Calculus

Problem 27901

Find the limit: limx2x2+2x8x22x\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x^{2}-2 x}.

See Solution

Problem 27902

Let g(x)g(x) be defined as: g(x)=8x+36g(x) = -8x + 36 for x4x \leq 4 and g(x)=x23xg(x) = x^2 - 3x for x>4x > 4. Is gg continuous/differentiable at x=4x=4? Options: A, B, C, D.

See Solution

Problem 27903

Find dydx\frac{d y}{d x} at the point (1,1)(1,-1) for the equation x3+xy4y=4x^{3}+x y-4 y=4.

See Solution

Problem 27904

For f(x)=2x+3f(x)=2x+3, find δ\delta in terms of ϵ\epsilon such that if x5<δ|x-5|<\delta, then f(x)13<ϵ|f(x)-13|<\epsilon. Also, check if f(x)f(x) is discontinuous and justify.

See Solution

Problem 27905

Find the relative maximum of y=34x5334x83y=\frac{3}{4} x^{\frac{5}{3}}-\frac{3}{4} x^{\frac{8}{3}}. Find yy' and critical points, then use the second derivative test.

See Solution

Problem 27906

Differentiate these functions without simplifying: (a) f(x)=x2tan(x)+sin(x)sec(x)+cosxcscx+xsinxf(x)=x^{2} \tan (x)+\sin (x) \sec (x)+\cos x \csc x+\sqrt{x} \sin x; (b) g(x)=x3+sin(x)1+x2g(x)=\frac{x^{3}+\sin (x)}{1+x^{2}}.

See Solution

Problem 27907

Problem 4: Justify your work and state any theorems used. (a) Show f(x)=0f(x)=0 has a solution in (1,1)(-1,1) for f(x)=2x3+1f(x)=2x^3+1. (b) Given 1+2xx3g(x)1+3x2+x51+2x-x^3 \leq g(x) \leq 1+3x^2+x^5, find limx0f(x)\lim_{x \to 0} f(x) and state any theorems.

See Solution

Problem 27908

Gegeben ist die Funktion f(x)=112x4+16x3x2+5xf(x)=\frac{1}{12} x^{4}+\frac{1}{6} x^{3}-x^{2}+5 x. Finde die ersten drei Ableitungen und die Wendepunkte.

See Solution

Problem 27909

Find the derivative of h(x)h(x), where h(x)=tan1(2x1)h(x) = \tan^{-1}(2x - 1).

See Solution

Problem 27910

Find the derivative f(x)f^{\prime}(x) for f(x)=2x2+3x+5f(x)=2 x^{2}+3 x+5 using limits, then find the tangent line at x=0x=0.

See Solution

Problem 27911

Find the time tt when the particle with position x(t)=2t321t2+72t53x(t)=2 t^{3}-21 t^{2}+72 t-53 is at rest.

See Solution

Problem 27912

Find the limit: limxx+x212x2\lim _{x \rightarrow \infty} \frac{x+x^{2}}{1-2 x^{2}}.

See Solution

Problem 27913

Find f(1)f^{\prime}(1) if the tangent line at (1,7)(1,7) passes through (2,2)(-2,-2).

See Solution

Problem 27914

Find the limit: limx011+x1x\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}-1}{x}.

See Solution

Problem 27915

Find the limit: limx164x16x\lim _{x \rightarrow 16} \frac{4-\sqrt{x}}{16-x}.

See Solution

Problem 27916

Find the limit as xx approaches infinity for x2x+10x+2\frac{x^{2}-x+10}{x+2}. What is the result? A. -\infty B. 0 C. \infty D. 1

See Solution

Problem 27917

Find the limit: limx01(x+3)219x\lim _{x \rightarrow 0} \frac{\frac{1}{(x+3)^{2}}-\frac{1}{9}}{x}.

See Solution

Problem 27918

Find the slope of the tangent line to the curve y3xy2+x3=5y^{3}-x y^{2}+x^{3}=5 at the point (1,2)(1,2).

See Solution

Problem 27919

Find dydx\frac{d y}{d x} if sin(x+y)=3x2y\sin (x+y)=3 x-2 y. Options: (A) 3cos(x+y)2\frac{3-\cos (x+y)}{2}, (B) 1cos(x+y)cos(x+y)\frac{1-\cos (x+y)}{\cos (x+y)}, (C) 32+cos(x+y)\frac{3}{2+\cos (x+y)}, (D) 3cos(x+y)2+cos(x+y)\frac{3-\cos (x+y)}{2+\cos (x+y)}.

See Solution

Problem 27920

Find the limit of y=1x2y=\frac{1}{x-2} as xx approaches 2 from the right. What is the limit? A. 0 B. no limit C. \infty D. -\infty

See Solution

Problem 27921

Find the limit: limx91x2181x9\lim _{x \rightarrow 9} \frac{\frac{1}{x^{2}}-\frac{1}{81}}{x-9}.

See Solution

Problem 27922

Given f(2)=3f(-2)=3, f(2)=4f'(-2)=4, g(4)=5g(4)=5, and g(4)=2g'(4)=2, find dydx\frac{d y}{d x} at (2,4)(-2,4) for f(x)g(y)=17xyf(x) g(y)=17-x-y. (A) -27 (B) 113-\frac{11}{3} (C) -3 (D) 47-\frac{4}{7}

See Solution

Problem 27923

Find the tangent and normal line equations for y2=x3y^{2}=x^{3} at (1,1)(1,-1). What is dydx\frac{d y}{d x}? A. 3x23 x^{2} B. 3x22\frac{3 x^{2}}{2} C. 3x22y\frac{3 x^{2}}{2 y}

See Solution

Problem 27924

Find the intervals where the graph of y=g(x)y=g(x) is concave down. Use interval notation for your answer: (a,b). g(x)=abs((2x+4)(x1)2)g(x)=\operatorname{abs}\left((2 x+4)(x-1)^{\wedge} 2\right)

See Solution

Problem 27925

If ff is continuous and f(x)=x24x+2f(x)=\frac{x^{2}-4}{x+2} for x2x \neq -2, find f(2)f(-2). Also, find limx2f(x)\lim _{x \rightarrow 2} f(x) for f(x)={lnx0<x2x2ln22<x4f(x)=\left\{\begin{array}{ll}\ln x & 0<x \leq 2 \\ x^{2} \ln 2 & 2<x \leq 4\end{array}\right..

See Solution

Problem 27926

Find the slope of the curve y=1x+1y=\frac{1}{x+1} at x=1x=1. Where does the slope equal -1?

See Solution

Problem 27927

Find the derivative ddx(1x31x+x2)\frac{d}{d x}\left(\frac{1}{x^{3}}-\frac{1}{x}+x^{2}\right) at x=1x=-1 and f(2)f^{\prime}(2) for f(x)=2xf(x)=\sqrt{2 x}.

See Solution

Problem 27928

Find the limit: limx(2x1)(3x)(x1)(x+3)\lim _{x \rightarrow \infty} \frac{(2 x-1)(3-x)}{(x-1)(x+3)} and evaluate f(π/9)f(\pi / 9) for f(x)=cos(3x)f(x)=\cos (3 x).

See Solution

Problem 27929

17. For which xx values is the graph of y=5/(x2)y=-5 /(x-2) concave downward?
18. Where does the function f(x)=x33x2f(x)=x^{3}-3 x^{2} have a relative maximum?
19. When does f(x)=x(x+1)(x2)2f^{\prime \prime}(x)=x(x+1)(x-2)^{2} have inflection points?
20. Find limx(2x1)(3x)(x1)(x+3)\lim _{x \rightarrow \infty} \frac{(2 x-1)(3-x)}{(x-1)(x+3)}.
21. What is f(π/9)f^{\prime}(\pi / 9) if f(x)=cos(3x)f(x)=\cos (3 x)?

See Solution

Problem 27930

Calculate the time for the Apollo command module to orbit the moon at 120 km120 \mathrm{~km} altitude. Moon's mass: 7.35×10227.35 \times 10^{22} kg, radius: 1.74×106 m1.74 \times 10^{6} \mathrm{~m}.

See Solution

Problem 27931

Given f(0)=2f(0)=2, f(0)=3f^{\prime}(0)=-3, and f(0)=0f^{\prime \prime}(0)=0, find tangents and analyze gg defined by g(x)=e2x(3f(x)+2f(x))g^{\prime}(x)=e^{-2 x}(3 f(x)+2 f^{\prime}(x)).

See Solution

Problem 27932

Calculate the area between the curves y=3xy=\frac{3}{x}, y=3x3y=\frac{3}{x^{3}}, and the line x=3x=3.

See Solution

Problem 27933

Calculate the area between the curves y=ex2y=e^{\frac{x}{2}}, y=x21y=x^{2}-1, and the lines x=1x=1, x=1x=-1.

See Solution

Problem 27934

Calculate the area between the curves y=(x3)2y=(x-3)^{2} and y=4x15y=4x-15.

See Solution

Problem 27935

Calculate the area between y=sin(x)y=\sin(x), y=4xy=4x, x=π4x=\frac{\pi}{4}, and x=3π4x=\frac{3\pi}{4}.

See Solution

Problem 27936

Calculate the area of the region RR enclosed by y=x36x2x+6y=x^{3}-6 x^{2}-x+6, the xx-axis, x=1x=-1, and x=5x=5.

See Solution

Problem 27937

Berechne die Ableitung von f(x)=1xex2f(x)=\frac{1}{x} \cdot e^{x^{2}}.

See Solution

Problem 27938

Find the limit: limx(1+73x)x1\lim _{x \rightarrow \infty}\left(1+\frac{7}{3 x}\right)^{x-1}.

See Solution

Problem 27939

Berechne die Steigung der Tangente an f(x)=0,4x(x+2)(x3)f(x)=0,4 x(x+2)(x-3) im Punkt P=(3,f(3))P=(3, f(3)).

See Solution

Problem 27940

Find limx(1+1x2)3x4\lim _{x \rightarrow \infty}\left(1+\frac{1}{x^{2}}\right)^{3 x-4}.

See Solution

Problem 27941

Evaluate the integral 0π211+tan2xdx\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\tan^{\sqrt{2}} x} dx.

See Solution

Problem 27942

Evaluate the integral 4π24π2(sinx1+x4+1)dx\int_{-4 \pi \sqrt{2}}^{4 \pi \sqrt{2}}\left(\frac{\sin x}{1+x^{4}}+1\right) d x.

See Solution

Problem 27943

Find the limit as x x approaches infinity for e3x37 e^{\frac{3x-3}{7}} .

See Solution

Problem 27944

Find the limit as xx approaches 0 for the function f(x)=3Ln(x+1)f(x) = 3 \operatorname{Ln}(x+1).

See Solution

Problem 27945

Find the volume of the solid formed by revolving the area between x=y2x=y^{2}, x=6yx=6-y, and the xx-axis around the yy-axis using the washer method.

See Solution

Problem 27946

Zeige, dass die Funktion f(x)=x484x33+4x2+1f(x)=\frac{x^{4}}{8}-\frac{4 x^{3}}{3}+4 x^{2}+1 bei x=0x=0 ein lokales Minimum hat.

See Solution

Problem 27947

Find the derivative of f(x)=x2x+1f(x) = \frac{x}{2x + 1} using the quotient rule step by step.

See Solution

Problem 27948

Evaluate the integral from 2 to 5: 25t2ln(4t)dt\int_{2}^{5} t^{2} \ln (4 t) d t.

See Solution

Problem 27949

Gegeben ist die Funktion ff. Kreuze die richtigen Aussagen an:
1. f(a)=0f^{\prime \prime}(a)=0 → Wendestelle bei aa.
2. f(x)<0f^{\prime}(x)<0 für x(x1,x2)x \in (x_{1}, x_{2}) → linksgekümmt in (x1,x2)(x_{1}, x_{2}).
3. Nullstellen von ff sind Lösungen von f(x)=0f^{\prime}(x)=0.
4. f(x1)<0f^{\prime}(x_{1})<0 und f(x2)>0f^{\prime}(x_{2})>0 → Wendestelle bei aa.
5. ff ist streng monoton steigend, wenn f(x)>0f^{\prime}(x)>0 für alle xRx \in \mathbb{R}.

See Solution

Problem 27950

Find f(1)f'(1) for f(x)=x2x+1f(x)=\frac{x}{2x+1} using the definition of the derivative.

See Solution

Problem 27951

Find the volume of the solid of revolution formed by the region in the first quadrant between x=y2x=y^{2} and x=6yx=6-y around y=4y=4 using the shell method.

See Solution

Problem 27952

Find the derivative of (1+secx)2(1+\sqrt{\sec x})^{2} with respect to xx.

See Solution

Problem 27953

Find the derivative of (x+1)5ex(x+1)^{5} e^{x} with respect to xx.

See Solution

Problem 27954

Evaluate the integral of sin3rcos2rdr\sin^3 r \cos^2 r \, dr.

See Solution

Problem 27955

Find the derivative of tanxx3+1\frac{\tan x}{\sqrt{x^{3}}+1} with respect to xx.

See Solution

Problem 27956

Find the derivative of the function 52x5^{2x}. What is ddx52x\frac{d}{dx} 5^{2x}?

See Solution

Problem 27957

Bestimme die Gleichung der Wendetangente twt_{w} für die Funktion f(x)=3x3+9x24f(x)=-3 x^{3}+9 x^{2}-4 bei W=(1/2)W=(1/2).

See Solution

Problem 27958

Find the tangent line equation to the curve xy2+(2x+y)2=1x y^{2}+(2 x+y)^{2}=1 at the point (0,1)(0,1).

See Solution

Problem 27959

An object moves along a line with s(t)=t5/25t3/2,t0s(t)=t^{5/2}-5t^{3/2}, t \geq 0. Find: a) velocity at t=1t=1, b) when moving right, c) acceleration at t=1t=1.

See Solution

Problem 27960

Given functions ff and gg, compute: a) (2f5g)(1)(2 f - 5 g)^{\prime}(1) b) (ff+g)(2)\left(\frac{f}{f + g}\right)^{\prime}(2) c) (gg)(1)(g \circ g)^{\prime}(1) d) (fg)(0)(f g)^{\prime}(0) Use differentiation rules in your solutions.

See Solution

Problem 27961

Zeige, dass die Funktion f(x)=x36x2+5xf(x)=x^{3}-6 x^{2}+5 x bei x=2x=2 eine Wendestelle hat und finde die Koordinaten des Wendepunktes.

See Solution

Problem 27962

Find the derivative of f(x)=(x2+1)1/xf(x)=(x^{2}+1)^{1/x} using logarithmic differentiation.

See Solution

Problem 27963

Estimate (83)1/4(83)^{1/4} using linear approximation. Identify the function and base point. Is it an overestimate or underestimate?

See Solution

Problem 27964

A balloon inflates at 1 in³/sec. Find the radius change rate when volume is 10 in³. Use V=43πr3V = \frac{4}{3} \pi r^{3}.

See Solution

Problem 27965

Does the function f(x)=8(x2)4+1f(x)=\frac{8}{(x-2)^{4}+1} for x[2,)x \in[2, \infty) have an inverse?

See Solution

Problem 27966

Approximate the area under h(x)=x3+2h(x)=x^{3}+2 from x=1x=-1 to x=5x=5 using a right Riemann sum with 3 subdivisions.

See Solution

Problem 27967

Find the surface area of revolution of the curve y=9x3y=9 x^{3} from x=0x=0 to x=2.7x=2.7 around the xx-axis.

See Solution

Problem 27968

Differentiate the following with aa as a constant: 1) tan(5t2)\tan(5 - t^2) 2) y55y2\frac{y-5}{5-y^2}.

See Solution

Problem 27969

Find the derivative yy' for the equation ex+y+xy2=3e^{x+y} + x - y^2 = 3.

See Solution

Problem 27970

Find the average rate of change of y=x3y=\sqrt[3]{x} over [2,7][2,7] rounded to the nearest hundredth.

See Solution

Problem 27971

Differentiate each function, treating aa as a constant:
1. f(x)=(1+2x+x3)1/2f(x)=(1+2x+x^3)^{1/2}
2. y=2t1+t2y=\frac{2t}{1+t^2}
3. g(t)=at(a+t)4g(t)=a t(a+t)^{4}
4. sin(2θ+5)\sin(2\theta+5)
5. (y+1y)5\left(y+\frac{1}{y}\right)^{5}
6. ex2+xe^{x^2+x}
7. ln(xcosx)\ln(x \cos x)
8. tan(5t2)\tan(5-t^2)
9. y55y2\frac{y-5}{5-y^2}
10. Find yy^{\prime} for ex+y+xy2=3e^{x+y}+x-y^2=3.

See Solution

Problem 27972

Find the tangent line equation for y=g(x)=(2x+10)(x4)2y = g(x) = |-(2x + 10)(x - 4)^2| at each inflection point where gg is differentiable.

See Solution

Problem 27973

Find the volume of the solid of revolution for the region between y=x3+3y=x^{3}+3, y=4y=4, and the yy-axis using different methods.

See Solution

Problem 27974

Given the function f(x)=43xtanxf(x)=\frac{4}{3} x-\tan x for π2<x<π2-\frac{\pi}{2}<x<\frac{\pi}{2}, determine where ff is increasing.

See Solution

Problem 27975

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=0y=0, x=0x=0, and x=π4x=\frac{\pi}{4} around the yy-axis.

See Solution

Problem 27976

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=0y=0, x=0x=0, and x=π4x=\frac{\pi}{4} around x=π4x=\frac{\pi}{4}.

See Solution

Problem 27977

Calculate the value of the integral 0π6(secx+tanx)2dx\int_{0}^{\frac{\pi}{6}}(\sec x+\tan x)^{2} d x. Choose the correct answer.

See Solution

Problem 27978

Find the area between the curves y=5xy=5 \sqrt{x} and y=5x2y=5 x^{2}. What is the area?

See Solution

Problem 27979

Find the volume of the solid formed by rotating the area between y=secxy=\sec x, y=0y=0, x=0x=0, and x=π4x=\frac{\pi}{4} around x=π4x=\frac{\pi}{4}.

See Solution

Problem 27980

Find the volume of a solid with a square cross-section under the curve y=4x2y=4-x^{2} in the first quadrant.

See Solution

Problem 27981

Find the volume change rate of a sphere when the radius r=9r=9 inches and rr increases at 3 inches/minute.

See Solution

Problem 27982

Find the rate of change of the area of a circle as its radius rr increases at 4 cm/min.

See Solution

Problem 27983

A conical tank is 10 ft wide and 12 ft deep. Water flows in at 10 ft³/min. Find the depth change rate when water is 8 ft deep.

See Solution

Problem 27984

Find the area change rates of a circle when r=8r=8 cm and r=32r=32 cm, given rr increases at 4 cm/min.

See Solution

Problem 27985

Find the volume of a solid with a disk base x2+y24x^{2}+y^{2} \leq 4 and equilateral triangle cross-sections.

See Solution

Problem 27986

A 25 ft ladder leans against a wall. Base moves away at 2 ft/s. Find top speed down when base is 7 ft, 15 ft, and 24 ft from wall.

See Solution

Problem 27987

Approximate the area under h(x)h(x) from x=0x=0 to x=7x=7 using a left Riemann sum with 3 unequal intervals.

See Solution

Problem 27988

Approximate the area under h(x)h(x) from x=3x=3 to x=13x=13 using a right Riemann sum with 4 unequal intervals.

See Solution

Problem 27989

Approximate the area under f(x)f(x) from x=0x=0 to x=8x=8 using a right Riemann sum with 3 unequal intervals.

See Solution

Problem 27990

Approximate the area under h(x)=x3+2h(x)=x^{3}+2 from x=1x=-1 to x=5x=5 using a right Riemann sum with 3 subdivisions.

See Solution

Problem 27991

Find the derivative of f(x)=xf(x) = \sqrt{x}.

See Solution

Problem 27992

Bestimme die Tangentengleichung der Funktion f(x)=2ex+2f(x)=2e^x+2 am Schnittpunkt mit der yy-Achse.

See Solution

Problem 27993

Calculate the limit: limxx6+7x4401x5x7\lim _{x \rightarrow-\infty} \frac{x^{6}+7 x^{4}-40}{1-x-5 x^{7}}.

See Solution

Problem 27994

Find the derivative of the function y=(4x)e4xy=(4-x)e^{4-x} and identify its relative extrema.

See Solution

Problem 27995

Mr. Rooley's students measure bacteria growth with n(t)=990e0.14tn(t)=990 e^{0.14 t}.
(a) Find the growth rate in %. (b) What is the initial population at t=0t=0? (c) How many bacteria after 3 hours?

See Solution

Problem 27996

Calculate the integral of 5x\frac{5}{x} with respect to xx.

See Solution

Problem 27997

Evaluate the integral x33x2+5x3dx\int \frac{x^{3}-3 x^{2}+5}{x-3} \, dx.

See Solution

Problem 27998

Evaluate the integral: x2+x+1x2+1dx\int \frac{x^{2}+x+1}{x^{2}+1} d x

See Solution

Problem 27999

Calculate the integral: 1x+1dx\int \frac{1}{\sqrt{x+1}} d x

See Solution

Problem 28000

Find the integral: x33x2+5x3dx\int \frac{x^{3}-3 x^{2}+5}{x-3} \, dx.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord