimensions?

See Solution

Problem 15321

A company sells xx wigits weekly; price-demand is p(x)=20xp(x)=20-x.
(a) Find the marginal revenue function. (b) Estimate additional revenue from producing 6 wigits instead of 5.

See Solution

Problem 15322

Bestimme die Tangentengleichung tt an ff im Punkt PP und wo sie die xx-Achse schneidet für die gegebenen Funktionen.

See Solution

Problem 15323

Find the linearization L(x)L(x) of f(x)=x+4f(x)=\sqrt{x+4} at x=1x=1 and use it to approximate 4.9\sqrt{4.9}. Is it an overestimate or underestimate?

See Solution

Problem 15324

A cylindrical can has volume VV (in cm3\mathrm{cm}^{3}) and radius rr (in cm\mathrm{cm}).
a) Find surface area SS in terms of rr and VV.
b) Calculate dSdV\frac{d S}{d V} for r=10.7 cmr=10.7 \mathrm{~cm} and V=2410 cm3V=2410 \mathrm{~cm}^{3}, rounded to 3 significant figures.
c) Find dSdr\frac{d S}{d r} for r=10.7 cmr=10.7 \mathrm{~cm} and V=2410 cm3V=2410 \mathrm{~cm}^{3}, rounded to 3 significant figures.
d) Determine the change in radius needed to reduce surface area by 17 cm217 \mathrm{~cm}^{2}, keeping V=2410 cm3V=2410 \mathrm{~cm}^{3}, using linear approximation.
e) Repeat (d) using the function SS directly.

See Solution

Problem 15325

Estimate the error in using the first six terms to approximate the series sum: n=1(1)n+1(0.01)nn\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(0.01)^{n}}{n}.

See Solution

Problem 15326

Skizzieren Sie den Graphen von h(x)=4x32h(x)=\frac{4}{x^{\frac{3}{2}}} und berechnen Sie den Flächeninhalt AuA_{u} über [0,25;u][0,25; u]. Ist AuA_{u} endlich für uu \rightarrow \infty?

See Solution

Problem 15327

Evaluate the series: n=1(1)nn(n+1)3\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{(n+1)^{3}}.

See Solution

Problem 15328

Calculate the integral I=054xx2dxI=\int_{0}^{5}\left|4 x-x^{2}\right| d x.

See Solution

Problem 15329

Estimate the sum of the series n=1(1)n1n2+3\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}+3} with an error < 0.001 using the alternating series estimation theorem.

See Solution

Problem 15330

Find the minimum surface area of a box with volume 20ft320 \mathrm{ft}^{3}, given S(x)=x2+80xS(x)=x^{2}+\frac{80}{x}. What are the dimensions?

See Solution

Problem 15331

Estimate the distance traveled by a braking car using a midpoint sum with 6 equal intervals from the velocity graph points: (0.5,42.75), (1.5,30), (2.5,21), (3.5,13.5), (4.5,7.5), (5.5,3).

See Solution

Problem 15332

A car's velocity after tt hours is v(t)=12+4tt2v(t)=12+4t-t^{2}. How many miles does it cover in the first 2 hours?

See Solution

Problem 15333

Find the additional profit for selling xx BabCo Lounge Chairs instead of 10, and the marginal profit at x=10x=10.

See Solution

Problem 15334

Find the yy-intercept of the curve through (1,2)(1,2) with slope dydx=8x3\frac{d y}{d x}=8 x-3.

See Solution

Problem 15335

Acme Office Supplies has a cost function for xx file cabinets: C(x)=1020+50xx2C(x)=1020+50x-x^{2}.
(a) Find the cost difference between producing 8 and 7 cabinets. (b) Determine the marginal cost function. (c) Use the marginal cost to estimate the cost difference for 8 vs. 7 cabinets.

See Solution

Problem 15336

Find the growth rate of L(t)=2.5t+1.5cos(2πt24)L(t)=2.5 t+1.5 \cos \left(\frac{2 \pi t}{24}\right) and its max/min values.

See Solution

Problem 15337

Find the radius of convergence and values of xx for absolute and conditional convergence of n=1(1)n+1(x+12)nn(12)n\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x+12)^{n}}{n(12)^{n}}.

See Solution

Problem 15338

Find the radius of convergence and the values of xx for absolute and conditional convergence of: a. n=0(1)n(6x+8)n\sum_{n=0}^{\infty}(-1)^{n}(6 x+8)^{n}

See Solution

Problem 15339

Check if the series n=1(n!)25n(2n)!\sum_{n=1}^{\infty} \frac{(n !)^{2} 5^{n}}{(2 n) !} converges using the ratio test or another method.

See Solution

Problem 15340

Calculate the growth rate dLdt\frac{\mathrm{dL}}{\mathrm{dt}} for L(t)=2.5t+1.5cos(2πt24)L(t)=2.5 t+1.5 \cos \left(\frac{2 \pi t}{24}\right). What are the max and min growth rates?

See Solution

Problem 15341

Calculate the indefinite integral and use CC for the constant of integration: (6+25x2+38x3)dx\int\left(6+\frac{2}{5} x^{2}+\frac{3}{8} x^{3}\right) d x

See Solution

Problem 15342

Find Medtronic's marginal profit when producing and selling 1000 insulin pumps using the profit function P(x)=2200x0.1x2350P(x)=2200 x-0.1 x^{2}-350.

See Solution

Problem 15343

Calculate the integral 24(y23y+5)dy\int_{2}^{4}(y^{2}-3y+5) \, dy.

See Solution

Problem 15344

Find the growth rate dLdt\frac{dL}{dt} for L(t)=2.5t+1.5cos(2πt24)L(t)=2.5t+1.5\cos\left(\frac{2\pi t}{24}\right). What are the max and min growth rates?

See Solution

Problem 15345

Find the limit: limn(7n+57n3)n\lim _{n \rightarrow \infty}\left(\frac{7 n+5}{7 n-3}\right)^{\sqrt{n}}

See Solution

Problem 15346

Prüfen Sie, ob F\mathrm{F} eine Stammfunktion von f\mathrm{f} ist für die gegebenen Funktionen.

See Solution

Problem 15347

Determine if the series n=1147(3n2)35(2n+1)\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 \cdots (3n-2)}{3 \cdot 5 \cdots (2n+1)} converges or diverges using the ratio test.

See Solution

Problem 15348

Find the limit: limx0sin2(x)ln(4x+1)\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{\ln (4 x+1)}.

See Solution

Problem 15349

Find the velocity of a 540 g540 \mathrm{~g} grapefruit falling 0.930 m0.930 \mathrm{~m}. Answer in m/s\mathrm{m/s} as a three-digit number.

See Solution

Problem 15350

Estimate 39f(x)dx\int_{3}^{9} f(x) d x using 3 subintervals with right, left, and midpoint Riemann sums. Use values from f(x)f(x).

See Solution

Problem 15351

Find the limit: limn+(7n+57n3)n\lim _{n \rightarrow+\infty}\left(\frac{7 n+5}{7 n-3}\right)^{\sqrt{n}}.

See Solution

Problem 15352

Analyze the series n=1147(3n2)35(2n+1)\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 \cdots (3n-2)}{3 \cdot 5 \cdots (2n+1)} for convergence using the ratio test.

See Solution

Problem 15353

Find the general antiderivative of f(θ)=7sin(θ)5sec(θ)tan(θ)f(\theta)=7 \sin (\theta)-5 \sec (\theta) \tan (\theta) and check by differentiation. Use CC for the constant. F(θ)=F(\theta)=\square

See Solution

Problem 15354

Calculate the integral: t+1+t2tdt\int \frac{t+1+t^{2}}{\sqrt{t}} \, dt

See Solution

Problem 15355

Find the rectangle dimensions (in m) with area 343 m2343 \mathrm{~m}^{2} and minimal perimeter. Enter as x,y.

See Solution

Problem 15356

A tour guide's profit for nn people is P(n)=n(460.5n)92P(n)=n(46-0.5 n)-92. a. Find nn to maximize profit with a bus of 92. b. For a bus of 42, how many people maximize profit?

See Solution

Problem 15357

Calculate the limit of an=12n3+32n3+52n3++(2n1)2n3a_{n}=\frac{1^{2}}{n^{3}}+\frac{3^{2}}{n^{3}}+\frac{5^{2}}{n^{3}}+\cdots+\frac{(2 n-1)^{2}}{n^{3}}.

See Solution

Problem 15358

Estimate 39f(x)dx\int_{3}^{9} f(x) dx using right, left, and midpoint Riemann sums with 3 intervals. Function is increasing.

See Solution

Problem 15359

Solve the integral using integration by parts: [4x3ln(2x)]dx\int\left[4 x^{3} \ln (2 x)\right] d x

See Solution

Problem 15360

Estimate the distance traveled by the car (in feet) using a midpoint sum with 6 equal intervals from the points: (0.5,42.75), (1.5,30), (2.5,21), (3.5,13.5), (4.5,7.5), (5.5,3).

See Solution

Problem 15361

Differentiate y=lnxx5 y=\frac{\ln x}{x^{5}} and show your work.

See Solution

Problem 15362

A tour guide's profit is P(n)=n(460.5n)92P(n)=n(46-0.5 n)-92. Find nn for max profit with 92 and 42 max capacity buses. Derivative: P(n)=n+46P^{\prime}(n)=-n+46.

See Solution

Problem 15363

Differentiate y=x4lnx13x3y=x^{4} \ln x-\frac{1}{3} x^{3}. Show your work.

See Solution

Problem 15364

Find the derivative of the function f(x)=ex3+7xf(x)=e^{x^{3}+7 x}. What is f(x)f^{\prime}(x)?

See Solution

Problem 15365

Find the function f(x)f(x) with f(x)=0f''(x)=0, f(2)=1f'(2)=-1, and f(2)=3f(2)=-3. What is f(x)f(x)?

See Solution

Problem 15366

Find the derivative of f(x)=ln(e6x)f(x)=\ln(e^{6x}). What is f(x)=f'(x)=\square?

See Solution

Problem 15367

Explain why Rolle's Theorem doesn't apply to f(x)=xf(x)=|x| on [a,a][-a, a] for any a>0a>0. Choose the correct option.

See Solution

Problem 15368

Find the derivative of the function f(x)=e6+exf(x)=e^{6+e^{x}}.

See Solution

Problem 15369

Evaluate the integral eb1xln(x)dx\int_{e}^{b} \frac{1}{x \ln (x)} d x.

See Solution

Problem 15370

Find the derivative of the function f(x)=8exf(x)=8 e x. What is f(x)f^{\prime}(x)?

See Solution

Problem 15371

Find the derivative of the function f(x)=exln(x6)f(x)=e^{x} \ln(x^{6}). What is f(x)f'(x)?

See Solution

Problem 15372

Differentiate y=ln[1x(x+2)4]y=\ln \left[\frac{1-x}{(x+2)^{4}}\right]. Show your work.

See Solution

Problem 15373

Find the derivative of f(z)=ezz65f(z)=\frac{e^{z}}{z^{6}-5}.

See Solution

Problem 15374

Given the function f(x)=ln(x3+40)f(x)=\ln(x^{3}+40), find: (a) f(x)f^{\prime}(x) and (b) f(2)f^{\prime}(2).

See Solution

Problem 15375

Find the tangent line y=mx+by=m x+b for y=xcos(3x)y=x \cos (3 x) at x=πx=\pi. Calculate m=m= and b=b=.

See Solution

Problem 15376

Bestimme das unbestimmte Integral von h(x)=(x2)2+2xh(x)=(x-2)^{2}+2x.

See Solution

Problem 15377

Find F(x)F^{\prime}(x) if F(x)=f(g(x))F(x)=f(g(x)), where f(x)=3x+7f^{\prime}(x)=\sqrt{3x+7} and g(x)=x23g(x)=x^{2}-3.

See Solution

Problem 15378

Find the absolute extremum of the function f(x)=7x32f(x)=7 x^{3}-2.
Choose: A. The absolute minimum is \square at x=x=\square. B. There is no absolute minimum.

See Solution

Problem 15379

Find the extrema of the function f(x)=x21x2+1f(x)=\frac{x^{2}-1}{x^{2}+1} on the interval [1,3][-1,3].

See Solution

Problem 15380

Find the tangent line equation for y=4x22x+1y=4^{x^{2}-2 x+1} at x=4x=4. What is y=y=?

See Solution

Problem 15381

Find the derivative of f(x)=x3ln(x)x3f(x)=x^{3} \ln (x)-x^{3} and evaluate f(e)f^{\prime}(e).

See Solution

Problem 15382

Find the max and min values of f(x)=x28x1f(x)=x^{2}-8x-1 on the interval [2,8][2,8]. Give the values and corresponding xx.

See Solution

Problem 15383

Find the derivative f(x)f^{\prime}(x) and evaluate f(e)f^{\prime}(e) for f(x)=x3ln(x)x3f(x)=x^{3} \ln (x)-x^{3}.

See Solution

Problem 15384

Find the tangent line equation for y=4x22x+1y=4^{x^{2}-2 x+1} at x=4x=4. y=y=

See Solution

Problem 15385

Find the limit limx0f(x)tan(2x)\lim _{x \rightarrow 0} \frac{f(x)}{\tan (2 x)} given limx0f(x)=0\lim _{x \rightarrow 0} f(x)=0 and limx0f(x)=3\lim _{x \rightarrow 0} f^{\prime}(x)=3.

See Solution

Problem 15386

Find the tangent line equation for f(x)=xln(x6)f(x)=x \ln (x-6) at x=7x=7.

See Solution

Problem 15387

Find the points cc where the Mean Value Theorem applies for f(x)=x3f(x)=x^{3} on the interval [2,2][-2,2].

See Solution

Problem 15388

Find the derivative of the function f(x)=2(4x24x3)3f(x)=2\left(-4 x^{2}-4 x-3\right)^{3}.

See Solution

Problem 15389

Is the function y=f(t)y=f(t), representing the age of the oldest living person since 1950, continuous? Justify your answer.

See Solution

Problem 15390

Find the derivative of the function f(x)=xexf(x)=x-e^{-x}. What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 15391

Given f(x)f(x) with f(1)=f(0)=f(1)=0f^{\prime \prime}(-1)=f^{\prime \prime}(0)=f^{\prime \prime}(1)=0, find the true statement about its inflection points.

See Solution

Problem 15392

Find the interval where the function ff is decreasing given its derivative f(x)=(x3)(x+2)2(x5)3f'(x)=(x-3)(x+2)^{2}(x-5)^{3}.

See Solution

Problem 15393

Find the derivative of the function f(x)=e[(x3)/3]f(x)=e^{\left[\left(x^{3}\right) / 3\right]}. What is f(x)f^{\prime}(x)?

See Solution

Problem 15394

Find the derivative of the function f(x)=(7x3)4f(x)=(-7 x-3)^{4}, denoted as f(x)f^{\prime}(x).

See Solution

Problem 15395

Determine if Rolle's Theorem applies to g(x)=x3+2x215x36g(x)=x^{3}+2x^{2}-15x-36 on [3,4][-3,4] and find guaranteed point(s).

See Solution

Problem 15396

Find the derivative of f(x)=ln(x)f(x)=\ln (-x). What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 15397

Find the derivative of the function y=55x28x9y=\frac{5}{-5 x^{2}-8 x-9} with respect to xx.

See Solution

Problem 15398

Differentiate y=log8(x2x+18)y=\log_{8}\left(\frac{x^{2}}{\sqrt[8]{x+1}}\right). Show your work.

See Solution

Problem 15399

Determine if the Mean Value Theorem applies to f(x)=3x2f(x)=-3-x^{2} on [2,1][-2,1] and find any guaranteed points.

See Solution

Problem 15400

Find the derivative dydx\frac{d y}{d x} of the function y=55x28x9y=\frac{5}{-5 x^{2}-8 x-9}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord