Calculus

Problem 14301

Find the limit: limh0ln(2+h)ln(2)h\lim _{h \rightarrow 0} \frac{\ln (2+h)-\ln (2)}{h}. Choose from: a. ln(2)\ln (2), b. 12\frac{1}{2}, c. 1ln(2)\frac{1}{\ln (2)}, d. does not exist.

See Solution

Problem 14302

Find the limits: limx2h(x)=3log(2x+4)\lim _{x \rightarrow 2^{-}} h(x)=3 \log (-2 x+4) and limxK(x)=ln(x+6)1\lim _{x \rightarrow-\infty} K(x)=-\ln (-x+6)-1.

See Solution

Problem 14303

Calculate the half-life of I-10 with a decay rate of 9.82%9.82\% per day. Round to 1 decimal place.

See Solution

Problem 14304

Given f(x)=ln(x+2)6f(x)=-\ln (x+2)-6, find its asymptote, domain, range, yy-intercept, and limits as x2+x \to -2^+ and xx \to \infty.

See Solution

Problem 14305

Find the limit: limh0ln(2+h)ln(2)h\lim _{h \rightarrow 0} \frac{\ln (2+h)-\ln (2)}{h}. Choices: a. ln(2)\ln (2) b. 12\frac{1}{2} c. 1ln(2)\frac{1}{\ln (2)} d. does not exist.

See Solution

Problem 14306

Determine the horizontal asymptote of g(x)=(13)x+3g(x)=\left(\frac{1}{3}\right)^{x+3}.

See Solution

Problem 14307

Find the initial population size and the size after 8 years for P(t)=6001+3e0.31tP(t)=\frac{600}{1+3 e^{-0.31 t}}. Round to whole numbers.

See Solution

Problem 14308

Find the linearization L(x)L(x) at x=1x=-1 for the function f(x)=x+1xf(x)=x+\frac{1}{x}.

See Solution

Problem 14309

Find the derivative of the quadratic function f(x)=a(xr)(xs)f(x)=a(x-r)(x-s) using first principles.

See Solution

Problem 14310

Find the time (in s) to charge a 200pF200 \mathrm{pF} capacitor through a 69.0MΩ69.0 \mathrm{M} \Omega resistor to 92.0%92.0 \% voltage.

See Solution

Problem 14311

Find the limit as xx approaches -1: limx1x+15x+92\lim _{x \rightarrow-1} \frac{x+1}{\sqrt{5 x+9}-2}

See Solution

Problem 14312

Check if f(x)=x2/11f(x)=x^{2/11} meets the Mean Value Theorem conditions on [9,1][-9,1]. Justify your answer.

See Solution

Problem 14313

Gegeben sind f(x)=x33x2x+4f(x)=x^{3}-3 x^{2}-x+4 und g(x)=4x+5g(x)=-4 x+5. Untersuchen Sie ff und gg in Bezug auf Graphen, Steigungen und Tangenten.

See Solution

Problem 14314

Find the derivative of 5x3+xy2=5x3y35 x^{3}+x y^{2}=5 x^{3} y^{3} with respect to xx, i.e., compute dydx\frac{dy}{dx}.

See Solution

Problem 14315

Differentiate 2x3=(3xy+1)22 x^{3}=(3 x y+1)^{2} with respect to xx to find dydx\frac{dy}{dx}.

See Solution

Problem 14316

Find the derivative dydx\frac{dy}{dx} for the equation 5x3=3xy+25 x^{3}=-3 x y+2.

See Solution

Problem 14317

Express the limit as a definite integral: limni=1nxiln(1+xi2)Δx\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} \ln(1+x_{i}^{2}) \Delta x over [0,3][0,3].

See Solution

Problem 14318

Bakterien-Population:
a) Bestimme das Maximum von f(t)=1100t335t2+9t+10f(t)=\frac{1}{100} t^{3}-\frac{3}{5} t^{2}+9 t+10 für t[0,21]t \in [0, 21].
b) Finde Zeitpunkte für stärksten Anstieg und Abfall der Bakterienzahl.
c) Bestimme, wann die Bakterienzahl auf 0 sinkt, wenn f(t)f(t) tangential fortgesetzt wird.

See Solution

Problem 14319

Approximate the integral 0π/22cos5(x)dx\int_{0}^{\pi / 2} 2 \cos ^{5}(x) d x using the Midpoint Rule with n=4n=4. Round to four decimal places.

See Solution

Problem 14320

Evaluate 137ex+4dx\int_{1}^{3} 7 e^{x+4} d x using 13exdx=e3e\int_{1}^{3} e^{x} d x=e^{3}-e.

See Solution

Problem 14321

Find 06[3f(x)+5g(x)]dx\int_{0}^{6}[3 f(x)+5 g(x)] d x given 06f(x)dx=37\int_{0}^{6} f(x) d x=37 and 06g(x)dx=18\int_{0}^{6} g(x) d x=18.

See Solution

Problem 14322

Untersuchen Sie das Verhalten von ff für die Grenzprozesse: a) f(x)=2x+1x,x<0f(x)=\frac{2x+1}{x}, x<0, xx \rightarrow -\infty; b) f(x)=x+1x2,x>0f(x)=\frac{x+1}{x^{2}}, x>0, xx \rightarrow \infty. Skizzieren Sie die Graphen.

See Solution

Problem 14323

Evaluate 13(2ex3)dx\int_{1}^{3}\left(2 e^{x}-3\right) d x using 13exdx=e3e\int_{1}^{3} e^{x} d x=e^{3}-e.

See Solution

Problem 14324

Find the tangent line equation at the point for t=1t=-1 on the curve defined by x=t5+1x=t^{5}+1, y=t6+ty=t^{6}+t.

See Solution

Problem 14325

Express the integral 247+x2dx\int_{2}^{4} \sqrt{7+x^{2}} dx as a limit of Riemann sums using right endpoints without evaluating it.

See Solution

Problem 14326

Express the limit as a definite integral: limni=1nxi(xi)2+4Δx\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{x_{i}^{*}}{\left(x_{i}^{*}\right)^{2}+4} \Delta x on [1,5][1,5].

See Solution

Problem 14327

Find the limit as a definite integral: limni=1n[7(xi)36xi]Δx\lim_{n \to \infty} \sum_{i=1}^{n} [7(x_i^*)^3 - 6x_i^*] \Delta x on [2,6][2,6].

See Solution

Problem 14328

Find the half-life of a substance that decays at a rate of 9.75%9.75\% continuously over 8 hours. Round to 1 decimal place.

See Solution

Problem 14329

Gegeben sind die Funktionen f(x)=x33x2x+4f(x)=x^{3}-3 x^{2}-x+4 und g(x)=4x+5g(x)=-4 x+5.
a) Zeichnen Sie die Graphen für 1x3-1 \leq x \leq 3. b) Bestimmen Sie f(x)f^{\prime}(x) und g(x)g^{\prime}(x). c) Zeigen Sie, dass ff und gg am Schnittpunkt dieselbe Steigung haben. d) Für welche Punkte sind die Tangenten von ff senkrecht zu gg? e) Zeigen Sie, dass ff die Linie y=1y=1 in Winkeln von ca. 75,9675,96^{\circ} und 82,8882,88^{\circ} schneidet. f) Bestimmen Sie f(x)f^{\prime}(x) mit dem Differentialquotienten. g) Für welche xx-Werte ist die Steigung von ff > 104? h) Untersuchen Sie f(x)g(x)\frac{f(x)}{g(x)} für xx \rightarrow \infty.

See Solution

Problem 14330

Express the area under y=x3y=x^{3} from 0 to 1 using right endpoints as a limit: A=limnj=1nf(xj)ΔxA=\lim_{n \to \infty} \sum_{j=1}^{n} f(x_{j}) \Delta x. Use 13+23++n3=[n(n+1)2]21^3 + 2^3 + \cdots + n^3 = \left[\frac{n(n+1)}{2}\right]^2 to evaluate it.

See Solution

Problem 14331

Approximate the integral 0π/22cos5(x)dx\int_{0}^{\pi / 2} 2 \cos ^{5}(x) d x using the Midpoint Rule with n=4n=4, rounding to four decimal places.

See Solution

Problem 14332

Graph f(x)=3x520x3f(x)=3x^{5}-20x^{3}. Find critical points and intervals of increase/decrease. Critical points: x=x=, x=x=. Increasing for, decreasing for.

See Solution

Problem 14333

Find the sensitivity SS by calculating the derivative R(x)R'(x) of the reaction R(x)=40+24x0.41+4x0.4R(x)=\frac{40+24 x^{0.4}}{1+4 x^{0.4}}.

See Solution

Problem 14334

Erklären Sie die Ableitungs- und Aufleitungsregeln und geben Sie je ein Beispiel für jede Regel.

See Solution

Problem 14335

Find intervals where f(x)=x3+xf(x) = x^{3} + x is increasing or decreasing, and analyze its curvature.

See Solution

Problem 14336

Find the limits for the piecewise function f(x)f(x) defined as:
1. 3+sin(x)3+\sin(x) for x<0x<0
2. 3cos(x)3\cos(x) for 0xπ0 \leq x \leq \pi
3. 3sin(x)3\sin(x) for x>πx>\pi

a) limx0f(x)\lim_{x \to 0^-} f(x) b) limx0+f(x)\lim_{x \to 0^+} f(x) c) limx0f(x)\lim_{x \to 0} f(x) d) limxπf(x)\lim_{x \to \pi^-} f(x)

See Solution

Problem 14337

Find the xx where the function g(x)=xe4xg(x)=x e^{-4 x} has a local maximum. If none, enter NA.

See Solution

Problem 14338

Find the limits of the piecewise function f(x)f(x) at specific points:
a) limx1f(x)\lim _{x \rightarrow-1^{-}} f(x), b) limx1+f(x)\lim _{x \rightarrow-1^{+}} f(x), c) limx1f(x)\lim _{x \rightarrow-1} f(x), d) limx4f(x)\lim _{x \rightarrow 4^{-}} f(x).

See Solution

Problem 14339

Insect population P(t)=800e0.03t\mathrm{P}(t)=800 e^{0.03 t}: (a) Find P(0)\mathrm{P}(0). (b) Determine growth rate. (c) Find P(10)\mathrm{P}(10). (d) When is P=1200\mathrm{P}=1200? (e) When does population double?

See Solution

Problem 14340

Find the tangent line equation for y=6sinx+cosxy=\frac{-6}{\sin x+\cos x} at point (0,6)(0,-6). y=y=

See Solution

Problem 14341

Einstein's mass equation is m=m01v2c2m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}. For m0=3 kgm_{0}=3 \mathrm{~kg}, find limits as v0.9999cv \to 0.9999c and vcv \to c.

See Solution

Problem 14342

Einstein's mass equation is m=m01v2c2m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}. Given m0=3 kgm_{0}=3 \mathrm{~kg}, find limits as v0.9999cv \to 0.9999c and vcv \to c.

See Solution

Problem 14343

Find the slope of the secant line from P(1,0)P(1,0) to Q(x,sin(3πx))Q(x, \sin(3 \pi x)) for x=0,0.9,0.99,0.999x = 0, 0.9, 0.99, 0.999.

See Solution

Problem 14344

Was passiert mit der Masse mm, wenn die Geschwindigkeit vv 99,99%99,99\% der Lichtgeschwindigkeit erreicht? Berechne limv(0.9999c)m01v2c2\lim _{v \rightarrow(0.9999 c)} \frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} für m0=3 kgm_{0}=3 \mathrm{~kg}. Runde auf 3 Dezimalstellen.

See Solution

Problem 14345

Gegeben ist die Funktion fa(x)=ax3+4ax(a0)f_{a}(x)=-a x^{3}+4 a x (a \neq 0). Untersuchen Sie Symmetrie, Punkte, Extremstellen und Wendetangente.

See Solution

Problem 14346

Find the formula for the annual growth rate of a bear population that increased by 50%50\% in 4 years using continuous compounding. Use ln in your answer.

See Solution

Problem 14347

Gegeben sind die Funktionen f(x)=x33x2x+4f(x)=x^{3}-3 x^{2}-x+4 und g(x)=4x+5g(x)=-4 x+5. Untersuchen Sie ff und gg in Bezug auf Graphen, Ableitungen und Steigungen.

See Solution

Problem 14348

Determine the long run behavior of x3+1x2+2\frac{x^{3}+1}{x^{2}+2}. Options: No asymptote, y=0y=0, or y=1y=1.

See Solution

Problem 14349

A jello salad at 49F49^{\circ} \mathrm{F} warms in a 68F68^{\circ} \mathrm{F} room. After 5 min it's 54F54^{\circ} \mathrm{F}. Find its temp after 20 min.

See Solution

Problem 14350

Differentiate the function: y=x5lnx12x2y=x^{5} \ln x-\frac{1}{2} x^{2}. Find dydx=\frac{d y}{d x}=\square.

See Solution

Problem 14351

Find the third derivative of f(x)=(2x+3)6f(x)=(2x+3)^6.

See Solution

Problem 14352

Strontium-90 decays as A(t)=A0e0.0244tA(t)=A_{0} e^{-0.0244 t}. Given 500g, find: (a) decay rate, (b) amount after 10 years, (c) time for 300g, (d) half-life.

See Solution

Problem 14353

Gegeben sind die Funktionen f(x)=x33x2x+4f(x)=x^{3}-3 x^{2}-x+4 und g(x)=4x+5g(x)=-4 x+5.
a) Graphen von ff und gg für 1x3-1 \leq x \leq 3 zeichnen. b) Bestimmen Sie f(x)f^{\prime}(x) und g(x)g^{\prime}(x). c) Zeigen Sie, dass ff und gg im Schnittpunkt dieselbe Steigung haben. d) Für welche Punkte sind Tangenten von ff senkrecht zu gg? e) Zeigen Sie, dass ff die Linie y=1y=1 in ca. 75,9675,96^{\circ} und 82,8882,88^{\circ} schneidet. f) Bestimmen Sie f(x)f^{\prime}(x) mit dem Differentialquotienten. g) Für welche xx-Werte ist die Steigung von ff > 104? h) Untersuchen Sie f(x)g(x)\frac{f(x)}{g(x)} für xx \rightarrow \infty.

See Solution

Problem 14354

A 600 g sample of lead-210 decays as A(t)=600e0.032tA(t)=600 e^{-0.032 t}. Find amounts after (a) 4 yr, (b) 6 yr, (c) 20 yr, and (d) half-life.

See Solution

Problem 14355

Evaluate the integral x2lnxdx\int x^{2} \ln x \, dx using integration by parts with u=lnxu=\ln x and dv=x2dxdv=x^{2} dx.

See Solution

Problem 14356

Evaluate the integral: xcos5xdx\int x \cos 5 x \, dx

See Solution

Problem 14357

Find the half-life of a radioactive element with decay function A(t)=A0e0.0188tA(t)=A_{0} e^{-0.0188 t}. Round to the nearest tenth.

See Solution

Problem 14358

Oil spills spread in a circle with area increasing at 6.5mi2/hr6.5 \mathrm{mi}^{2} / \mathrm{hr}. Find the radius increase rate when area is 9mi29 \mathrm{mi}^{2}.

See Solution

Problem 14359

Find dydx\frac{d y}{d x} using implicit differentiation for xy3sec(y)1=1+y4\frac{x y^{3}}{\sec (y)-1}=1+y^{4}.

See Solution

Problem 14360

A triangle's altitude increases at 2 cm/min2 \mathrm{~cm/min} and area at 3 cm2/min3 \mathrm{~cm}^2/\mathrm{min}. Find the base's rate when altitude = 8 cm and area = 91 cm².

See Solution

Problem 14361

Find critical points of f(x)=x(8x)3f(x)=x(8-x)^{3}. Answer: x=2,8x=2,8.

See Solution

Problem 14362

A 200 g wood block on a table with friction 0.40 is compressed 18 cm by a 10 N force. How far will it stretch after release?

See Solution

Problem 14363

A pizza pan cools from 400F400^{\circ} \mathrm{F} to room temp 75F75^{\circ} \mathrm{F}. After 5 min it's 300F300^{\circ} \mathrm{F}.
(a) When is it 125F125^{\circ} \mathrm{F}?
(b) How long until it reaches 240F240^{\circ} \mathrm{F}?
(c) What trend do you observe in the temperature over time?
Use: T(t)=Ts+(T0Ts)ektT(t) = T_s + (T_0 - T_s)e^{-kt}, where Ts=75T_s = 75, T0=400T_0 = 400.

See Solution

Problem 14364

Find dydx\frac{d y}{d x} in terms of xx and yy given x+3y3=2y\sqrt{x+3 y^{3}}=2 y.

See Solution

Problem 14365

A pizza pan cools from 450F450^{\circ} \mathrm{F} to 72F72^{\circ} \mathrm{F}. After 5 min, it's 300F300^{\circ} \mathrm{F}.
(a) When is it 135F135^{\circ} \mathrm{F}? (b) When is it 190F190^{\circ} \mathrm{F}? (c) Describe the temperature trend over time.

See Solution

Problem 14366

Set up and evaluate the integral for the volume of the solid formed by revolving the region bounded by y=x6y=x^{6}, x=0x=0, y=64y=64 about the xx-axis.

See Solution

Problem 14367

A pizza pan cools from 450F450^{\circ}F to 72F72^{\circ}F. After 5 mins it's 300F300^{\circ}F. Find when it's 135F135^{\circ}F and 190F190^{\circ}F. What trend do you observe?

See Solution

Problem 14368

Find the volume of the solid from revolving the area between y=83xx2y=8-3x-x^2 and y=x+8y=x+8 around (i) xx-axis, (ii) y=4y=4.

See Solution

Problem 14369

Find the volume of the solid formed by revolving the area between y=2xy=2x, y=0y=0, and x=4x=4 around x=5x=5.

See Solution

Problem 14370

Find the carrying capacity and growth rate from the logistic model P(t)=30001+31.73e0.327tP(t)=\frac{3000}{1+31.73 e^{-0.327 t}}.

See Solution

Problem 14371

Find the limit: limx6(ln((7x)1x6))=1\lim _{x \rightarrow 6}(\ln ((7-x)^{\frac{1}{x-6}}))=-1 and exponentiate it.

See Solution

Problem 14372

Find the volume of the solid formed by revolving the area between y=cosxy=\cos x, y=0y=0, x=0x=0, and x=π3x=\frac{\pi}{3} around the xx-axis.

See Solution

Problem 14373

Find the volume of the solid formed by revolving the region bounded by y=2xy=2-x, y=0y=0, x=0x=0 around the xx-axis.

See Solution

Problem 14374

Find the volume of the solid formed by revolving the region between y=15x2y=\frac{15}{x^{2}}, y=0y=0, x=1x=1, and x=8x=8 around the xx-axis. Round to two decimal places.

See Solution

Problem 14375

Find the volume using the shell method for y=14xx2y=14x-x^2, x=0x=0, and y=49y=49 revolved around the yy-axis.

See Solution

Problem 14376

Find the volume of the solid formed by revolving the area between y=1xy=\frac{1}{x}, y=0y=0, x=8x=8, and x=15x=15 around the xx-axis.

See Solution

Problem 14377

A pizza pan cools from 450F450^{\circ} \mathrm{F} to room temp 72F72^{\circ} \mathrm{F}. After 5 min it's 300F300^{\circ} \mathrm{F}.
(a) When is it 135F135^{\circ} \mathrm{F}? (b) When is it 190F190^{\circ} \mathrm{F}? (c) Describe the temperature trend over time.

See Solution

Problem 14378

The logistic model P(t)=30001+31.73e0.327tP(t)=\frac{3000}{1+31.73 e^{-0.327 t}} shows bacteria growth. Find carrying capacity, growth rate, and initial population.

See Solution

Problem 14379

Evaluate the line integral using Green's Theorem: C(12xy2,4y2cosy)dr\oint_{C}\left(\frac{1}{2} x y^{2}, 4 y^{2} \cos y\right) \cdot d \vec{r} where CC is bounded by y=x2y=x^{2} and y=x3y=x^{3} in the first quadrant.

See Solution

Problem 14380

Find the area between y=exy=e^{x} and y=12xy=\frac{1}{2} x for xx in [0,8][0,8]. Choose from the options given.

See Solution

Problem 14381

Calculate the area between the curves y=x2y=x^{2} and y=12xy=12-x by integrating with respect to xx and yy.

See Solution

Problem 14382

Find critical points of f(x)=(x29)7f(x)=(x^{2}-9)^{7}, use the first-derivative test for local maxima/minima, graph to verify.
Enter critical points in order. If none, enter NA.
Local maximum at x=x=, local minimum at x=x=.

See Solution

Problem 14383

The logistic model P(t)=10001+30.28e0.433t\mathrm{P}(\mathrm{t})=\frac{1000}{1+30.28 e^{-0.433 \mathrm{t}}} shows bacterial growth. Find (a) carrying capacity, (b) growth rate, (c) initial population.

See Solution

Problem 14384

Calculate the orbital period of a satellite at a height of 488000 m488000 \mathrm{~m} above Mars, with radius 3397 km3397 \mathrm{~km}.

See Solution

Problem 14385

The logistic model P(t)=10001+30.28e0.433tP(t)=\frac{1000}{1+30.28 e^{-0.433 t}} shows bacterium growth. Find (b) growth rate, (c) initial size, (d) population after 7 hours.

See Solution

Problem 14386

Find the area between f(x)=sin11xf(x)=\sin 11 x and g(x)=cos22xg(x)=\cos 22 x for π22xπ22-\frac{\pi}{22} \leq x \leq \frac{\pi}{22}. Round to three decimal places.

See Solution

Problem 14387

Find the limit using L'Hôpital's Rule: limxxex=\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=

See Solution

Problem 14388

Calculate the area between y=3lnxy=3 \ln x, y=53lnxy=5-3 \ln x, and x=5x=5. Round to three decimal places.

See Solution

Problem 14389

Find the derivative of the function f(x)=e5x2f(x)=e^{5 x^{2}}.

See Solution

Problem 14390

Find the derivative of sin1(8x)\sin^{-1}(8x) with respect to xx.

See Solution

Problem 14391

Calculate the average rate of change for f(x)=mx+cf(x)=mx+c from a=1a=-1 to b=7b=7.

See Solution

Problem 14392

Find f(0)f^{\prime}(0) if f(x)=ln(x+4+e3x)f(x)=\ln(x+4+e^{-3x}).

See Solution

Problem 14393

Find the limit as xx approaches 1 for the expression 5lnx2x21\frac{5 \ln x^{2}}{x^{2}-1}.

See Solution

Problem 14394

Evaluate the limit using L'Hôpital's Rule: limx324(1x1836x324)=\lim _{x \rightarrow 324}\left(\frac{1}{\sqrt{x}-18}-\frac{36}{x-324}\right)=

See Solution

Problem 14395

Find the area of the surface formed by revolving y=x3y=\frac{x}{3} from x=3x=3 to x=9x=9 about the xx-axis.

See Solution

Problem 14396

Find the derivative of log2(x3)\log_{2}(x^{3}).

See Solution

Problem 14397

Logistic growth model P(t)=10001+30.28e0.433tP(t)=\frac{1000}{1+30.28 e^{-0.433 t}}. Find initial size, population after 7 hours, and time to reach 700 g700 \mathrm{~g}.

See Solution

Problem 14398

Find the surface area of the curve y=x3+16y=\sqrt[3]{x}+16 from x=1x=1 to x=4,096x=4,096 revolved around the yy-axis.

See Solution

Problem 14399

Find the expectation E\mathbb{E} and variance V\mathbb{V} of ρ(x)=2π1x2+1\rho(x)=\frac{2}{\pi} \frac{1}{x^{2}+1} on [0,+)[0,+\infty). Check for convergence.

See Solution

Problem 14400

Calculate the average rate of change of h(x)=2x2h(x)=2-x^{2} from x=3x=3 to x=4x=4.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord