Calculus

Problem 16301

Calculate the integral: 0π4cos42xdx\int_{0}^{\frac{\pi}{4}} \cos ^{4} 2 x \, dx.

See Solution

Problem 16302

You want a 30-year mortgage of \275,000.Interpret275,000. Interpret P(2)=1016.45and and P'(2)=137.52$. What do they mean?

See Solution

Problem 16303

Calculate the integral of the function: (6x3+9x2+4x3)dx\int\left(-6 x^{3}+9 x^{2}+4 x-3\right) d x.

See Solution

Problem 16304

Find the integral of the function: (5x28x+5)dx\int(5 x^{2}-8 x+5) \, dx

See Solution

Problem 16305

Calculate the work done on a gas mixture expanding from 91.0 L to 96.0 L at 39.0 atm. Answer in kJ\square \mathrm{kJ}.

See Solution

Problem 16306

Find the integral of the function: (x32+2x+3)dx\int\left(x^{\frac{3}{2}}+2 x+3\right) d x.

See Solution

Problem 16307

Evaluate the integral: (x+13x)dx\int\left(\sqrt{x}+\frac{1}{3 \sqrt{x}}\right) d x

See Solution

Problem 16308

Find the derivative of f(x)=3x+2x5f(x)=3 \sqrt{x}+\frac{2}{\sqrt{x}}-5.

See Solution

Problem 16309

Calculate the integral (y2y3dy)\int\left(y^{2} \sqrt[3]{y} \, dy\right).

See Solution

Problem 16310

How fast is the distance from a car on a highway to a farmhouse increasing when the car is 2 miles past the intersection? The farmhouse is 8 miles away and the car travels at 75mph75 \mathrm{mph}.

See Solution

Problem 16311

A 17-foot ladder leans against a wall. If the top slips down at 3 ft/s, how fast is the foot moving when the top is 15 ft up? The foot moves at ft/s\mathrm{ft/s}.

See Solution

Problem 16312

Calculez la masse de Polonium-210 après 365 jours avec m(t)=300eln2140tm(t)=300 e^{-\frac{\ln 2}{140} t} et trouvez le temps pour atteindre 200 mg\mathrm{mg}.

See Solution

Problem 16313

A balloon's volume increases at 3.7ft3/min3.7 \mathrm{ft}^{3} / \mathrm{min}. Find the diameter's rate of increase at 1.6 ft.

See Solution

Problem 16314

Find the rate of change of demand xx when price p=10p = 10 and dp/dt=2dp/dt = 2 using 2x212xp+50p2=82002x^2 - 12xp + 50p^2 = 8200.

See Solution

Problem 16315

Calculate the integral for the area under the curve from 0 to 5: 05(5x)dx=\int_{0}^{5}(5-x) d x=

See Solution

Problem 16316

A jogger runs on a circular track with radius 50ft50 \mathrm{ft}. At (30,40)(30,40), her xx-coordinate changes at 20ft/s20 \mathrm{ft/s}. Find dy/dtd y / d t.

See Solution

Problem 16317

Find the average value favef_{\text{ave}} of f(x)=16x2f(x)=\sqrt{16-x^{2}} from a=0a=0 to b=4b=4, rounded to 3 decimal places.

See Solution

Problem 16318

Given the function r(x)=3x2+1(x4)2r(x)=\frac{3 x^{2}+1}{(x-4)^{2}}, complete the tables for values of xx. Describe the behavior near x=4x=4 and find the horizontal asymptote.

See Solution

Problem 16319

You’re taking a \250,000mortgage.Interpret250,000 mortgage. Interpret P(6)=1498.88and and P'(6)=160.73$. What do they mean?

See Solution

Problem 16320

Déterminez le max/min de f(t)=10sin(4πt)f(t)=10 \sin (4 \pi t) et les temps où f(t)f(t) atteint ces valeurs entre 0 et 3 s.

See Solution

Problem 16321

Find the volume generated by revolving the curve y=3x2y=3 x^{2} around the yy-axis, rounded to one decimal place.

See Solution

Problem 16322

Find the tangent line equation and d2ydx2\frac{d^{2} y}{d x^{2}} for x=sectx=\sec t, y=costy=\cos t at t=π4t=\frac{\pi}{4}.

See Solution

Problem 16323

Find the tangent line equation at t=π4t=-\frac{\pi}{4} for x=sint,y=costx=\sin t, y=\cos t. Also, calculate d2ydx2\frac{d^{2} y}{d x^{2}}.
Tangent line: y=x+y=\square x+\square.

See Solution

Problem 16324

Find the tangent line equation at t=π2t=\frac{\pi}{2} for the curve defined by x=costx=-\cos t, y=4+sinty=4+\sin t, and d2ydx2\frac{d^{2} y}{d x^{2}} at that point.

See Solution

Problem 16325

Find the tangent line equation at t=11t=11 for x=1t+10x=\frac{1}{t+10} and y=tt10y=\frac{t}{t-10}. Also, calculate d2ydx2\frac{d^{2} y}{d x^{2}}.
Write the tangent line as: y=x y=\square x-\square

See Solution

Problem 16326

Find the tangent line equation at t=1t=-1 for x=2t3+9x=2t^{3}+9, y=t6y=t^{6} and d2ydx2\frac{d^{2} y}{d x^{2}} at that point.
Write the equation of the tangent line y= y=\square

See Solution

Problem 16327

Find the work to pump water from a cylindrical tank (radius 5ft5 \mathrm{ft}, height 20ft20 \mathrm{ft}) filled to 5ft5 \mathrm{ft}.

See Solution

Problem 16328

Find the surface area from revolving x=t+23,y=t22+23t+3x=t+2\sqrt{3}, y=\frac{t^{2}}{2}+2\sqrt{3}t+3 about the yy-axis.

See Solution

Problem 16329

Find the work to pump water from a cylindrical tank (radius 5ft5 \mathrm{ft}, height 20ft20 \mathrm{ft}) out the top. Show integration steps.

See Solution

Problem 16330

Find the tangent line equation at t=10t=10 for the curve defined by x=1t+9,y=tt9x=\frac{1}{t+9}, y=\frac{t}{t-9}. Also, find d2ydx2\frac{d^{2} y}{d x^{2}} at this point.
Write the tangent line as: y=x y=\square x-\square

See Solution

Problem 16331

Find the work to pump water from a cylindrical tank (radius 5ft5 \mathrm{ft}, height 20ft20 \mathrm{ft}, water height 5ft5 \mathrm{ft}) out. Round to whole ft-lb.

See Solution

Problem 16332

Given f(π4)=6f\left(\frac{\pi}{4}\right)=-6 and f(π4)=5f^{\prime}\left(\frac{\pi}{4}\right)=5, find g(π/4)g^{\prime}(\pi / 4) and h(π/4)h^{\prime}(\pi / 4) for g(x)=f(x)sinxg(x)=f(x) \sin x and h(x)=cosxf(x)h(x)=\frac{\cos x}{f(x)}.

See Solution

Problem 16333

Find f(1)f^{\prime}(1) for f(x)=h(g(x)k(x))f(x)=h(g(x) k(x)) with given values: g(1)=7g(1)=7, k(1)=0k(1)=0, h(1)=8h(1)=-8, g(1)=1g^{\prime}(1)=1, k(1)=7k^{\prime}(1)=-7, h(1)=2h^{\prime}(1)=2, h(0)=5h^{\prime}(0)=5.

See Solution

Problem 16334

Find (f1)(1)\left(f^{-1}\right)^{\prime}(1) for the one-to-one function f(x)=2x+cos(x)f(x)=2x+\cos(x) using the formula (f1)(x)=1f(f1(x))\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}(f^{-1}(x))}.

See Solution

Problem 16335

Find the work done in stretching a spring from 10 cm10 \mathrm{~cm} to 18 cm18 \mathrm{~cm} with a 12 N12 \mathrm{~N} force.

See Solution

Problem 16336

Find the area between the curve y=6cosxy=6 \cos x and the xx-axis from x=π/6.2x=\pi / 6.2 to x=π/2x=\pi / 2 using integration. Round to one decimal place.

See Solution

Problem 16337

Find the area between the curve y=(8/x2)y=\left(8 / x^{2}\right), lines x=1x=1, x=7.5x=7.5, and the axis. Round to one decimal place.

See Solution

Problem 16338

Find the area between the curve y=6cos(x)y=6 \cos (x) and the xx-axis from x=π6x=\frac{\pi}{6} to x=2πx=2\pi.

See Solution

Problem 16339

A balloon deflates at 12 cm3 s112 \mathrm{~cm}^{3} \mathrm{~s}^{-1}. Find the surface area change rate when volume is 36πcm336 \pi \mathrm{cm}^{3}. Use V=43πr3V=\frac{4}{3} \pi r^{3} and A=4πr2A=4 \pi r^{2}.

See Solution

Problem 16340

Find the sum to infinity of the series 15+125+1125+1625+ \frac{1}{5} + \frac{1}{25} + \frac{1}{125} + \frac{1}{625} + \ldots

See Solution

Problem 16341

Find cc using the Mean Value Theorem for Integrals for f(x)=cosxf(x)=\cos x over [π3,π3]\left[-\frac{\pi}{3}, \frac{\pi}{3}\right].

See Solution

Problem 16342

Find the value(s) of cc from the Mean Value Theorem for Integrals for f(x)=cosxf(x)=\cos x on [π3,π3]\left[-\frac{\pi}{3}, \frac{\pi}{3}\right].

See Solution

Problem 16343

Find the displacement and total distance for the velocity function v(t)=t36t2+11t6v(t)=t^{3}-6 t^{2}+11 t-6 for 1t41 \leq t \leq 4.

See Solution

Problem 16344

Evaluate the limit limni=1nf(ci)Δxi\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} for f(x)=xf(x)=\sqrt{x}, y=0y=0, x=0x=0, x=15x=15. Round to three decimal places. Hint: ci=15i2n2c_{i}=\frac{15 i^{2}}{n^{2}}.

See Solution

Problem 16345

Berechne die Integrale und finde den Wert für ZZ in den folgenden Aufgaben: a) 0Zxdx=18\int_{0}^{Z} x d x=18, b) 1Z4xdx=30\int_{1}^{Z} 4 x d x=30, c) Z102xdx=19\int_{Z}^{10} 2 x d x=19, d) 02z0,4dx=8\int_{0}^{2 z} 0,4 d x=8.

See Solution

Problem 16346

Berechne den Wert von zz aus den Integralen: a) 02xdx=18\int_{0}^{2} x \, dx=18, b) 124xdx=30\int_{1}^{2} 4x \, dx=30, c) z102xdx=19\int_{z}^{10} 2x \, dx=19, d) 02z0,4dx=8\int_{0}^{2z} 0,4 \, dx=8.

See Solution

Problem 16347

Berechnen Sie die Grenze ZZ für die Integrale: a) 0Zxdx=18\int_{0}^{Z} x d x=18, b) 1Z4xdx=30\int_{1}^{Z} 4 x d x=30, c) Z102xdx=19\int_{Z}^{10} 2 x d x=19, d) 02z0,4dx=8\int_{0}^{2 z} 0,4 d x=8.

See Solution

Problem 16348

En jeger skyter horisontalt mot en blink 180 cm180 \mathrm{~cm} over bakken, 9.819.81 meter unna. Hvor langt under midten treffer kulen? cm\mathrm{cm}

See Solution

Problem 16349

Simplify the expression using the quotient rule: x3x\frac{x^{3}}{x}, assuming bases are not equal to 0.

See Solution

Problem 16350

Berechnen Sie die Integrale: a) 03(x22)dx\int_{0}^{3}\left(x^{2}-2\right) d x, b) 36(5x2)dx\int_{-3}^{6}\left(5-x^{2}\right) d x, c) 06(x32x2)dx\int_{0}^{6}\left(x^{3}-2 x^{2}\right) d x.

See Solution

Problem 16351

Zeigen Sie, dass FF eine Stammfunktion von ff ist und nennen Sie drei weitere Stammfunktionen für die gegebenen ff.

See Solution

Problem 16352

Zeigen Sie, dass FF eine Stammfunktion von ff ist und nennen Sie drei weitere Stammfunktionen für die gegebenen ff.

See Solution

Problem 16353

Zeigen Sie, dass F\mathrm{F} eine Stammfunktion von f\mathrm{f} ist und nennen Sie drei weitere Stammfunktionen von ff.

See Solution

Problem 16354

Berechnen Sie die Integrale: d) 20(2x3+3x24)dx\int_{-2}^{0}\left(-2 x^{3}+3 x^{2}-4\right) d x e) 11(x55x4)dx\int_{-1}^{1}\left(x^{5}-5 x^{4}\right) d x f) 010(x23x5+1)dx\int_{0}^{10}\left(\frac{x^{2}-3 x}{5}+1\right) d x

See Solution

Problem 16355

Calculate the integral from 2 to 3 of the function 1+1x21+\frac{1}{x^{2}}.

See Solution

Problem 16356

Überprüfen Sie, ob die Integrale 510FA(x)dx\int_{-5}^{10} F_{A}'(x) \, dx und 510FK(x)dx\int_{-5}^{10} F_{K}'(x) \, dx gleich sind.

See Solution

Problem 16357

Berechnen Sie die Integrale: g) 12(0,5x45x)dx\int_{1}^{2}\left(0,5 x^{4}-5 x\right) dx, h) 20(13x312x2)dx\int_{-2}^{0}\left(\frac{1}{3} x^{3}-\frac{1}{2} x^{2}\right) dx, i) 02πcos(x)dx\int_{0}^{2 \pi} \cos (x) dx.

See Solution

Problem 16358

Find the second derivative of f(x)f(x) if f(x)=12(23x)3f^{\prime}(x)=-12(2-3x)^{3}.

See Solution

Problem 16359

Find the dimensions of a cylinder with maximum volume inscribed in a cone of height 4 and base radius 7. Radius = RR, Height = HH.

See Solution

Problem 16360

Bearbeite die Funktionen f(x)=x3f(x)=x^{3} und f(x)=x4f(x)=x^{4}, finde den Differenzenquotienten und die Ableitungsfunktion.

See Solution

Problem 16361

Berechne die Flächeninhalte unter der Funktion g(x)=0,2x+1g(x)=0,2 x+1 für die Intervalle [0;3][0 ; 3], [2;5][2 ; 5] und finde eine Stammfunktion.

See Solution

Problem 16362

Find the value of kk such that 12kx3dx=75\int_{1}^{2} k x^{3} d x=75.

See Solution

Problem 16363

How long (in years) will it take for \$6000 to grow to \$40000 at a 6% annual interest rate, compounded continuously? Round to the nearest tenth.

See Solution

Problem 16364

Sei kk so gewählt, dass die Flächeninhalte A1A_{1} und A2A_{2} zwischen f(x)=14x3f(x)=\frac{1}{4} x^{3} und der xx-Achse im Verhältnis 1:15 sind.

See Solution

Problem 16365

Berechnen Sie die Umlaufdauer TT eines Satelliten in 500 km500 \mathrm{~km} Höhe. Nutzen Sie den Mondabstand von 384000 km384000 \mathrm{~km} und seine Umlaufzeit von 27,3 Tagen.

See Solution

Problem 16366

Bestimme die Ableitung der Funktionen: a) f(x)=e7xf(x)=e^{7x}, b) f(x)=e2xf(x)=e^{2x}, c) f(x)=e2xf(x)=e^{-2x}, d) f(x)=e0.2xf(x)=e^{0.2x}, e) f(x)=3e2xf(x)=3e^{2x}, f) f(x)=0.5e4xf(x)=0.5e^{4x}.

See Solution

Problem 16367

Bestimmen Sie die Ableitung der Funktionen und klammern Sie aus: a) f(x)=xexf(x)=x \cdot e^{x} b) f(x)=(x3)exf(x)=(x-3) \cdot e^{x}

See Solution

Problem 16368

Gegeben ist die Funktion fa(x)=18x4a12x3+2xf_{a}(x)=\frac{1}{8} x^{4}-\frac{a}{12} x^{3}+2 x. Untersuchen Sie das Verhalten und die Extrempunkte von f0f_{0}.

See Solution

Problem 16369

Find the horizontal asymptotes for the rational function f(x)=x2+2x2x212x+27f(x)=\frac{-x^{2}+2 x-2}{x^{2}-12 x+27}.

See Solution

Problem 16370

Find the average rate of change of f(x)=16(x4)2+5f(x)=\frac{16}{(x-4)^{2}}+5 from x=1x=1 to x=2x=2.

See Solution

Problem 16371

Calculate the indefinite integral and include the constant of integration CC:
(x7)2dx \int (x-7)^{2} \, dx

See Solution

Problem 16372

A 2.00 kg rock is dropped from a 30.0 m building. Find its momentum when it hits the ground.

See Solution

Problem 16373

Gegeben ist die Funktion fa(x)=18x4a12x3+2xf_{a}(x)=\frac{1}{8} x^{4}-\frac{a}{12} x^{3}+2 x. Untersuchen Sie das Verhalten von f0f_{0} und dessen Ableitungen.

See Solution

Problem 16374

Find the derivative of f(x)=x2tan1xf(x)=x^{2} \tan^{-1} x.

See Solution

Problem 16375

Evaluate the integral from -1 to 2 of (x23x)(x^{2}-3 x). Show all steps.

See Solution

Problem 16376

Find the derivative of the function f(x)=(ln(x))sec(x)f(x)=(\ln (x))^{\sec (x)}. What is f(x)f^{\prime}(x)?

See Solution

Problem 16377

Berechnen Sie das unbestimmte Integral für die Funktionen: a) f(x)=2x2+3x2f(x)=\frac{2 x^{2}+3}{x^{2}}, b) f(x)=12x3+4x2f(x)=12 x^{3}+4 x^{2}, d) f(x)=2x45x2f(x)=\frac{2 x^{4}-5}{x^{2}}, e) f(x)=2x34xf(x)=2 x^{3}-\frac{4}{\sqrt{x}}.

See Solution

Problem 16378

Find the derivative dydx\frac{d y}{d x} for y=31sin4(ln(x))y=3 \frac{1}{\sin ^{4}(\ln (x))}. What is dydx=\frac{d y}{d x}=\square?

See Solution

Problem 16379

Bestimmen Sie die unbestimmten Integrale der folgenden Funktionen: a) f(x)=10x4f(x)=10 x^{4}, b) f(x)=x26x+4f(x)=x^{2}-6 x+4, c) f(x)=x+xf(x)=x+\sqrt{x}, d) f(x)=4x2f(x)=\frac{4}{x^{2}}, e) f(x)=2x2+352f(x)=\frac{2 x^{2}+3}{5^{2}}, f) f(x)=12x3+4x2f(x)=12 x^{3}+4 x^{2}, g) f(x)=2x45x2f(x)=\frac{2 x^{4}-5}{x^{2}}, h) f(x)=2x34xf(x)=2 x^{3}-\frac{4}{\sqrt{x}}.

See Solution

Problem 16380

Berechnen Sie die Integrale: a) 12(x2+1)dx\int_{1}^{2}(x^{2}+1) d x b) 12(x2)dx\int_{-1}^{2}(x-2) d x c) 03(212x2)dx\int_{0}^{3}(2-\frac{1}{2} x^{2}) d x

See Solution

Problem 16381

Berechnen Sie die Integrale: a) 12(x2+1)dx\int_{1}^{2}\left(x^{2}+1\right) dx, b) 12(x2)dx\int_{-1}^{2}(x-2) dx, c) 03(212x2)dx\int_{0}^{3}\left(2-\frac{1}{2} x^{2}\right) dx.

See Solution

Problem 16382

Find the derivative of f(x)=2x4x+5f(x)=2x-\sqrt{4x+5} using the limit definition. Then, find the tangent and normal line at x=1x=1.

See Solution

Problem 16383

Berechne mit CAS die Schnittpunkte von ff und gg mit den Achsen, Extrem- und Wendepunkte sowie die Tangente bei x=2x=2 für
f(x)=2x4+7x3+5x2,g(x)=ex(x2). f(x)=2 \cdot x^{4}+7 x^{3}+5 x^{2}, \quad g(x)=e^{x} \cdot(x-2).

See Solution

Problem 16384

Find the derivative of f(x)=2x4x+5f(x)=2x-\sqrt{4x+5} using limits, then find tangent and normal line equations at x=1x=1.

See Solution

Problem 16385

Determine the half-life of a radioactive element with decay function A(t)=A0e0.0376tA(t)=A_{0} e^{-0.0376 t}.

See Solution

Problem 16386

Find the half-life of a radioactive substance with a decay rate of k=0.029k = -0.029 per year. Round to one decimal place.

See Solution

Problem 16387

Find the 2nd and 3rd derivatives of f(x)=esinx+tanxf(x) = e^{\sin x + \tan x} and evaluate at x=1x=1.

See Solution

Problem 16388

Finde die 3 Ableitungen von f(x)=x36x2+9x2f(x)=x^{3}-6 x^{2}+9 x-2.

See Solution

Problem 16389

Leiten Sie die Funktionen ab und klammern Sie aus: a) f(x)=2xe3xf(x)=2 x \cdot e^{3 x}, b) g(x)=(x3)e2xg(x)=(x-3) \cdot e^{2 x}, c) f(t)=t2e12t+5f(t)=t^{2} \cdot e^{\frac{1}{2} t}+5, d) g(t)=(t32t2)e2tg(t)=(t^{3}-2 t^{2}) \cdot e^{-2 t}, e) f(x)=(2x4)e0,5xf(x)=(2 x-4) \cdot e^{0,5 x}, f) h(x)=(x2x)e0,01xh(x)=(x^{2}-x) \cdot e^{-0,01 x}.

See Solution

Problem 16390

Leiten Sie die Funktionen ab und vereinfachen Sie, wenn möglich: a) f(x)=2x+e2xf(x)=2 x+e^{2 x} b) f(x)=e2x5e15xf(x)=e^{2 x}-5 \cdot e^{\frac{1}{5} x} c) f(x)=x2+e3x1f(x)=x^{2}+e^{3 x-1} d) f(x)=20e0,1x+x+5f(x)=20 \cdot e^{0,1 x}+x+5 e) f(x)=13x32e0,25xf(x)=\frac{1}{3} x^{3}-2 \cdot e^{-0,25 x} f) f(x)=2x2ex+3+x3f(x)=2 x^{2}-e^{-x+3}+x^{3}

See Solution

Problem 16391

Bestimmen Sie die Ableitung und klammern Sie aus für: a) f(x)=xexf(x)=x e^{x}, b) f(x)=(x3)exf(x)=(x-3)e^{x}, e) f(x)=sin(x)exf(x)=\sin(x)e^{x}, f) f(x)=(x25)exf(x)=(x^{2}-5)e^{x}, c) f(x)=x2exf(x)=x^{2}e^{x}, d) f(x)=xexx2f(x)=x e^{x}-x^{2}, g) f(x)=x4ex7f(x)=x^{4}e^{x}-7, h) f(x)=5xxexf(x)=5x-x e^{x}.

See Solution

Problem 16392

Finde die Ableitungen von f(x)=x36x2+9x2f(x)=x^{3}-6 x^{2}+9 x-2.

See Solution

Problem 16393

Gegeben sind die Funktionen f(x)=2x4+7x3+5x2f(x)=2x^{4}+7x^{3}+5x^{2} und g(x)=ex(x2)g(x)=e^{x}(x-2).
1. Bestimmen Sie mit einem CAS die Schnittpunkte mit den Achsen, Extrem- und Wendepunkte.
2. Finden Sie die Tangentengleichung an x=2x=2.

See Solution

Problem 16394

Find the derivative of y=x+6x+73+sec(5x)(2x+4x2)14y=\sqrt[3]{x+\sqrt{6 x+7}}+\sec(5x)-(2x+4x^2)^{\frac{1}{4}}.

See Solution

Problem 16395

Find the derivative of y=(xx+2)2(x2+34+2x)y=\left(\frac{x}{x+2}\right)^{2}\left(\frac{x^{2}+3}{4+2 x}\right).

See Solution

Problem 16396

Test if the series n=1(3)n14n\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^{n}} converges or diverges, and find the sum if it converges.

See Solution

Problem 16397

Find the derivative of y=(uu1)2(uu+1)2y=\left(\frac{u}{u-1}\right)^{2}-\left(\frac{u}{u+1}\right)^{2}.

See Solution

Problem 16398

Untersuchen Sie die Ableitung von f(x)=ln(x)f(x)=\ln (x) und überprüfen Sie, ob f(x)=1xf^{\prime}(x)=\frac{1}{x} für x>0x>0 gilt.

See Solution

Problem 16399

Find the derivative of y=ln(x3x2x+3x4+x2+x+1)y=\ln \left(\frac{x^{3}-x^{2}-x+3}{x^{4}+x^{2}+x+1}\right).

See Solution

Problem 16400

Berechnen Sie das Integral 1xdx\int \frac{1}{x} d x für die Funktion f(x)=1xf(x)=\frac{1}{x}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord