Calculus

Problem 17401

Find the indefinite integral x+2(4x5)2dx\int \frac{x+2}{(4 x-5)^{2}} d x using the substitution u=4x5u=4 x-5. What does the integral become?

See Solution

Problem 17402

Find the limits for f(x)=x27x18x9f(x)=\frac{x^{2}-7x-18}{x-9} as xx approaches 9 from the left: A. limf(x)=\lim f(x)=\square or B. DNE.

See Solution

Problem 17403

Evaluate the integral with substitution: sec2(4x)xdx=+C\int \frac{\sec ^{2}(4 \sqrt{x})}{\sqrt{x}} d x=\square+C

See Solution

Problem 17404

Find the limits for f(x)=x27x18x9f(x)=\frac{x^{2}-7 x-18}{x-9} as xx approaches 9 from the left and right.

See Solution

Problem 17405

Evaluate the Riemann sum for f(x)f(x) from 11 to 77 using three equal sub-intervals and left endpoints. Riemann Sum = \square.

See Solution

Problem 17406

Find F(x)F'(x) for each: a) F(x)=20x1tdtF(x)=\int_{20}^{x} \frac{1}{t} dt, b) F(x)=x181tdtF(x)=\int_{x}^{18} \frac{1}{t} dt, c) F(x)=5x31tdtF(x)=\int_{5}^{x^{3}} \frac{1}{t} dt, d) F(x)=2+cosxx2+11tdtF(x)=\int_{2+\cos x}^{x^{2}+1} \frac{1}{t} dt.

See Solution

Problem 17407

Calculate the integral from 3 to 4 of x3+4x\frac{x^{3}+4}{x}.

See Solution

Problem 17408

Find critical points of f(x)=cos(1x)f(x)=\cos\left(\frac{1}{x}\right) for x0x \neq 0 and classify them using the second derivative test.

See Solution

Problem 17409

Is the integral 62(x+4)3/2dx\int_{6}^{\infty} \frac{2}{(x+4)^{3 / 2}} d x convergent or divergent? If convergent, evaluate it.

See Solution

Problem 17410

Use uu-substitution to find
34(4x5)3dx=abf(u)du. \int_{3}^{4}(4 x-5)^{3} d x = \int_{a}^{b} f(u) d u.
Determine uu, dud u, aa, bb, and f(u)f(u). What is the integral's value?

See Solution

Problem 17411

Find G(w)G^{\prime}(w) for G(w)=43w5+5w4G(w)=\frac{4}{3 w^{5}}+5 \sqrt[4]{w}. What is G(w)=G^{\prime}(w)=\square?

See Solution

Problem 17412

Evaluate the integral 0141x2dx\int_{0}^{1} \frac{-4}{\sqrt{1-x^{2}}} d x. If divergent, respond with "D".

See Solution

Problem 17413

Find the derivative G(w)G^{\prime}(w) of the function G(w)=43w5+5w4G(w)=\frac{4}{3 w^{5}}+5 \sqrt[4]{w}.

See Solution

Problem 17414

Find the derivative G(w)G^{\prime}(w) for the function G(w)=43w5+5w4G(w)=\frac{4}{3 w^{5}}+5 \sqrt[4]{w}.

See Solution

Problem 17415

Find the result of the integral e3xdx\int e^{3 x} dx after the substitution u=3xu=3x.

See Solution

Problem 17416

Find f(1)f(-1) given that f(x)=8x3+12x+2f^{\prime}(x)=8 x^{3}+12 x+2 and f(1)=4f(1)=-4.

See Solution

Problem 17417

Evaluate the Riemann sum of f(x)f(x) on [1,7][1,7] using 3 equal subintervals and left endpoints.

See Solution

Problem 17418

Implicit Differentiation: Verify that tangent lines of the bicorn curve (x2+8y16)2=y2(16x2)(x^{2}+8y-16)^{2}=y^{2}(16-x^{2}) at (0,4)(0,4) and (0,4/3)(0,4/3) are horizontal. Do this by a) expanding and b) not expanding the equation.

See Solution

Problem 17419

Evaluate the integrals and use A/B with C-G for comparison test applicability or just G if not applicable.
1. 11x3+2dx\int_{1}^{\infty} \frac{1}{x^{3}+2} d x
2. 110+sin(x)xdx\int_{1}^{\infty} \frac{10+\sin (x)}{\sqrt{x}} d x
3. 1cos2(x)x2+2dx\int_{1}^{\infty} \frac{\cos ^{2}(x)}{x^{2}+2} d x
4. 1exx2dx\int_{1}^{\infty} \frac{e^{-x}}{x^{2}} d x

See Solution

Problem 17420

Determine if each integral converges or diverges using the comparison test. Provide answers as A/B and C-G or just G.
1. 11x3+2dx\int_{1}^{\infty} \frac{1}{x^{3}+2} dx
2. 110+sin(x)xdx\int_{1}^{\infty} \frac{10+\sin(x)}{\sqrt{x}} dx
3. 1cos2(x)x2+2dx\int_{1}^{\infty} \frac{\cos^2(x)}{x^{2}+2} dx
4. 1exx2dx\int_{1}^{\infty} \frac{e^{-x}}{x^{2}} dx

See Solution

Problem 17421

Evaluate the integral x3(3x2)2dx\int \frac{x-3}{(3 x-2)^{2}} d x using the substitution u=3x2u=3 x-2. Which transformed integral is correct?

See Solution

Problem 17422

Approximate 26f(x)dx\int_{2}^{6} f(x) dx using a midpoint Riemann sum with 2 equal-width rectangles. Use values: 3-3, 00, 11, 22.

See Solution

Problem 17423

Find f(x)=x48x3+5f(x)=x^{4}-8 x^{3}+5: (A) Find f(x)f^{\prime}(x). (B) Find the slope at x=2x=-2. (C) Find the tangent line equation at x=2x=-2. (D) Find where the tangent line is horizontal.

See Solution

Problem 17424

Find f(x)=x48x3+5f(x)=x^{4}-8 x^{3}+5: (A) f(x)f^{\prime}(x), (B) slope at x=2x=-2, (C) tangent line at x=2x=-2, (D) horizontal tangents.

See Solution

Problem 17425

Given a continuous function f(x)f(x), which statement about Riemann sums L100,R100,M100L_{100}, R_{100}, M_{100} on [10,20][10,20] is FALSE?

See Solution

Problem 17426

For f(x)=x48x3+5f(x)=x^{4}-8 x^{3}+5, find: (A) f(x)f^{\prime}(x), (B) slope at x=2x=-2, (C) tangent line at x=2x=-2, (D) where tangent is horizontal.

See Solution

Problem 17427

Find the cost of producing the 71st food processor using C(x)=2000+60x0.1x2C(x)=2000+60x-0.1x^{2} and marginal cost.

See Solution

Problem 17428

Find the Cauchy principal value of the integral: 0cos(9x)(x2+1)2dx\int_{0}^{\infty} \frac{\cos (9 x)}{(x^{2}+1)^{2}} dx

See Solution

Problem 17429

Find the indefinite integral x3(3x2)2dx\int \frac{x-3}{(3 x-2)^{2}} d x using the substitution u=3x2u=3 x-2.

See Solution

Problem 17430

Let f(x)=x+xf(x)=|x|+\llbracket x \rrbracket.
a. Graph ff for x[0,2]x \in [0,2]. b. For which a(0,2)a \in (0,2) does limxaf(x)\lim_{x \rightarrow a} f(x) exist? c. Where is ff continuous in (0,2)(0,2)? Explain continuity.

See Solution

Problem 17431

Show that f(x)=x4+11xf(x)=x^{4}+1-\frac{1}{x} has a root in (12,1)(\frac{1}{2}, 1) using the intermediate value theorem, then find it to two decimal places.

See Solution

Problem 17432

Find the limits for the following:
a. limh0[(3+h)232h]\lim _{h \rightarrow 0}\left[\frac{(3+h)^{-2}-3^{-2}}{h}\right]
b. limx2x2+x6x22x\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-2 x}
c. limx23x29x4+x+2x3+2x2\lim _{x \rightarrow-2} \frac{3 x^{2}-\sqrt{9 x^{4}+x+2}}{x^{3}+2 x^{2}}
d. limx23x26x2+5\lim _{x \rightarrow \infty} \frac{2-3 x^{2}}{6 x^{2}+5}
e. limx0x4sin(12x2+3x)\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{1}{2 x^{2}+3 x}\right)

See Solution

Problem 17433

Bestimmen Sie die Ableitung von f(t)=t4t+1f(t) = t^{4} - t + 1.

See Solution

Problem 17434

Evaluate the integral x3(3x2)2dx\int \frac{x-3}{(3x-2)^{2}} dx using the substitution u=3x2u=3x-2. Which transformed integral is correct?

See Solution

Problem 17435

Bestimmen Sie die Ableitung von f(x)=(3+x)(3x)f(x) = (3+x)(3-x).

See Solution

Problem 17436

Untersuchen Sie die Extrem- und Sattelpunkte von f(x)=x24f(x)=x^{2}-4 und g(x)=x515x330g(x)=x^{5}-15x^{3}-30.

See Solution

Problem 17437

Untersuchen Sie das Verhalten der Funktionen an den Definitionslücken:
a) f(x)=x292x6,x0=3f(x)=\frac{x^{2}-9}{2 x-6}, x_{0}=3
b) f(x)=x+1x,x0=0f(x)=\frac{x+1}{x}, x_{0}=0
c) f(x)=x+1x2,x0=0f(x)=\frac{x+1}{x^{2}}, x_{0}=0

See Solution

Problem 17438

Leite die Funktion 5x-\frac{5}{x} ab.

See Solution

Problem 17439

Gegeben ist die Funktion f(t)=0,006t3+0,18t21,35t+15f(t)=-0,006 t^{3}+0,18 t^{2}-1,35 t+15 für 0t250 \leq t \leq 25.
a) Bestimme f(0)f(0) und erkläre die Bedeutung. b) Berechne f(25)f(25). c) Finde die Extrempunkte und erkläre ihre Bedeutung. d) Bestimme Intervalle, in denen ff fallend ist. e) Finde den Zeitpunkt, an dem die Eisschicht am stärksten zunimmt. f) Interpretiere f(15)f(5)155=0,3\frac{f(15)-f(5)}{15-5}=0,3 im Kontext der Eisdecke.

See Solution

Problem 17440

Gegeben ist die Ableitungsfunktion f(x)=x22x8f^{\prime}(x)=x^{2}-2 \cdot x-8.
a) Berechne f(4)f'(-4). b) Finde die Nullstellen von ff^{\prime}. c) Bestimme die lokalen Extremstellen von ff und deren Art anhand der Tabelle. d) Berechne die Nullstellen von f(x)=x26x+8f(x)=x^{2}-6 \cdot x+8.

See Solution

Problem 17441

Bestimme die Ableitungen für die Funktionen: a) f(x)=x13f(x)=x^{\frac{1}{3}}, b) f(x)=xf(x)=\sqrt{x}, c) f(x)=1x3f(x)=\frac{1}{x^{3}}, d) f(x)=x32f(x)=x^{\frac{3}{2}}, e) f(x)=x4f(x)=\sqrt[4]{x}, f) f(x)=x6f(x)=\sqrt[6]{x}, g) f(x)=1x12xf(x)=\frac{1}{\sqrt{x}}-\frac{1}{2} x, h) f(x)=x34f(x)=x^{\frac{3}{4}}.

See Solution

Problem 17442

Bestimmen Sie die Ableitung von f1(x)=2sinx+8f_{1}(x)=2 \sin x+8.

See Solution

Problem 17443

Find the derivative and integral of f1(x)=2sinx+8f_{1}(x)=2 \sin x+8.

See Solution

Problem 17444

Bestimmen Sie eine Stammfunktion für die folgenden Funktionen:
1. a) f(x)=4x3+2x21f(x)=4 x^{3}+2 x^{2}-1 b) f(x)=x54x3f(x)=x^{5}-4 x^{3} c) f(x)=x32x+7f(x)=-x^{3}-2 x+7 d) f(x)=34x2+87x3f(x)=\frac{3}{4} x^{2}+\frac{8}{7} x^{3} e) f(x)=0,24x75,4xf(x)=0,24 x^{7}-5,4 x f) f(x)=25x4+33x2f(x)=-25 x^{4}+33 x^{2} g) f(x)=2x315x2f(x)=2 x^{3}-15 x^{2} h) f(x)=162x854x5f(x)=162 x^{8}-54 x^{5}
2. a) f(x)=14x2f(x)=\frac{1}{4} x^{-2} b) f(x)=3x4f(x)=\frac{3}{x^{4}} c) f(x)=0,3x10f(x)=0,3 x^{-10} d) f(x)=0,15x6f(x)=0,15 x^{-6} e) f(x)=5x6f(x)=\frac{-5}{x^{6}} f) f(x)=x2+2xx5f(x)=\frac{x^{2}+2 x}{x^{5}} g) f(x)=x(x+1)x4f(x)=\frac{x(x+1)}{x^{4}} h) f(x)=6x221x3x7f(x)=\frac{6 x^{2}-21 x}{3 x^{7}}
3. a) f(x)=2sin(x)f(x)=2 \sin (x) b) f(x)=0,5cos(x)f(x)=0,5 \cos (x) c) f(x)=x+2sin(x)f(x)=x+2 \sin (x) d) f(x)=cos(x)πf(x)=\cos (x)-\pi

See Solution

Problem 17445

Given f(x)=2xx+4f(x)=\frac{2-x}{x+4}, find intercepts, asymptotes, increasing/decreasing intervals, concavity, and sketch the graph.

See Solution

Problem 17446

Hitung biaya marjinal (MC) dari persamaan total biaya TC=2Q224Q+102T C=2 Q^{2}-24 Q+102 saat produksi meningkat 1 unit.

See Solution

Problem 17447

Hitung biaya marjinal (MC) dari persamaan TC=2Q224Q+102T C=2 Q^{2}-24 Q+102 jika produksinya ditingkatkan 1 unit.

See Solution

Problem 17448

Cari unit XX yang harus dikonsumsi agar kepuasan maksimum tercapai, dengan fungsi total utilitas TU=100x5x2TU = 100x - 5x^{2} dan harga Rp50 per unit.

See Solution

Problem 17449

Bestimme uu, sodass der Flächeninhalt des Rechtecks, definiert durch P(uf(u))P(u|f(u)), maximal ist. Was passiert, wenn uu \to \infty?

See Solution

Problem 17450

Ein Flugobjekt wird in 10 Sekunden von 150 km/h150 \mathrm{~km/h} auf 96 km/h96 \mathrm{~km/h} abgebremst. Bestimme die Bremsstrecke mit v(t)=320t23t+41,6v(t)=\frac{3}{20} t^{2}-3 t+41,6 für t[0;10]t \in[0;10]. Berechne die Länge der Bremsstrecke und zeichne den Graphen. Wie viele Teilintervalle sind nötig, damit die Differenz zwischen Unter- und Obersumme klein bleibt?

See Solution

Problem 17451

Ein Flugobjekt bremst von 150 km/h150 \mathrm{~km/h} auf 96 km/h96 \mathrm{~km/h} in 10 Sekunden. Berechnet die Bremsstrecke und die Teilintervalle.

See Solution

Problem 17452

Find the derivative of y=1x24xy=\frac{1}{\sqrt{x}}-\frac{24}{x} and evaluate it at x=2x=2, rounding to two decimal places.

See Solution

Problem 17453

Find the value of the function y=x33x23x+113y=\frac{x^{3}}{3}-x^{2}-3 x+\frac{11}{3} at its inflection point.

See Solution

Problem 17454

Find the stationary point of the function y=3x23x+20y=3x^{2}-3x+20 and determine if it's a max, min, or inflection point.

See Solution

Problem 17455

Find the derivative of y=(x3+1)(x0.51/x)y=\left(x^{3}+1\right)\left(x^{0.5}-1/x\right) at x=3x=3 and round to two decimal places.

See Solution

Problem 17456

Find the derivative of y=40(x0.4+2)1x2y=\frac{40\left(x^{0.4}+2\right)}{1-x^{2}} at x=6x=6 and round to two decimal places.

See Solution

Problem 17457

Determine the correctness of these statements for the function x33x23x+9\frac{x^{3}}{3}-x^{2}-3 x+9: a) max at x=3x=3, b) inflection at x=1x=1, c) decreasing for x>3x>3, d) min at x=9x=9.

See Solution

Problem 17458

Substitute h=0h=0 into nt=1.5h0.1+0.1hnt=\frac{1.5h}{0.1+0.1h} and y(h)=1.5h20.1+0.1hy(h)=\frac{1.5h^2}{0.1+0.1h}. Find values rounded to two decimals. Check stability using the slope criterion.

See Solution

Problem 17459

Evaluate the integral 02x1exdx\int_{0}^{2}|x-1| e^{x} d x using the piecewise definition of x1|x-1|.

See Solution

Problem 17460

Calculate the area between the parabola y=3x2+20x+5y=3x^2+20x+5 and the line y=2x10y=2x-10 for x[10,0]x \in[-10,0].

See Solution

Problem 17461

Evaluate the integral e1/x2x3dx\int \frac{\mathrm{e}^{1 / \mathrm{x}^{2}}}{\mathrm{x}^{3}} \mathrm{dx}.

See Solution

Problem 17462

Find the integral tan3xsecxdx\int \frac{\tan ^{3} x}{\sqrt{\sec x}} d x.

See Solution

Problem 17463

Evaluate the Riemann sum of f(x)f(x) on [1,7][1,7] using three equal subintervals and left endpoints for given values.

See Solution

Problem 17464

Approximate 06f(x)dx\int_{0}^{6} f(x) dx using a Riemann sum with 3 equal-width rectangles and midpoints.

See Solution

Problem 17465

Compute 25f(x)dx\int_{-2}^{5} f(x) d x given 27(3f(x))dx=12\int_{-2}^{7}(3 f(x)) d x=12 and 57f(x)dx=2\int_{5}^{7} f(x) d x=2.

See Solution

Problem 17466

Given a continuous function f(x)f(x) on [10,20][10,20], which statement about Riemann sums L100,R100,M100L_{100}, R_{100}, M_{100} is FALSE?

See Solution

Problem 17467

Find inflection points and concavity intervals for the function f(x)=xex1f(x)=x e^{x-1}.

See Solution

Problem 17468

Gegeben ist die Funktion f(x)=x36x2+11x6f(x)=x^{3}-6 x^{2}+11 x-6.
a) Zeigen Sie, dass der Wendepunkt auf der Geraden y=x2y=x-2 liegt.
b) Nach Verschiebung hat der Punkt (2,10) die Koordinaten (3,2). Bestimmen Sie die Gleichung der Funktion hh.

See Solution

Problem 17469

Determine the horizontal asymptote(s) of the function f(x)=8x2f(x)=-\frac{8}{x-2}.

See Solution

Problem 17470

Oblicz pochodną funkcji y=(1+cos2x4)y'=\left(\sqrt[4]{1+\cos ^{2} x}\right).

See Solution

Problem 17471

Rozwiąż równanie różniczkowe y=1+sin2x4y'=\sqrt[4]{1+\sin^2 x}.

See Solution

Problem 17472

Une entreprise a un revenu R(q)=9000ln(0,02q+1)R(q)=9000 \ln (0,02 q+1) et des coûts C(q)=7000e0,0012qC(q)=7000 e^{0,0012 q}.
a) Calculer le profit pour 1000 unités. b) Trouver qq pour R(q)=21597$.c)TrouverR(q)=21597 \$. c) Trouver qpour pour C(q)=29545 \.d)Pour. d) Pour q=800,deˊterminerlavariationdescou^tsetdurevenu.e)Eˊvaluer, déterminer la variation des coûts et du revenu. e) Évaluer \mathrm{C}_{\text {marginal }}(400)et et \mathrm{R}_{\text {marginal }}(400)$.

See Solution

Problem 17473

Find the elasticity function for the demand function p=D(x)=1963.5xp=D(x)=196-3.5x.

See Solution

Problem 17474

Find where f(x)=2x+8xf(x)=2x+\frac{8}{x} is increasing/decreasing and the xx-coordinates of relative maxima/minima.

See Solution

Problem 17475

Find the units xx and yy for two plants to minimize costs given C1(x)=x22010x+400C_{1}(x)=\frac{x^{2}}{20}-10x+400 and C2(y)=y3147y+400C_{2}(y)=\frac{y^{3}}{147}-y+400.

See Solution

Problem 17476

1. La relation entre le prix pp en \etlaquantiteˊ et la quantité qenmilliersestdonneˊepar en milliers est donnée par 10 p^{2}+p q+\frac{q^{2}}{2}=C.a)Trouver. a) Trouver \frac{d p}{d q}.b)Si. b) Si C=1000,, p=8\$$, et $q=20$, calculez $\frac{d p}{d q}$. c) Calculez $\frac{d p}{d q}$ pour $p=10\$$.

See Solution

Problem 17477

Find the volume of the solid formed by revolving the area under y=4xx2y=4x-x^2 (above xx-axis) from x=1x=1 to x=4x=4 around x=1x=1.

See Solution

Problem 17478

Find the volume of the solid formed by revolving the area under y=4xx2y=4x-x^2 above the xx-axis around x=1x=1.

See Solution

Problem 17479

Bestimme kk für h(t)=0,02ekth(t)=0,02 \cdot e^{kt} mit h(6)=0,4h(6)=0,4. Finde tt für h(t)=3h(t)=3 und Wachstumsrate 0,30,3. Wann hh steigt um 0,430,43?

See Solution

Problem 17480

Find the volume of the solid formed by revolving the area under y=4xx2y=4x-x^2 (from x=1x=1 to x=4x=4) around x=1x=1.

See Solution

Problem 17481

Show that sinxx2+4x+5dx=πsin2e\int_{-\infty}^{\infty} \frac{\sin x}{x^{2}+4 x+5} dx = -\frac{\pi \sin 2}{e} using residues.

See Solution

Problem 17482

A bag leaks sand modeled by S(t)=K(1t2μ)3S(t)=K\left(1-\frac{t^{2}}{\mu}\right)^{3}. Answer the following:
1. (a) Amount of sand at t=0t=0? (b) Rate of leak at time tt? (c) At t=2t=2 with μ=6\mu=6, is the leak speeding up or slowing down?
2. (a) Time to empty the bag? (b) Check if limtTdSdt=0\lim _{t \rightarrow T^{-}} \frac{d S}{d t}=0 makes sense.
3. Find (S1)(10)\left(S^{-1}\right)^{\prime}(10) for K=80K=80, μ=8\mu=8.
4. Laila studies S1(μ)=K(11μ)3S_{1}(\mu)=K\left(1-\frac{1}{\mu}\right)^{3} at t=1t=1: (a) Find dS1dμ\frac{d S_{1}}{d \mu}. (b) Does larger μ\mu mean more sand leaked at t=1t=1? Explain.

See Solution

Problem 17483

Evaluate the integral: I=sin(3x)cos2(x)dxI = \int \sin(3x) \cos^2(x) \, dx

See Solution

Problem 17484

Differentiate the expression 10p2+pq+12q210 p^{2} + p \cdot q + \frac{1}{2} q^{2} with respect to qq and set it to 0.

See Solution

Problem 17485

Déterminez les dimensions d'un cylindre inscrit dans un cône de hauteur H=4H=4 et de rayon R=7.5R=7.5 pour volume maximal.

See Solution

Problem 17486

Find dimensions xx and yy for a cylinder from a rectangle with perimeter 27 cm27 \mathrm{~cm} for max volume.

See Solution

Problem 17487

Find the critical numbers of the function ff given that its derivative ff^{\prime} passes through (0,0) and (2,0).

See Solution

Problem 17488

Find points of inflection for f(x)=x2+6x+11f(x)=x^{2}+6x+11. Options: (4,1)(-4,1), (2,3)(-2,3), (3,2)(-3,2), or none.

See Solution

Problem 17489

Find the point of diminishing returns for profit P(x)=x3+36x2+14x30P(x)=-x^{3}+36 x^{2}+14 x-30 where 0x200 \leq x \leq 20.

See Solution

Problem 17490

Minimize the surface area AA of a cylinder with volume V=500cm3V=500 \, \text{cm}^3. Find rr for minimum AA.

See Solution

Problem 17491

Find the relative max and min of f(x)=2x3+3x236x+6f(x)=2x^{3}+3x^{2}-36x+6 using its derivative. Calculate max and min values.

See Solution

Problem 17492

Untersuchen Sie die Folgen auf Konvergenz, Grenzwert, Häufungspunkte, Limes superior und Limes inferior:
(a) an=36n3924n2+12na_{n}=\frac{36 n^{3}-9}{24 n^{2}+12 \sqrt{n}} (b) an=(1)n2n3n2n+cos(n)na_{n}=(-1)^{n} \sqrt[n]{\frac{2 n}{3^{n^{2}}}}+\frac{\cos (n)}{n} (c) an=Re(2n(1i3)n)a_{n}=\operatorname{Re}\left(2^{-n}(-1-\mathrm{i} \sqrt{3})^{n}\right) (d) an=k=0n2k+(1)k5ka_{n}=\sum_{k=0}^{n} \frac{2^{k}+(-1)^{k}}{5^{k}}

See Solution

Problem 17493

Show that for any numbers aa and bb, the inequality tan1(b)tan1(a)ba|\tan^{-1}(b) - \tan^{-1}(a)| \leq |b - a| holds using the Mean Value Theorem.

See Solution

Problem 17494

Show that if f(x)=10xf(x)=10^{x}, then f(x+h)f(x)h=10x(10h1h)\frac{f(x+h)-f(x)}{h}=10^{x}\left(\frac{10^{h}-1}{h}\right).

See Solution

Problem 17495

Une entreprise a un revenu R(q)=9000ln(0,02q+1)R(q)=9000 \ln (0,02 q+1) et des coûts C(q)=7000e0,0012qC(q)=7000 e^{0,0012 q}.
a) Quel est le profit pour 1000 unités vendues ? b) Combien d'unités pour un revenu de 21597 \?c)Combienduniteˊspourdescou^tsde29545$?d)Pour ? c) Combien d'unités pour des coûts de 29545 \$ ? d) Pour q=800,calculezlavariationdescou^tsetdurevenu.e)Eˊvaluez, calculez la variation des coûts et du revenu. e) Évaluez \mathrm{C}_{\text {marginal }}(400)et et \mathrm{R}_{\text {marginal }}(400)$. f) Quel est le revenu lorsque la hausse est de 30 \$/unité ? g) Quelle est la variation des coûts à 23240,82 \$ ? h) Combien d'unités pour maximiser le profit et quel est ce profit maximal ?

See Solution

Problem 17496

Une entreprise a un revenu R(q)=9000ln(0,02q+1)R(q)=9000 \ln (0,02 q+1) et des coûts C(q)=7000e0,0012qC(q)=7000 e^{0,0012 q}.
a) Quel est le profit pour 1000 unités vendues ? b) Pour quel qq le revenu est 21597 \?c)Pourquel ? c) Pour quel qlescou^tssont29545$?d)Aˋ les coûts sont 29545 \$ ? d) À q=800,quelleestlavariationdescou^tsetdurevenu?e)Eˊvaluer:i., quelle est la variation des coûts et du revenu ? e) Évaluer : i. C_{\text{marginal}}(400)ii. ii. R_{\text{marginal}}(400)f)Aˋquelrevenutotalcorresponduneaugmentationde30$/uniteˊ?g)Quelestlerythmedevariationdescou^tsaˋ23240,82$?h)Quel f) À quel revenu total correspond une augmentation de 30 \$/unité ? g) Quel est le rythme de variation des coûts à 23240,82 \$ ? h) Quel q$ maximise le profit et quel est ce profit maximal ?

See Solution

Problem 17497

Find critical points and intervals of increase/decrease for f(x)=4excos(x)f(x)=-4 e^{-x} \cos (x) in [π2,π2]\left[-\frac{\pi}{2}, \frac{\pi}{2}\right].

See Solution

Problem 17498

Evaluate the integral: sec2(θ)tan3(θ)dθ\int \sec^{2}(\theta) \tan^{3}(\theta) d\theta (use CC for the constant).

See Solution

Problem 17499

Find the indefinite integral and include the constant of integration CC: (52x)11dx\int(5-2 x)^{11} d x

See Solution

Problem 17500

Calculate the average value gave g_{\text {ave }} of the function g(x)=3cos(x)g(x)=3 \cos (x) over the interval [π2,π2]\left[-\frac{\pi}{2}, \frac{\pi}{2}\right].

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord