Calculus

Problem 3201

Find the integral of xx4+9\frac{x}{x^{4}+9} with respect to xx.

See Solution

Problem 3202

Evaluate the integral: lnxx1+(lnx)2dx\int \frac{\ln x}{x \sqrt{1+(\ln x)^{2}}} d x

See Solution

Problem 3203

Evaluate the integral (1+tanx)2secxdx\int(1+\tan x)^{2} \sec x \, dx.

See Solution

Problem 3204

Monopoly profit function: Π=Q3+48×Q2180×Q800\Pi=-Q^{3}+48 \times Q^{2}-180 \times Q-800. Which statement is true about it? A, B, C, D, or E?

See Solution

Problem 3205

Find the derivative dydx\frac{d y}{d x} of the function y=3x29x+133x+4y=\frac{3 x^{2}-9 x+13}{3 x+4}.

See Solution

Problem 3206

Find the derivative dydx\frac{d y}{d x} for y=x2+6x1x2+3x1y = \frac{x^{2}+6 x-1}{x^{2}+3 x-1}. No need to expand.

See Solution

Problem 3207

Find the derivative of the function s(x)=2xs(x)=\frac{2}{x} without and with the product/quotient rule.

See Solution

Problem 3208

Evaluate the integral from 1 to 2 of 14xdx\frac{1}{4 x} \, dx.

See Solution

Problem 3209

Find the derivatives of u(x)=sin(x)u(x)=\sin(x), v(x)=x11v(x)=x^{11}, and f(x)=u(x)v(x)f(x)=\frac{u(x)}{v(x)}.

See Solution

Problem 3210

Find the derivative f(x)f'(x) of f(x)=3sinx1+cosxf(x)=\frac{3 \sin x}{1+\cos x} and calculate f(2)f'(2).

See Solution

Problem 3211

Find the derivative f(π)f^{\prime}(\pi) for the function f(x)=8xsinx+cosxf(x)=\frac{-8 x}{\sin x+\cos x}.

See Solution

Problem 3212

Find h h and the secant slope for points (1.5,2) (1.5,2) and (1.5+h,f(1.5+h)) (1.5+h, f(1.5+h)) using given values.

See Solution

Problem 3213

Calculate the Riemann sum for f(x)=x2f(x)=x^{2} on [1,3][1,3] with 4 equal subdivisions.

See Solution

Problem 3214

Find the tangent line y=mx+by=m x+b to f(x)=2sinx2sinx+6cosxf(x)=\frac{2 \sin x}{2 \sin x+6 \cos x} at a=π3a=\frac{\pi}{3}. Determine mm and bb.

See Solution

Problem 3215

Find the average velocity of the particle on [2,2+h][2, 2+h] using s(2+h)s(2)h\frac{s(2+h)-s(2)}{h} for s(t)=6t210t+1s(t)=6 t^{2}-10 t+1.

See Solution

Problem 3216

Find the integral: 1x2xdx\int \frac{1}{x-\sqrt{2 x}} d x

See Solution

Problem 3217

Calculate the integral: xx43dx\int x \sqrt[3]{x-4} \, dx

See Solution

Problem 3218

Find the integral: xx43dx\int x \sqrt[3]{x-4} \, dx

See Solution

Problem 3219

Find the limit of the series r=01r!\sum_{r=0}^{\infty} \frac{1}{r !}. Show your calculations.

See Solution

Problem 3220

Calculate the balance after 1, 5, and 20 years for \$8000 at an APR of 3.75\%. Find the APY using continuous compounding.

See Solution

Problem 3221

Bestimme die Wendetangente am Wendepunkt (0,9)(0, 9) von f(x)=13x443x3+9f(x)=\frac{1}{3} x^{4}-\frac{4}{3} x^{3}+9.

See Solution

Problem 3222

Finde die erste und zweite Ableitung von f(x)=16x49x2+2x3f(x)=\frac{1}{6} x^{4}-9 x^{2}+2 x-3.

See Solution

Problem 3223

Find the limit: limxx2+x+3x23x+1\lim _{x \rightarrow \infty} \sqrt{x^{2}+x+3}-\sqrt{x^{2}-3 x+1}.

See Solution

Problem 3224

Ein Rollkörper schwingt auf zwei Bahnen.
a) Ordnen Sie die Graphen den Bahnen zu.
b) Erklären Sie die Diagrammänderung bei Reibung.
c) Berechnen Sie die Gesamtenergie und maximale Geschwindigkeit für m=50 kgm=50 \mathrm{~kg} und Höhe h=2 mh=2 \mathrm{~m}. (Kontrollergebnis: EGesamt =981E_{\text {Gesamt }}=981)

See Solution

Problem 3225

Finde die erste und zweite Ableitung von f(x)=14x412x3x217f(x) = \frac{1}{4} x^{4}-\frac{1}{2} x^{3}-x^{2}-17.

See Solution

Problem 3226

Find the roots of the derivative f(x)=8x32xf^{\prime}(x)=8 x^{3}-2 x.

See Solution

Problem 3227

Bestimmen Sie die Ableitung von f(x)=2x4x2+5f(x) = 2x^4 - x^2 + 5.

See Solution

Problem 3228

Find the derivatives of these functions:
a) f(x)=13(x+2)2f(x)=\frac{1}{3}(x+2)^{-2}
b) f(t)=2tf(t)=\sqrt{\frac{2}{t}}
c) f(t)=1sin(t)f(t)=\frac{1}{\sin (t)}

See Solution

Problem 3229

Find a function f(x)f(x) such that 31f(x)dx=2\int_{-3}^{1} f(x) \, dx = 2.

See Solution

Problem 3230

Lösen Sie diese inhomogenen linearen Differentialgleichungen: a) y+xy=4xy^{\prime}+x \cdot y=4 x b) xy+y=xsinxx \cdot y^{\prime}+y=x \cdot \sin x

See Solution

Problem 3231

Finden Sie eine nicht konstante Funktion f(x)f(x), für die gilt: 11f(x)dx=4\int_{1}^{-1} f(x) dx = 4.

See Solution

Problem 3232

Für welchen Wert von aa hat die Funktion f(x)=x3f(x)=x^{3} im Intervall [0;a][0 ; a] eine Änderungsrate von 16?

See Solution

Problem 3233

Bestimmen Sie die Steigung von faf_{a} an den Stellen x0x_{0} für die Funktionen a) bis d).

See Solution

Problem 3234

Find the one-sided limit: limx(1/2)+13x2tanπx\lim _{x \rightarrow(1 / 2)^{+}} 13 x^{2} \tan \pi x.

See Solution

Problem 3235

Find the limit as xx approaches -1 for 2x24x6x+1\frac{2x^2 - 4x - 6}{x + 1}. If DNE, state that. Also, define g(x)g(x) that matches it except at one point.

See Solution

Problem 3236

Find the value of xx where the functions are discontinuous and if it's a removable discontinuity: 7f(x)=sin2xx7 f(x)=\frac{\sin 2 x}{x}, 8f(x)=ex2x18 f(x)=\frac{e^{x}-2}{x-1}.

See Solution

Problem 3237

Find the limit: limx6+x6x6\lim _{x \rightarrow 6^{+}} \frac{|x-6|}{x-6}. If it doesn't exist, write DNE.

See Solution

Problem 3238

Find the limit L=limx2(x+5)L = \lim_{x \rightarrow 2} (x + 5) and prove it using the εδ\varepsilon-\delta definition.

See Solution

Problem 3239

Find the derivative of cos3(2x)\cos^{3}(2x) and use it to evaluate 0π42sin3(2x)dx\int_{0}^{\frac{\pi}{4}} 2 \sin^{3}(2x) \, dx.

See Solution

Problem 3240

Leiten Sie die folgenden Funktionen ab: a) f(x)=0,5(6x)f(x)=0,5 \cdot(6-x), b) f(x)=x(2x)f(x)=x \cdot(2-x), c) f(x)=(1x)2f(x)=(1-x)^{2}, d) f(x)=(x1)2f(x)=(x-1)^{2}, e) f(x)=(x+1)(x3)f(x)=(x+1) \cdot(x-3), f) f(x)=x(x+2)(x2)f(x)=x \cdot(x+2) \cdot(x-2).

See Solution

Problem 3241

Bestimme die Nullstellen von ff und den Gesamtinhalt der Fläche zwischen ff und der xx-Achse über den Intervallen: a) f(x)=x3+2x23x,I=[2;2,5]f(x)=x^{3}+2 x^{2}-3 x, \quad I=[-2 ; 2,5] b) f(x)=(x+2)(x1)2,I=[2;2]f(x)=(x+2)(x-1)^{2}, I=[-2 ; 2] c) f(x)=(x1)(x+2)(x3),I=[1;2]f(x)=(x-1)(x+2)(x-3), I=[-1 ; 2] d) f(x)=x4+x22,I=[2;3]f(x)=x^{4}+x^{2}-2, \quad I=[-2 ; 3]

See Solution

Problem 3242

Is the function f(x)={x249x7 if x711 if x=7f(x)=\left\{\begin{array}{ll}\frac{x^{2}-49}{x-7} & \text { if } x \neq 7 \\ 11 & \text { if } x=7\end{array}\right. continuous at x=7x=7?

See Solution

Problem 3243

A body is thrown up and reaches 48ft48 \mathrm{ft} in 1 second. Find its maximum height with gravity at 32ft/s232 \mathrm{ft/s^2}.

See Solution

Problem 3244

Check if the function f(x)=x249x7f(x)=\frac{x^{2}-49}{x-7} for x7x \neq 7 and f(7)=11f(7)=11 is continuous at a=7a=7.

See Solution

Problem 3245

Bestimme die Tangentengleichung tt an f(x)f(x) im Punkt P(2f(2))P(2 \mid f(2)) und finde die Nullstelle von tt. Berechne die Fläche zwischen tt und den Achsen.

See Solution

Problem 3246

Is the function y=6x5x211x+30y=\frac{6 x-5}{x^{2}-11 x+30} continuous at a=5a=5?

See Solution

Problem 3247

Check if the Intermediate Value Theorem applies to f(x)=x2+xx1f(x)=\frac{x^{2}+x}{x-1} on [52,4]\left[\frac{5}{2}, 4\right] and find cc where f(c)=6f(c)=6.

See Solution

Problem 3248

Bestimme den Wert von aa für die Funktion f(x)=ax2f(x)=a x^{2}, so dass: a) f(3)=1f'(3)=1 und b) f(5)f(1)51=3\frac{f(5)-f(1)}{5-1}=3.

See Solution

Problem 3249

Determine if ff is continuous, analyze continuity at 4, and find intervals of continuity for f(x)={x2+2xif x45xif x<4f(x)=\begin{cases} x^{2}+2x & \text{if } x \geq 4 \\ 5x & \text{if } x < 4 \end{cases}.

See Solution

Problem 3250

Check if ff is continuous, if it's left/right continuous at 4, and find intervals of continuity for: f(x)={x2+2x if x45x if x<4f(x)=\left\{\begin{array}{ll} x^{2}+2 x & \text { if } x \geq 4 \\ 5 x & \text { if } x<4 \end{array}\right.

See Solution

Problem 3251

Analyze the continuity of the function f(x)=12[[x]]+x+1f(x)=\frac{1}{2}[[x]]+x+1. Where is ff continuous or discontinuous?

See Solution

Problem 3252

Untersuchen Sie den Graphen von f(x)=x36x2+12x+2f(x)=x^{3}-6 x^{2}+12 x+2 auf Extrempunkte.

See Solution

Problem 3253

Bestimme die Uhrzeit, zu der die Besucherzahl f(x)=115x3+25x2+115f(x)=-\frac{1}{15} x^{3}+\frac{2}{5} x^{2}+\frac{1}{15} maximal ist.

See Solution

Problem 3254

Find the limits and roots of the function f(x)=x2x2+1f(x)=\frac{x}{2x^{2}+1}.

See Solution

Problem 3255

Find the first derivative of f(x)=3x23x+7x+1f(x)=\sqrt{3} x^{2}-\frac{3}{x}+7 x+1.

See Solution

Problem 3256

Calculate the integral 116(x5)x1/2dx\int_{1}^{16}(x-5) x^{-1 / 2} d x.

See Solution

Problem 3257

Analyze the function f(x)=1(x2)2f(x)=\frac{1}{(x-2)^{2}} and find the limits as xx approaches 2 from the left and right.

See Solution

Problem 3258

Find the position r(t)\vec{r}(t) given v(t)=et,0,sint\vec{v}(t)=\langle e^{-t}, 0, \sin t\rangle and r(0)=0,2,3\vec{r}(0)=\langle 0,2,3\rangle. Calculate distance from t=0t=0 to t=5t=5.

See Solution

Problem 3259

Find the limit of the function f(x)=4x28xf(x)=4 x^{2}-8 x as Δx\Delta x approaches 0: limΔx0f(x+Δx)f(x)Δx\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}

See Solution

Problem 3260

Find the limit: limx1f(x)\lim _{x \rightarrow 1} f(x) for the piecewise function f(x)={x21 if x12 if x=1f(x)=\left\{\begin{array}{ll} x^{2}-1 & \text { if } x \neq 1 \\ -2 & \text { if } x=1 \end{array}\right..

See Solution

Problem 3261

Zeichnen Sie den Graphen einer Funktion ff mit negativer Steigung. Bestimmen Sie die Ableitung von f(x)=xf(x) = x.

See Solution

Problem 3262

Find the limit: limθ0cos(7θ)tan(7θ)θ\lim _{\theta \rightarrow 0} \frac{\cos (7 \theta) \tan (7 \theta)}{\theta}. If none, enter DNE.

See Solution

Problem 3263

Solve the differential equation: (x+2)dx+(x+y1)dy=0(x+2) dx + (x+y-1) dy = 0.

See Solution

Problem 3264

Solve the differential equation (x+2)dx+(x+y1)dy=0(x+2) dx+(x+y-1) dy=0 for the general solution.

See Solution

Problem 3265

Solve the differential equation: (x+2)dx+(x+y1)dy=0(x+2) dx + (x+y-1) dy = 0.

See Solution

Problem 3266

Find the limit LL and use the εδ\varepsilon-\delta definition to prove it for limx25x\lim _{x \rightarrow 25} \sqrt{x}.

See Solution

Problem 3267

Find the limit limx2x2x2\lim _{x \rightarrow 2} \frac{|x-2|}{x-2} using a graph of two lines at (2,1) and (2,-1). If DNE, state that.

See Solution

Problem 3268

How many days for a 60g sample of 65Ni{ }^{65} \mathrm{Ni} (half-life 2.5 days) to decay to under 1g? Report whole number.

See Solution

Problem 3269

Bestimme die Ableitung von g(x)=x2+2x3x4g(x)=\frac{x^{2}+2x}{3x-4} und finde die Tangente bei P(3,g(3))P(3, g(3)). Untersuche auch auf Asymptoten.

See Solution

Problem 3270

Bestimmen Sie die erste Ableitung von g(x)=x2+2x3x4g(x)=\frac{x^{2}+2x}{3x-4} und die Tangenten am Punkt P(3,g(3))\mathrm{P}(3, g(3)). Untersuchen Sie auch Asymptoten.

See Solution

Problem 3271

Find the limit: limxπ/22tanx\lim _{x \rightarrow \pi / 2} 2 \tan x. If it doesn't exist, write DNE.

See Solution

Problem 3272

Bestimme die Zeit-Ort-Funktion s(t)s(t) für die Geschwindigkeit v(t)v(t) und den Abstand aa zum Start. a) v(t)=10t;a=12v(t)=10 t ; a=12 b) v(t)=0,4t2+3t;a=15v(t)=0,4 t^{2}+3 t ; a=15 c) v(t)=0,7t2;a=5v(t)=0,7 t^{2} ; a=5

See Solution

Problem 3273

Calculate the integral from 1 to 2 of the function 2x3x+4-2 x^{3}-x+4.

See Solution

Problem 3274

Calculate the integral from 2 to 5 of 1x2\frac{1}{x^{2}} with respect to xx.

See Solution

Problem 3275

Calculate the integral 23(4x3x+2)dx\int_{2}^{3}\left(4 x^{3}-x+2\right) d x.

See Solution

Problem 3276

Calculate the integral: 14(x2+1x3)dx\int_{1}^{4}\left(x^{2}+\frac{1}{x^{3}}\right) dx

See Solution

Problem 3277

Evaluate the integral: 12(1xx)dx\int_{1}^{2}\left(\frac{1}{\sqrt{x}}-x\right) d x

See Solution

Problem 3278

Finde die Stellen, an denen f(x)=14x46xf(x)=\frac{1}{4} x^{4}-6 x die Steigung m=2m=2 hat.

See Solution

Problem 3279

Solve the initial value problem using Laplace transforms: y4y+20y=85e3ty'' - 4y' + 20y = 85e^{3t}, y(0)=5y(0)=5, y(0)=19y'(0)=19. Find y(t)=y(t)= (exact answer in terms of ee).

See Solution

Problem 3280

Bestimme die Stellen, an denen ff die Steigung mm hat: a) f(x)=14x46x,m=2f(x)=\frac{1}{4} x^{4}-6 x, m=2; b) f(x)=16x3+x2,m=2,5f(x)=-\frac{1}{6} x^{3}+x^{2}, m=-2,5.

See Solution

Problem 3281

Solve the initial value problem using Laplace transforms: y4y+20y=85e3ty'' - 4y' + 20y = 85e^{3t}, y(0)=5y(0)=5, y(0)=19y'(0)=19. Find y(t)=y(t)= (exact answer in terms of ee).

See Solution

Problem 3282

Bestimme die Stellen, an denen die Funktion ff die gegebene Steigung mm hat. a) f(x)=14x46x,m=2f(x)=\frac{1}{4} x^{4}-6 x, m=2 b) f(x)=16x3+x2,m=2,5f(x)=-\frac{1}{6} x^{3}+x^{2}, m=-2,5 c) f(x)=2xx,m=3f(x)=\frac{2}{x}-x, m=-3 d) f(x)=3x,m=3f(x)=3 \sqrt{x}, m=3

See Solution

Problem 3283

Find the derivative of 2e5x3+6x92 e^{-5 x^{3}+6 x^{9}}.

See Solution

Problem 3284

Find the derivative of 86x6+10x38 \sqrt{6 x^{6}+10 x^{3}} using the chain rule, without fractions or negatives.

See Solution

Problem 3285

Find the derivative of f(x)=sqrt(x2+100x2+64)f(x)=sqrt(\frac{x^{2}+100}{x^{2}+64}) using the chain rule and simplify your answer. f(x)=f^{\prime}(x)=

See Solution

Problem 3286

Find the derivative of f(x)=(4x22)4(5x2+8)15f(x) = (4x^{2} - 2)^{4}(5x^{2} + 8)^{15}. Use the product and chain rules to compute f(x)f'(x).

See Solution

Problem 3287

Bestimme die höchste und niedrigste Temperatur zwischen 7 und 18 Uhr für die Funktion f(t)=0,04t3+1,31t212,3t+38,4f(t)=-0,04 t^{3}+1,31 t^{2}-12,3 t+38,4.

See Solution

Problem 3288

Find the derivative of f(x)=4e4x88x9f(x)=4 e^{4 x^{8}-8 x^{9}} using the chain rule. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 3289

Calculate the integral from 1 to 2 of the function 4x14 x^{-1}.

See Solution

Problem 3290

Bestimme die Tangentengleichung tt an die Exponentialfunktion im Punkt P(2f(2))P(2 \mid f(2)) und finde die Nullstelle. Berechne die Fläche zwischen tt und den Achsen.

See Solution

Problem 3291

Determine the long run behavior of the functions:
1. x3+1x2+2\frac{x^{3}+1}{x^{2}+2}
2. x2+1x2+2\frac{x^{2}+1}{x^{2}+2}
3. x2+1x3+2\frac{x^{2}+1}{x^{3}+2}

See Solution

Problem 3292

Find dydx\frac{d y}{d x} for the equation 4x3+4y32xy=04 x^{3}+4 y^{3}-2 x y=0.

See Solution

Problem 3293

Find dydx\frac{d y}{d x} for the equation (2xy)25y=2(2 x-y)^{2}-5 y=2.

See Solution

Problem 3294

Find d2ydx2\frac{d^{2} y}{d x^{2}} at (4,5) for the curve defined by x2+y2=41x^{2}+y^{2}=41.

See Solution

Problem 3295

Find the slope of the tangent line to x2+9xy2+3y3=25x^{2}+9xy^{2}+3y^{3}=25 at the point (2,1)(2,1).

See Solution

Problem 3296

Find points where the tangent line to 4x2+6y2=54 x^{2}+6 y^{2}=5 is horizontal using implicit differentiation.

See Solution

Problem 3297

Explain why the limit does not exist for limx0xx\lim _{x \rightarrow 0} \frac{x}{|x|}. Choose A or B and fill in the boxes.

See Solution

Problem 3298

Find the limit as xx approaches 6 for the expression x2+8x7-x^{2}+8x-7. What is the value? A. Answer = \square, B. Limit does not exist.

See Solution

Problem 3299

Find points where the tangent line to xy+5y2=9xy + 5y^2 = -9 is vertical using implicit differentiation.

See Solution

Problem 3300

Find the limit as xx approaches 1 for 3x34x2+5x+63x^3 - 4x^2 + 5x + 6. What is the result? A. \square B. Limit does not exist.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord