Calculus

Problem 10101

Find the tangent line equation to y=sin(3x)+cos(8x)y=\sin(3x)+\cos(8x) at (π6,y(π6))\left(\frac{\pi}{6}, y\left(\frac{\pi}{6}\right)\right).

See Solution

Problem 10102

A farmhouse is a=1.5 kma=1.5 \mathrm{~km} from a highway. An auto moves at v=81 km/hv=81 \mathrm{~km/h}. Find how fast distance ll increases when s=3.7 kms=3.7 \mathrm{~km}. Answer to three decimal places: km/h\mathrm{km/h}.

See Solution

Problem 10103

Find the derivative of f(x)=x72x5+5x37xf(x)=x^{7}-2x^{5}+5x^{3}-7x.

See Solution

Problem 10104

Julian jogs on a circular track with radius 29 m29 \mathrm{~m}. At (21,20)(21,20), his xx-coordinate changes at 5.25 m/s-5.25 \mathrm{~m/s}. Find dydt\frac{d y}{d t}. (Round to two decimal places.)

See Solution

Problem 10105

Differentiate (fg)2(f-g)^2 and evaluate at x=0x=0 using ff and gg values from the table.

See Solution

Problem 10106

Find the slope of the tangent line to the curve 5sin(x)+2cos(y)6sin(x)cos(y)+x=6π5 \sin (x) + 2 \cos (y) - 6 \sin (x) \cos (y) + x = 6 \pi at (6π,5π/2)(6 \pi, 5 \pi / 2).

See Solution

Problem 10107

Differentiate 1fg\frac{1}{f-g} and evaluate at x=2x=2. Use values from the table. Leave the answer as a fraction.

See Solution

Problem 10108

Find the solution to the equation 2y=80.4t2 \sqrt{y}=8-0.4 t with y(0)=49y(0)=49 and show yy is quadratic in tt.

See Solution

Problem 10109

Find dPdt\frac{d P}{d t} for b=1.6,P=10kPa,V=60cm3b=1.6, P=10 \mathrm{kPa}, V=60 \mathrm{cm}^{3}, dVdt=80cm3/min\frac{d V}{d t}=80 \mathrm{cm}^{3}/\mathrm{min}.

See Solution

Problem 10110

Find the derivative of f(x)=x33+3x3f(x)=\frac{x^{3}}{3}+\frac{3}{x^{3}}.

See Solution

Problem 10111

Find the volume of the torus formed by revolving the circle (x17)2+y2=1(x-17)^{2}+y^{2}=1 around the yy-axis.

See Solution

Problem 10112

Brooke walks east at 5 km/h5 \mathrm{~km/h} and Jamail west at 4 km/h4 \mathrm{~km/h}. Find their distance apart after 11 s11 \mathrm{~s}.

See Solution

Problem 10113

Given y2+xy3x=51y^{2}+x y-3 x=51 and dydt=1\frac{d y}{d t}=-1 at x=5x=-5, y=4y=-4, find dxdt\frac{d x}{d t}.

See Solution

Problem 10114

A rocket moves up at 1300 km/hr1300 \mathrm{~km} / \mathrm{hr}. Find the angle rate increase from an observer 18 km18 \mathrm{~km} away after 3 min. dθdt\frac{d \theta}{d t} \approx

See Solution

Problem 10115

Differentiate 1f2\frac{1}{f^{2}} and evaluate at x=0x=0. Use f(0)=4f'(0)=4 from the table. Answer in fraction form!

See Solution

Problem 10116

Helium fills a balloon at 4 ft³/s. Find the radius increase rate after 2 minutes using V=43πr3V=\frac{4}{3}\pi r^{3}.

See Solution

Problem 10117

Differentiate f(g(x))f(g(x)) and evaluate at x=1x = -1 using values from the table. What is dydx\frac{d y}{d x}?

See Solution

Problem 10118

Water leaks from a conical tank at 6300 cm³/min. If the water rises at 28 cm/min when 2 m high, find the inflow rate.

See Solution

Problem 10119

Differentiate (fg)12(f g)^{\frac{1}{2}} and evaluate at x=0x=0. Leave your answer in fraction form!

See Solution

Problem 10120

Differentiate (fg)1(f g)^{-1} and evaluate at x=1x=-1. Leave the answer in fraction form!

See Solution

Problem 10121

Given y=5xy=5 \sqrt{x}, find Δy\Delta y and dyd y for x=4x=4 and Δx=dx=0.3\Delta x=d x=0.3.

See Solution

Problem 10122

Differentiate gf\frac{g}{f} and evaluate at x=1x=1. Use the given values for f(x)f(x) and g(x)g(x). Express as a fraction.

See Solution

Problem 10123

A baseball diamond is a square with sides of 90 ft. A player runs to first base at 29 ft/s. Find the rate of change of distance to second base halfway to first. (Round to two decimal places.)

See Solution

Problem 10124

Differentiate fgf \cdot g and evaluate at x=0x=0. Use values from the table for f(x)f(x), f(x)f'(x), g(x)g(x), g(x)g'(x).

See Solution

Problem 10125

Differentiate (fg)3(f \cdot g)^3 and evaluate at x=1x=-1 using given values for f,f,g,gf, f', g, g'.

See Solution

Problem 10126

Differentiate fgf-g and evaluate at x=1x=-1. Use values: f(1)f'(-1) and g(1)g'(-1). Find ddx(fg)\frac{d}{dx}(f-g).

See Solution

Problem 10127

Find dyd y for y=4x2+3x+3y=4 x^{2}+3 x+3 at x=5x=5 with dx=0.2d x=0.2 and dx=0.4d x=0.4.

See Solution

Problem 10128

Differentiate f+g\sqrt{f+g} and evaluate at x=1x=1 using the given values for ff and gg.

See Solution

Problem 10129

Find dPdt\frac{d P}{d t} for b=1.4b=1.4, P=7kPaP=7 \mathrm{kPa}, V=110 cm3V=110 \mathrm{~cm}^{3}, and dVdt=50 cm3/min\frac{d V}{d t}=50 \mathrm{~cm}^{3}/\mathrm{min}.

See Solution

Problem 10130

Differentiate (fg)2(f g)^2 and evaluate at x=0x=0. Use f(0)f'(0) and g(0)g'(0) from the provided values.

See Solution

Problem 10131

A car travels past a farmhouse 1.5 km away at 81 km/h. Find the speed of distance ll when the car is 3.7 km past the intersection. Answer to three decimal places.

See Solution

Problem 10132

Differentiate f2f^2 and evaluate at x=2x=2 using given values for f(x),f(x),g(x),g(x)f(x), f'(x), g(x), g'(x).

See Solution

Problem 10133

Differentiate gfg f and evaluate at x=1x=1. Use f(1),f(1),g(1),g(1)f(1), f'(1), g(1), g'(1) from the table.

See Solution

Problem 10134

Find the percentage error in the volume and surface area of a cube with edge 30 cm30 \mathrm{~cm} and error 0.1 cm0.1 \mathrm{~cm}.

See Solution

Problem 10135

Water in a tank drains by Torricelli's Law: dydt=0.4y\frac{d y}{d t}=-0.4 \sqrt{y}. Find depth after 0.5s if y=36 cmy=36 \mathrm{~cm}.

See Solution

Problem 10136

Estimate the upper bound for error in d(t)=16t2d(t)=16 t^{2} when t=4t=4 seconds and t=5t=5 seconds with 0.20.2 sec accuracy.

See Solution

Problem 10137

Find the derivative of the function f(x)=tan2(x4)f(x)=\tan^{2}(x^{4}). What is f(x)f^{\prime}(x)?

See Solution

Problem 10138

Evaluate the limit: limx0ex1sin(3x)\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin (3 x)} using L'Hospital's rule.

See Solution

Problem 10139

Find yy^{\prime} and yy^{\prime \prime} for y=e8exy=e^{8 e^{x}}.

See Solution

Problem 10140

Find the derivative of y(x)=cos(tan(7x))y(x)=\cos(\tan(7x)). What is dy/dxd y / d x? dy/dx= d y / d x=

See Solution

Problem 10141

Differentiate the function: g(x)=(x+7x)exg(x)=(x+7 \sqrt{x}) e^{x}.

See Solution

Problem 10142

Evaluate the limit using L'Hopital's rule: limxπ27cos(3x)sec(7x)\lim _{x \rightarrow \frac{\pi}{2}} 7 \cos (3 x) \sec (-7 x)

See Solution

Problem 10143

Evaluate the limit: limx0sin(2x)sin(15x)\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\sin (15 x)} using L'Hospital's rule if needed.

See Solution

Problem 10144

Evaluate the limit: limx0sin(10x)tan(12x) \lim _{x \rightarrow 0} \frac{\sin (10 x)}{\tan (12 x)} using L'Hospital's rule.

See Solution

Problem 10145

Derive E[eX2/2]E\left[e^{-X^{2} / 2}\right] for XN(0,1)X \sim \mathcal{N}(0,1) using exp(u22)du=2π\int_{-\infty}^{\infty} \exp(-\frac{u^{2}}{2}) du=\sqrt{2 \pi}.

See Solution

Problem 10146

Evaluate the limit using L'Hôpital's rule: limx0ex+x14x\lim _{x \rightarrow 0} \frac{e^{x}+x-1}{4 x}

See Solution

Problem 10147

Find the rate of volume increase of a cone when r=5 cmr=5 \mathrm{~cm}, h=20 cmh=20 \mathrm{~cm}, both growing at 7 cm/s7 \mathrm{~cm/s}.

See Solution

Problem 10148

Find the tangential and normal acceleration components for r(t)=3t,3t4,4t5\vec{r}(t)=\left\langle-3 t, 3 t^{4},-4 t^{5}\right\rangle at t=1t=1. a(1)=T+N\vec{a}(1)=\square \vec{T}+\square \vec{N}

See Solution

Problem 10149

Find the derivative of the function f(x)=cos2(xx+2)f(x)=\cos^{2}\left(\frac{x}{x+2}\right).

See Solution

Problem 10150

Find the limit as xx approaches 0 for tanx4x\frac{\tan x}{4 x}.

See Solution

Problem 10151

Evaluate the limit: limx10x3e8x\lim _{x \rightarrow \infty} \frac{10 x^{3}}{e^{8 x}} using L'Hopital's rule.

See Solution

Problem 10152

A plane is at 6 km6 \mathrm{~km} altitude and moves at 700 km/h700 \mathrm{~km/h}. Find how fast the angle θ\theta changes after 24 min24 \mathrm{~min}. Give your answer to three decimal places: dθdt\frac{d \theta}{d t} \approx

See Solution

Problem 10153

Evaluate limn0πx2sinnxdx\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|x^{2} \sin n x\right| d x using given steps.

See Solution

Problem 10154

Find the limit using L'Hospital's rule: limx0exx14x2\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{4 x^{2}}

See Solution

Problem 10155

Evaluate the limit: limx012x3xx\lim _{x \rightarrow 0} \frac{12^{x}-3^{x}}{x} using L'Hospital's rule.

See Solution

Problem 10156

Find the derivative of the function f(x)=xtan4(x)f(x)=\sqrt{x} \tan ^{4}(\sqrt{x}). What is f(x)f^{\prime}(x)?

See Solution

Problem 10157

Brooke and Jamail walk on parallel paths. How far apart are they after 11 s and how fast is the distance changing?

See Solution

Problem 10158

Find h(3)h^{\prime}(3) for h(x)=7+6f(x)h(x)=\sqrt{7+6 f(x)}, given f(3)=7f(3)=7 and f(3)=4f^{\prime}(3)=4.

See Solution

Problem 10159

Find the volume of the torus formed by revolving the circle (x17)2+y2=1(x-17)^{2}+y^{2}=1 around the yy-axis.

See Solution

Problem 10160

Find the derivative of the function f(x)=3xsin2(4x)f(x)=\sqrt{3 x-\sin ^{2}(4 x)}. What is f(x)f^{\prime}(x)?

See Solution

Problem 10161

Find the derivative of the function y=(9+cos2x)6y=(9+\cos^{2} x)^{6} with respect to xx. What is dydx=?\frac{d y}{d x}=?

See Solution

Problem 10162

Find the limit as xx approaches 0 for tan8xsin3x\frac{\tan 8 x}{\sin 3 x}.

See Solution

Problem 10163

Find the limit as xx approaches 0 for sin3x5x\frac{\sin 3x}{5x}.

See Solution

Problem 10164

Find the limit: limx0sin(3x)e2x1\lim _{x \rightarrow 0} \frac{\sin (3 x)}{e^{2 x}-1}.

See Solution

Problem 10165

Find the derivative of the function f(x)=1(x3sec(3x25))3f(x)=\frac{1}{(x^{3}-\sec(3x^{2}-5))^{3}}.

See Solution

Problem 10166

Find the derivative of y=tan(9ex)y=\tan(9 e^{x}) with respect to xx: dy/dx=d y / d x=

See Solution

Problem 10167

Find the limit using L'Hospital's rule: limx01cos2x1cos9x.\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{1-\cos 9 x}.

See Solution

Problem 10168

Find the limit: limxx4ex\lim _{x \rightarrow \infty} x^{4} \cdot e^{-x} using L'Hospital's rule if needed.

See Solution

Problem 10169

Find the derivative of the function f(x)=1+csc(x9)1cot(x9)f(x)=\frac{1+\csc \left(x^{9}\right)}{1-\cot \left(x^{9}\right)}.

See Solution

Problem 10170

Find the tangent line equation to y(x)=sin(2+x2)y(x)=\sin(2+x^{2}) at x=4x=-4. The equation is y=y=

See Solution

Problem 10171

Differentiate y=2sin(tansinx)y=-2 \sin (\tan \sqrt{\sin x}). Find yy^{\prime}.

See Solution

Problem 10172

Find points where the tangent line of f(x)=2sinx+sin2xf(x)=2 \sin x+\sin^{2} x is horizontal for 0x<2π0 \leq x < 2\pi. List x=x=.

See Solution

Problem 10173

Given f(x)=sinxf(x)=\sin x, define F(x)=f(xk)F(x)=f\left(x^{k}\right) and G(x)=[f(x)]kG(x)=[f(x)]^{k}. Find (a) F(x)F^{\prime}(x) and (b) G(x)G^{\prime}(x).

See Solution

Problem 10174

Find the derivative of the function y=[x+(x+sin2(x))7]3y=\left[x+\left(x+\sin ^{2}(x)\right)^{7}\right]^{3}. What is y=?y^{\prime}=?

See Solution

Problem 10175

Find ddtsint\frac{d}{d t} \sin t when tt is in degrees and explain why radians are preferred in calculus.

See Solution

Problem 10176

Differentiate y=9cot2(sint)y=-9 \cot^{2}(\sin t). Find yy'.

See Solution

Problem 10177

Find functions g(x)g(x) and f(x)f(x) such that y=(fg)(x)y=(f \circ g)(x) for y=(x+sin(x))2y=(x+\sin (x))^{2}, then compute (fg)(f \circ g)^{\prime}.

See Solution

Problem 10178

Find dydx\frac{d y}{d x} for y=sin(2x2+2x+1)y=\sin(-2x^2+2x+1) using the chain rule. What is dydu\frac{d y}{d u} and dudx\frac{d u}{d x}?

See Solution

Problem 10179

Find the derivative f(x)f'(x) of f(x)=tan(4x)f(x)=\tan(4x) and calculate f(2)f'(2).

See Solution

Problem 10180

Find the second derivative of yy with respect to xx for the equation x2+4y2=4x^{2}+4 y^{2}=4.

See Solution

Problem 10181

Find the absolute max and min of f(x)=26x2f(x)=2-6 x^{2} for 3<x1-3<x \leq 1. Where do they occur?

See Solution

Problem 10182

Find the minimum surface area of a cylindrical container with volume 64π64 \pi in.3^{3}. Options: A) 4 in.2^{2} B) 48π48 \pi in.2^{2} C) 4π4 \pi in.2^{2} D) 48 in.2^{2}

See Solution

Problem 10183

Find c[0,2]c \in [0,2] for f(x)=sinx2\mathrm{f}(x)=\sin x^{2} that meets the Mean Value Theorem. Choices: A) 1.3099 B) 1.5261 C) -0.3784 D) 1.2533

See Solution

Problem 10184

Find the derivative yy^{\prime} for the function y=logx+exy=\log x+e^{x}.

See Solution

Problem 10185

Find the derivative yy^{\prime} of the function y=cos(πx)y=\cos (\pi x).

See Solution

Problem 10186

Find the derivative of the function f(x)=x2xf(x)=x^{2 x}.

See Solution

Problem 10187

Find all values of cc in [0,3][0,3] for the function f(x)=(1x)3f(x)=(1-x)^{3} that meet the Mean Value Theorem.

See Solution

Problem 10188

Find when the particle with position S(t)=2t(22t+t2)S(t)=2\sqrt{t}(2-2t+t^2) is moving left for t0t \geq 0.

See Solution

Problem 10189

Find the derivative of the function f(x)=7xcosxf(x)=7 \sqrt{x} \cdot \cos \sqrt{x}.

See Solution

Problem 10190

Find points on the curve where the tangent line is horizontal for y=2x3+3x212x+2y=2 x^{3}+3 x^{2}-12 x+2.

See Solution

Problem 10191

Find the derivative of f(x)=x2+43f(x)=\sqrt[3]{x^{2}+4} using the chain rule.

See Solution

Problem 10192

Find the derivative of f(x)=x23x4f(x)=x^{2} \cdot \sqrt{3x-4}.

See Solution

Problem 10193

Find the derivative of f(x)=7ln(x2ex)f(x)=7 \ln (x^{2} e^{x}).

See Solution

Problem 10194

Evaluate the following using functions f(x),g(x),h(x)f(x), g(x), h(x) and their derivatives at given points: a. (gh)(10)(g \cdot h)^{\prime}(10) b. (fg)(13)\left(\frac{f}{g}\right)^{\prime}(13) c. (fg)(10)(f \circ g)^{\prime}(10) d. (f1)(11)\left(f^{-1}\right)^{\prime}(11)

See Solution

Problem 10195

Find the derivative of f(x)=xx2+2f(x)=\frac{x}{\sqrt{x^{2}+2}}.

See Solution

Problem 10196

Gjeni dy dx\frac{\mathrm{d} y}{\mathrm{~d} x} për funksionet: a) x2+2x3x^{2}+2 x-3, b) 12x5x21-2 x-5 x^{2}, c) x3+2x23x+1x^{3}+2 x^{2}-3 x+1, d) x2x4+πx^{2}-x^{4}+\pi, e) x1xx-\frac{1}{x}, f) 3+x+2x23+x+\frac{2}{x^{2}}, g) x31x3+3x+5x^{3}-\frac{1}{x^{3}}+\frac{3}{x}+5, h) 10x1x10\frac{10}{x}-1-\frac{x}{10}, i) x+1x\sqrt{x}+\frac{1}{\sqrt{x}}, j) x55x3x^{5}-\frac{5}{\sqrt[3]{x}}, k) 3+2x5x233+\frac{2}{\sqrt{x}}-\frac{5}{\sqrt[3]{x^{2}}}, l) 3π2x2x32\frac{3}{\pi}-\frac{2}{x^{2}}-x^{\frac{3}{2}}.

See Solution

Problem 10197

Find the limit as n n approaches 5 for the expression 7n3+8n5n2+12n+2n23n3+4n45n5 \frac{7 n^{3}+8 n^{5}-n^{2}+1}{2-n+2 n^{2}-3 n^{3}+4 n^{4}-5 n^{5}} .

See Solution

Problem 10198

Find the first and second derivatives of the function f(x)=ax3+bx+c(1+lnx)f(x)=a x^{3}+\frac{b}{x}+c(1+\ln x).

See Solution

Problem 10199

Find the limit: limΔx0(4/x+Δx)4/xΔx\lim _{\Delta x \rightarrow 0} \frac{(4 / \sqrt{x}+\Delta x)-4 / \sqrt{x}}{\Delta x}.

See Solution

Problem 10200

Invest \$4000 at 3% continuously compounded interest. (a) Find the account value after 9 years. (b) When will it reach \$48000?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord